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We study explosive percolation (EP) on an Erdös-Rényi network for product rule (PR) and sum rule (SR).
Initially, it was claimed that EP describes discontinuous phase transition; now it is well accepted as a probabilistic
model for thermal continuous phase transition (CPT). However, no model for CPT is complete unless we know
how to relate its observable quantities with those of thermal CPT. To this end, we define entropy and specific heat,
redefine susceptibility, and show that they behave exactly like their thermal counterparts. We obtain the critical
exponents ν, α, β, and γ numerically and find that both PR and SR belong to the same universality class and
obey Rushbrooke inequality.
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The notion of percolation is omnipresent in many seemingly
disparate natural and man-made systems [1]. Examples include
spread of forest fire, flow of fluid through porous media, spread
of biological and computer viruses, etc. [2–4]. Besides such
direct applications, percolation is best known as a model for
phase transition. One of the simplest models for percolation
is the classical random percolation (RP) on an Erdös-Rényi
(ER) network in which one starts with N labeled nodes
that are initially all isolated [5]. Then at each step a link,
say eij , is picked at random from all the possible pairs of
links and occupies it to connect nodes i and j provided
they are not already connected. As the number of occupied
links n = tN increases from zero we find that clusters, i.e.,
contiguous nodes connected by occupied links, are formed
and on the average grown. In the process, the largest cluster
smax undergoes a transition across tc = 0.5 from minuscule
size (smax ∼ log N ) to giant size (smax ∼ N ). The emergence
of such threshold value tc is found to be accompanied by
a sudden change in the order parameter P , the ratio of
the largest cluster to the network size, such that P = 0 at
t � tc and P > 0 at t > tc in the limit N → ∞. This is
reminiscent of the second-order or continuous phase transition
(CPT).

In 2009, Achlioptas et al. proposed a class of percolation
model in which two links instead of one are picked randomly
at each step [6]. However, ultimately only one of the links,
which results in the smaller clustering, is occupied and the
other is discarded for future picking. One of the key features
of this rule, which is now known as the Achlioptas process,
is that it discourages the growth of the larger clusters and
encourages the smaller ones which inevitably delays the
transition. Eventually, when it reaches near the critical point it
is so unstable that occupation of one or two links triggers an
explosion of growth. It leads to the emergence of a giant cluster
with a bang and hence it is called “explosive percolation”
(EP). Indeed, the corresponding P , in contrast to its classical
counterpart, undergoes such an abrupt transition that it was
at first mistaken as a discontinuity and suggested to exhibit
the first-order or discontinuous transition. Their results jolted
the scientific community through a series of claims, unclaims,

and counterclaims [7–16]. It is now well settled that the
explosive percolation transition is actually continuous but with
first-order-like finite-size effects [15–19].

In general, scientists use a theoretical model, just like
architects use a geometric model before building a large,
expensive structure, because it provides useful insights into
the real-world systems. However, modeling is only useful if we
know how to relate its various observable quantities to those
of the real-world systems. To this end, Kasteleyn and Fortuin
mapped the percolation problem onto the q-state Potts model
and suggested one-to-one correspondence between some of its
observables to the thermal quantities of the Potts model [20].
Owing to that mapping we know that P is the order parameter,
and mean cluster size 〈s〉 or the second moment of the
distribution function ns (the number of cluster of size s per
site) is the susceptibility. However, this mapping could not
help to obtain an exact equivalent counterpart of entropy and
specific heat. In thermal CPT, the entropy S and the order
parameter (OP) complement each other as S, which measures
the degree of disorder, is maximum where OP is zero and
OP, which measures the extent of order, is maximum where
S is zero. A similar behavior is also expected in percolation
in order to elucidate whether it is also an order-disorder
transition or not. Universality is another aspect that we find
common in the thermal CPT and in the random percolation.
In the case of EP, we still do not know even one example of
two processes which belong to the same universality class.
However, some interesting variants of the EP model have been
discussed in Ref. [21] which are expected to belong to different
universality classes. Another interesting aspect of thermal CPT
is that its critical exponents α, β, and γ obey the Rushbrooke
inequality α + 2β + γ � 2 which reduces to equality under
the static scaling hypothesis [22]. Whether it holds in explosive
percolation or not, is also an interesting issue.

In this Rapid Communication, we investigate EP on the ER
networks for product rule (PR) and sum rule (SR) and find their
critical exponents numerically. First, we define susceptibility
χ as the ratio of the successive jump �P of P and the mag-
nitude of successive intervals �t . Then, we obtain the critical
exponents ν of the correlation length, γ of χ , and β of P . Note
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that 〈s〉 exhibits the expected divergence only if the largest
cluster size is excluded from it and even then it gives too large
a value of γ . Realizing these drawbacks, many researchers are
already considering alternative definitions [9,23,24]. Second,
we define entropy H for EP and find that it is continuous across
the whole spectrum of the control parameter t which clearly
reveals that EP transition is indeed continuous in nature. We
then define specific heat as C = q dH

dq
where q = (1 − t) and

find that it diverges with positive critical exponent α. The most
intriguing and unexpected findings of this work is that PR and
SR belong to the same universality class. Besides, we find
that the elusive Rushbrooke inequality holds in EP. Recently,
using the the same definitions for entropy, specific heat, and
susceptibility we have shown that the Rushbrooke inequality
also holds in the random percolation [25].

Percolation is all about clusters as every observable quantity
of it is related, this way or another, to clusters by virtue
of definition. Initially, all the labeled nodes are considered
isolated so that every node is a cluster of its own size. The
process starts by picking two distinct links, say eij and ekl ,
randomly at each step. To apply the PR, we then calculate
the products, �ij = si × sj and �kl = sk × sl , of the size of
the clusters contained in the two nodes on either side of each
link. The link with the smaller value of the products �ij and
�kl is occupied. On the other hand, if we find �ij = �kl ,
then we occupy one of the two links at random with equal
probability. In the case of SR, we take the sum 	ij = si + sj

and 	kl = sk + sl instead of the product and do the rest
exactly in the same way as we did for PR. Each time we
occupy a link, either the size of an existing cluster grows
due to occupation of an intercluster link or the cluster size
remains the same due to the addition of an intracluster link. In
either case, the growth of large clusters is always disfavored,
which is in sharp contrast to its RP counterpart. Thus, the
emergence of a giant cluster is considerably slowed down but
eventually when it happens, it happens abruptly but without
discontinuity.

We first investigate not the order parameter P itself but its
successive jump �P within successive intervals �t = 1/N .
The idea of the largest jump size �Pmax was first introduced
by Nagler et al. and jump size �P in general by Manna [26,27].
We use it to define susceptibility as

χ (t) = �P

�t
, (1)

which essentially becomes the derivative of P since in the
limit N → ∞ we have �t → 0. Note that Kasteleyn and
Fortuin first suggested that the mean cluster size without the
largest cluster is susceptibility [20]. Lately, the variance of
the order parameter

√
〈P 2〉 − 〈P 〉2 has also been defined as

the susceptibility [13,16,23]. Both the definitions give almost
the same γ value which is far too high to satisfy the Rushbrooke
equality. For instance, in the case of random percolation, the
γ value itself is greater than 2. It justifies why a new definition
for susceptibility, that would give small enough γ value so that
the Rushbrooke equality is obeyed, is necessary.

In general, an observable X is said to obey finite-size scaling
(FSS) if it satisfies

X(t,N ) ∼ Na/νφ[(t − tc)N1/ν], (2)

where a = α if X is specific heat, a = −β if X is the order
parameter, and a = γ if X is the susceptibility. We shall
now verify whether χ obeys the FSS or not. To that end,
we first plot χ versus t for both the PR and the SR model
in Figs. 1(a) and 1(b). According to Eq. (2) χmax at t = tc
increases following a power law χmax ∼ Nγ/ν . We then plot
log(χmax) vs log(N ) [see insets of Figs. 1(a) and 1(b)], and
find straight lines with slopes γ /ν = 0.476(2) for PR and
γ /ν = 0.478(2) for SR. Following the procedures in Ref. [28],
we also get a rough estimate of the exponent 1/ν = 0.535(5)
for PR and 1/ν = 0.534(1) for SR. The FSS theory further
suggests that if we now plot χN−γ /ν vs (t − tc)N1/ν , all the
distinct plots of Figs. 1(a) and 1(b) should collapse into their
respective universal curves. Indeed, by tuning γ /ν and 1/ν we
find excellent data collapse [see Figs. 1(c) and 1(d)] if we use
γ /ν = 0.478 and 1/ν = 0.535 for PR and SR, both. Note that
the tc value also affects the data collapse and hence by tuning
the initial estimates for tc, we get the best data collapse if we use
tc = 0.888 50 for PR and tc = 0.860 18 for SR. These values
are very sensitive to data collapse. The quality of data collapse
itself provides a clear testament to the extent of accuracy of
these values. What is most noteworthy, however, is that both
PR and SR share the same value for the exponents γ and ν.
Using now the relation N ∼ (t − tc)−ν in χ ∼ Nγ/ν we find
that

χ ∼ (t − tc)−γ , (3)

where γ = 0.893 for both PR and SR within the acceptable
limit of error. It clearly shows that the susceptibility now
diverges even without the exclusion of the largest cluster and
that, too, with the same γ value for both the rules. Besides we
find the value of γ far too less than what we find from existing
other definitions for susceptibility.

Now, we consider the order parameter P itself and plot it as a
function of t in Figs. 2(a) and 2(b) for PR and SR, respectively.
We follow the same standard procedure as in Refs. [28,29]
and find β/ν = 0.045 for both the variants. It is well known

FIG. 1. Susceptibility χ versus t for PR and SR on the ER network
is shown in (a) and (b), respectively. We plot χN−γ /ν vs (t − tc)N 1/ν

and find excellent data collapse of all the distinct curves of (a) in (c)
and (b) in (d) for PR and SR, respectively, sharing the same critical
exponents.
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FIG. 2. Plots of order parameter P vs t for PR in (a) and SR in
(b). We use the same data to plot PNβ/ν vs (t − tc)N 1/ν and find that
all the distinct plots of (a) and (b) collapse superbly in (c) and (d),
respectively, sharing the same exponents.

that P (t,N ) exhibits finite-size scaling. One way of testing it
is to plot PNβ/ν vs (t − tc)N1/ν and check if all the distinct
curves of P vs t curves collapse or not. Indeed, Figs. 2(c)
and 2(d) suggest that they all collapse superbly with β/ν =
0.045 and 1/ν = 0.535 values regardless of whether it is PR
or SR. Substituting the relation N ∼ (t − tc)−ν in P ∼ N−β/ν

we get

P (t) ∼ (t − tc)β. (4)

This is exactly how the order parameter behaves near critical
point in the thermal CPT as well. We once again find that both
PR and SR rules share the same exponent β = 0.084 within
the acceptable limits of error. Such unusually low value of β

compared to that of the RP on ER where β = 1 is the hallmark
of EP transition [30]. Note also that Grassberger et al. obtained
1/ν = 0.5 and β = 0.0861(5) for PR on ER [15]. Our values
are quite close to their values; however, little differences are
there which mark a significant improvement in the quality of
data collapse.

Phase transitions always entail a change in entropy and
hence no model for phase transition is complete without a
proper definition for it. To this end, we find that the most
suitable choice for entropy in percolation is the Shannon
entropy, which is defined as

H (t) = −K

m∑

i

μi log μi, (5)

where we choose K = 1 since it merely amounts to a choice of
a unit of measure of entropy [31]. Although there is no explicit
restriction per se on the choice of μi , there exist some implicit
restrictions. The textbook definitions of thermal entropy S and
the specific heatC suggest that theS vsT plot must always have
a sigmoidal shape with positive slope [22]. Recently, Vieira
et al. used the cluster size distribution function ns in place of μi

to measure entropy for EP and Tsang et al. used the probability
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FIG. 3. Entropy H vs 1 − t for PR in (a) and SR in (b).

ws = (sns)/
∑

sns to measure the entropy for RP [32,33].
Both groups found that the entropy is maximum at the critical
point and very low at either end of the control parameter.
However, we know that the order parameter measures the
extent of order and entropy measures the degree of disorder
and hence both cannot be zero at t = 0 since the system cannot
be in the ordered and in the disordered state at the same t value.
Besides, bell-shape or concave curvelike entropy violates the
second law of thermodynamics since that would mean in the
high q regime entropy decreases with increasing q which is
equivalent to temperature. The problem lies in the fact that the
sum in Eq. (5) is not over a class of cluster size s, rather it is
over each individual labeled cluster and hence one can neither
use ws nor ns to measure entropy. To find the appropriate
probability μi for Eq. (5), we assume that for a given t there are
m distinct and disjoint labeled clusters i = 1,2, . . . ,m of size
s1,s2, . . . ,sm, respectively. We then propose a labeled cluster
picking probability) μi , that a node picked at random belongs
to cluster i, and assume that it depends on the size si of the
cluster i itself, so that μi = si/

∑
j sj where

∑
j sj = N .

Incorporating μi = si/N in Eq. (5) we obtain entropy for
explosive percolation. To visualize it, we plot it in Figs. 3(a)
and 3(b) as a function of q = 1 − t for PR and SR, respectively.
We observe that the maximum entropy occurs at q = 1 where
μi = 1/N ∀ i. It means means that every node has the same
probability to be picked if we hit one at random since initially
every node is a cluster of size one. This is exactly like the
state of the isolated ideal gas since here, too, all accessible
microstates are equally probable. The q = 1 state is thus the
most confused or disordered state. Now as we lower the q

value, we see that entropy decreases slowly but as we approach
toward qc = 1 − tc we observe a dramatic decrease in entropy.
This is because as we approach qc from higher q value, we find
that many moderately large sized clusters get accumulated and
eventually reach a critical state which is termed as “powder
keg” by Friedman and Landsberg [7]. Thereafter, the addition
of even a few links may trigger the growth of the largest cluster
in an explosive fashion. We find that at q = 0 the entropy H

is minimally low but the order parameter P is maximally high
and hence it is clearly the ordered phase. We thus see that at
q = 1 the entropy is maximally high but the order parameter
P = 0 and hence it corresponds to the disordered phase. The
term percolation therefore refers to the transition from ordered
phase characterized by vanishingly small entropy at q < qc

to disordered phase characterized by P = 0 at q > qc as one
tunes the control parameter q. We thus find that in percolation
too, like in the thermal CPT, entropy H and order parameter
P complement each other.
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FIG. 4. Plots of specific heat C vs t for PR and SR are shown in
(a) and (b), respectively, for different network size N . In (c) and (d)
we plot CN−α/ν vs (t − tc)N 1/ν and find that all the distinct plots of
(a) and (b) collapse superbly sharing the same α and ν values.

Once entropy is known, we can use the standard definition
of specific heat C = T dS/dT where S is the thermal entropy.
If we now replace T by 1 − t and S by Shannon entropy H ,
we get the desired definition of specific heat for percolation

C(t) = (1 − t)
dH

d(1 − t)
. (6)

However, we can also define it as C = −(1 − t)dH/dt since
dH/dt = −dH/d(1 − t). Taking differentiation of H with
respect to 1 − t from first principles and multiplying that value
with the corresponding value of (1 − t), we can immediately
obtain C(t). We then plot C(t) in Figs. 4(a) and 4(b) as a
function of t for PR and SR, respectively. To compute the
corresponding critical exponent α, once again we use the FSS
hypothesis and find α/ν = 0.535 for both PR and SR. Finally,
we plot CN−α/ν vs (t − tc)N1/ν and obtain a perfect data
collapse with α/ν = 0.535 and 1/ν = 0.535 for both PR and
SR as shown in Figs. 4(c) and 4(d). We then use the relation
N ∼ (t − tc)−ν in C(t) ∼ Nα/ν and immediately find that the
specific heat diverges like

C(t) ∼ (t − tc)−α, (7)

where α = 1 for both PR and SR. The quality of data collapse
is a clear testament of the accuracy of the α value.

Since 2009, much of the time has been spent in resolving
the issue of whether EP describes the first order or second
order phase transition. In addition, the classifications of any
system into universality classes are always an interesting
proposition in phase transition and critical phenomena. As
far as random percolation is concerned, it is well known
that the site and bond percolation on all lattices having
the same spatial dimensions belong to the same universality
class. However, there has hardly been any work on checking
whether the explosive percolation, too, can be classified into
universality classes. Bastas et al. reported that site and bond
type explosive percolation on the same lattice do not belong
to the same universality class [16]. Radicchi and Castellano,

on the other hand, reported that the site-bond universality is
violated even in the case of random percolation if the substrate
is a network with null percolation thresholds [34]. In the case
of EP, we do not know to date whether any two processes or
types of explosive percolation belong to the same universality
class. Finding that PR and SR of explosive percolation be-
long to the same universality class is therefore a significant
development.

Yet another interesting thing to check is whether the
Rushbrooke inequality (RI) holds in EP or not. To this end,
we substitute our values of α = 1, γ = 0.893, and β = 0.084
in the Rushbrooke relation and find α + 2β + γ = 2.061.
Recently, we applied the same approach to the random per-
colation on square and weighted planar stochastic (WPS)
lattices and found the same result albeit they belong to different
universality classes [25]. In all three cases investigated so far,
including the one in question, we find that RI holds almost as
an equality. Many experiments and exactly solvable models of
its thermal counterpart too suggest that the RI actually holds
as an equality [35]. In fact, the static scaling hypothesis based
on the assumption that Gibb’s free energy is a generalized
homogeneous function allows one to show that RI is indeed
an exact equality. All these results, namely, finite-size scaling,
universality, and Rushbrooke inequality, clearly suggest that
explosive percolation is actually a model for continuous phase
transition. However, unlike random percolation, it exhibits
some unusual finite-size behaviors. For instance, we find
hysteresis loops in its forward and reverse processes, double
hump in the distributions of the order parameter P , the time
difference � = t2 − t1 between the last step t1 for which
the largest cluster C < N1/2 and the first step t2 for which
C > 0.5N is not extensive [15–19].

To summarize, we have given a thermodynamic formulation
of explosive percolation. First, we found that entropy H

undergoes a sudden rise across qc so that in the supercritical
regime (i.e., q < qc phase) the order parameter P is high but the
entropy H is vanishingly low and vice versa in the subcritical
regime (i.e., q > qc phase). Note that P quantifies the extent
order and H measures the degree of disorder. It implies that
we can regard the subcritical phase as more disordered, i.e.,
has a higher symmetry than the supercritical phase revealing
that explosive percolation is an order-disorder transition like
ferromagnetic transition in the thermal CPT. Second, we have
shown that the specific heat and susceptibility diverge at the
critical point without having to exclude the largest cluster.
Third, we obtained the critical exponents α, β, γ , and ν

numerically and found that their values for PR and SR are the
same, revealing that they belong to the same universality class.
Such PR-SR universality is highly intriguing and unexpected,
especially against the background of the breakdown of the
usual site-bond universality even in the lattice. Finally, we
have also shown that the value of the critical exponents α,
β, and γ obey the Rushbrooke inequality. Our work confirms
that the explosive percolation is a model for continuous phase
transition since we now know that entropy, order parameter,
specific heat, susceptibility, and their critical exponents behave
exactly in the same way as in the thermal CPT. We believe
that the present work will be of great interest to the scientific
community.
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