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Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-
dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances
in random networks are studied within the framework of the random matrix theory. We have shown that the
appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA
ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good
agreement with the results of numerical simulations in a wide range of metal filling fractions 0 < p < 1. A
correspondence with the effective medium approximation is observed.
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Introduction. Disordered metal-dielectric nanocomposites
form a type of optical metamaterials which are relatively
simple to fabricate [Fig. 1(a)]. Their geometries vary from a
dielectric medium with metallic inclusions of a submicron size
to a metallic medium with dielectric holes, depending on the
metal fraction. Such systems demonstrate a lot of interesting
optical phenomena assisted by surface plasmon resonances in
metallic regions, namely, surface-enhanced Raman scattering
(SERS) [1], high-harmonic generation [2], and the Purcell
effect [3]. Various nonlinearities in such composites especially
increase near the percolation threshold [4].

A number of classical models of the percolation theory are
based on random impedance networks [Fig. 1(b)] which have
been widely applied to study the transport properties [5,6] and
resonances [4,7] in disordered nanocomposites. Fluctuations
of the local electric fields responsible for SERS have been
considered in the framework of the random impedance network
model [4,8,9], as well as the density of states (DOS) [10–12]
and the optical absorption [13–15]. Such models demonstrate
the presence of the Anderson transition [16,17] and
possess multifractal properties of electric field distributions
[10,18]. However, the main part of the results is obtained
numerically.

In the present Rapid Communication, we propose to apply
the random matrix theory for a unified description of the
DOS in random impedance networks, which are widely used
as a model of plasmon resonances in disordered nanocom-
posites [4]. The random matrix theory has found numerous
applications in different branches of physics, for example, in
nuclear physics [19], quantum chaos [20], description of the
conductance of disordered channels [21,22], coherent perfect
absorbers [23], and the mechanical properties of disordered
solids [24]. The random matrix theory was also applied to study
the statistical properties of financial markets and computer
networks [21]. Each of the mentioned problems has some im-
portant symmetries, which lead to different symmetry classes
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of random matrices (the so-called random matrix ensembles)
[25].

Random impedance network model. We consider a widely
used quasistatic approach when the electric field is assumed to
be curl-free (rot E = 0), and the electrostatic potential ϕ can be
introduced such that E = − grad ϕ. Since a characteristic size
of inclusions is about tens of nanometers, this condition can
be satisfied in THz, infrared, and even visible optical regions.
It is well known that Maxwell’s equations are reduced to the
equation for an eddy current div j = 0 within the quasistatic
approach [5,26]. For a given frequency ω, the current j
and the electric field E are related by the material equation
j(ω,r) = σ (ω,r)E(ω,r). The conductivity σ (ω,r) is related
to the permittivity ε(ω,r) of the same region as σ (ω,r) =
iωε(ω,r)/4π [27]. The obtained equations are discretized
on a mesh. For that reason, square [4,10,26,28] and simple
cubic [11] lattices have been used. After a discretization, the
equations div j = 0 and rot E = 0 transform to the first and the
second Kirchhoff’s rules, respectively. One can simultaneously
represent both Kirchhoff’s rules as a linear system,

N∑
j=1

gij (ω)ϕj = 0, (1)

with ϕj being the electric potential at site j and gij (ω) being
a complex conductance of the bond between sites i and j in a
network with N sites [5]. Diagonal entries gii(ω) are defined
as gii(ω) = −∑

i �=j gij (ω).
Next, we briefly consider some of the simplest models.

In the optical frequency range, the permittivity of a metal
can be described with the aid of the Drude model εm(ω) =
1 − ω2

p/ω2, with ωp being a plasma frequency of a metal. At
the same time, the permittivity of dielectric regions can be taken
as a constant εd . Then, a composite is replaced with a resonant
LC network [Fig. 1(c)] [15,29,30]. At low frequencies another
model having the form of an RC network can be introduced
[Fig. 1(d)]. Such a model is used to consider the transient
responses in composites [6,31,32].

In order to study the properties of the resonances, we reduce
Maxwell’s equations to the eigenvalue problem [33,34]. In a
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FIG. 1. (a) Sketch of a disordered nanoparticle composite. (b) A
random impedance network. “Metallic” bonds are shown with dashed
red (gray) lines, and “dielectric” bonds are shown with black lines.
(c), (d) Examples of particular impedance network models.

generic two-component system, the conductance gij can be
represented as

gij (ω) = σm(ω)Mij + σd (ω)Dij . (2)

Matrices M and D are defined in the following manner. In the
general case, we can assume that Mij = −1 if sites i and j

are connected by a metallic bond and Dij = −1 if sites i and j

are connected by a dielectric bond. The remaining off-diagonal
elements of matrices M and D are zero. Diagonal elements are
defined as Mii = −∑

j �=i Mij and Dii = −∑
j �=i Dij . Thus,

matrices M and D represent discrete Laplacians defined on
corresponding metallic and dielectric subsets.

For certain frequencies ω = ωj , the linear system (1) has
nontrivial solutions ϕj , which represent dielectric resonances
in the network [7] corresponding to plasmon resonances of a
composite. For a two-component system (2), eigenfrequencies
can be found using the generalized eigenvalue problem [10]

Mϕj = λj (M + D)ϕj , (3)

where eigenvalues λj are related to eigenfrequencies ωj as

λj = σd (ωj )

σd (ωj ) − σm(ωj )
= εd (ωj )

εd (ωj ) − εm(ωj )
. (4)

Eigenvalues λj and eigenvectors ϕj are determined by matrices
M and D, which do not depend on the dielectric functions
of constituents εm,d (ω). As a result, the dielectric functions
εm,d (ω) affect only eigenfrequencies ωj , which are related
to eigenvalues λj by Eq. (4). It is important to mention that
matrices M and D are positive semidefinite [35], and thus
0 � λj � 1 for networks of an arbitrary geometry [36].

Considerable efforts have been put forth to figure out an
analytic description of the DOS ρ(λ) = 1

N

∑N
j=1 δ(λ − λj )

in such networks within the framework of the random ma-
trix theory (RMT) [37–40]. In the above-mentioned papers,
Gaussian ensembles of random matrices have been applied

to describe resonances in long-range networks with a quasi-
one-dimensional topology, which show no direct relation to
the problem of plasmon resonances in two-dimensional and
three-dimensional disordered nanocomposites.

In order to simplify the problem, we will consider a common
model of a random network, which assumes that each bond in a
lattice with a coordination number z is metallic with probability
p or dielectric with probability 1 − p [10].

Density of states. The matrices M and D are positive
semidefinite, so they can be represented in the form M = AAT

and D = BBT . There are different possibilities to choose
matrices A and B for the same matrices M and D. However,
there is the most natural form of matrices A and B, which is
known as the incidence matrix in the graph theory [41]. In this
case, the height of matrix A is the number of sites and the width
of matrix A is the number of metallic bonds in the lattice. The
nonzero matrix elements are Aki = 1 and Akj = −1, where k is
the index of a bond and i and j are indices of sites connected
by the kth bond. For each pair of i and j , the choice of 1
and −1 is arbitrary. The definition of matrix B is the same
but for dielectric bonds. Therefore, the generalized eigenvalue
problem (3) can be written in the form

|AAT − λ(AAT + BBT )| = 0. (5)

In the above definition, matrices A and B are sparse with a
certain structure of nonzero elements. However, it does not play
a crucial role for the DOS. Indeed, for any orthogonal matrices
U , V , and W , we can introduce matrices Ã = UAV and B̃ =
UBW , which leads to the generalized eigenvalue problem

|ÃÃT − λ(ÃÃT + B̃B̃T )| = 0, (6)

with the same set of eigenvalues λj as for Eq. (5). As a
result, one can assume that the DOS mostly depends on the
correlations given by the form of Eq. (6) rather than the internal
correlations of matrices A and B [24]. Thus, we assume that
matrices Ã and B̃ are Gaussian random matrices. The sizes
of the matrices are N × Km and N × Kd , respectively, where
Km = pzN/2 and Kd = (1 − p)zN/2 are the total numbers
of metallic and dielectric bonds, and N is a number of sites
in the lattice. In this case, Eq. (6) defines the so-called Jacobi
ensemble of the random matrix theory [42]. It is also known as
the MANOVA ensemble since Eq. (6) has a special meaning
in the multivariate analysis of variance (MANOVA).

For the Jacobi ensemble, the joint probability distribution
of an ascending list of eigenvalues λj is

p(λ1, . . . ,λN ) = C
∏

i

λ
(Km−N−1)/2
i

×
∏

i

(1− λi)
(Kd−N−1)/2

∏
i<j

(λj − λi), (7)

where C is a normalization constant [43]. The last product
in Eq. (7) vanishes when λi = λj . This leads to the level
repulsion effect which is well known for the Gaussian or-
thogonal ensemble (GOE) and was also observed for random
impedance networks [17]. However, eigenvalue probability
density functions (i.e., DOS) for the Jacobi ensemble and
for the GOE are different. For the Jacobi ensemble, it has the
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form [42,44]

ρ(λ) = z

√
(λ − λ−)(λ+ − λ)

4πλ(1 − λ)
, λ− � λ � λ+ (8)

where the spectral edges λ± are given by

λ± = p + 2 − 4p

z
± 2

z

√
2p(1 − p)(z − 2). (9)

In addition to eigenvalues defined by ρ(λ), there is a number of
degenerate eigenvalues λ = 0 and λ = 1. The relative number
of eigenvalues λ = 0 is n0 = 1 − Km/N = 1 − zp/2, and the
relative number of eigenvalues λ = 1 is n1 = 1 − Kd/N =
1 − z(1 − p)/2.

One of the fundamental properties of the generalized eigen-
value problem (3) is the homogeneity symmetry [10]: The
DOS obeys the relation ρ(p,λ) = ρ(1 − p,1 − λ) due to the
equivalence of the statistical properties of matrices M and D.
It is obvious that the Jacobi ensemble satisfies this symmetry.

Comparison with numerical results. First, we consider
networks with the topology of a two-dimensional square
lattice. This case is the most studied and widely addressed
in the literature (see the review [4] and references therein).
The corresponding density of states for a square lattice with
different fractions of metallic bonds is shown in Figs. 2(a)–
2(d).

At low filling fractions p, the numerically obtained DOS
demonstrates the presence of a rich structure with well-
resolved resonant peaks. These peaks correspond to resonances
of typical clusters which are formed by several metallic
bonds embedded into a dielectric lattice—the so-called lattice
animals [10]. For example, the most salient peak at λ = 1/2
corresponds to the dipole resonance of a single metallic
bond surrounded by a dielectric environment. In this case,
the potential distribution is ϕ(r) ∝ 1/r2, which corresponds
to a dipole in the two-dimensional electrodynamics [28]. In
the dilute case with p � 1 it is the only remaining peak.
Nearby peaks are aligned symmetrically and correspond to
resonances of two-bond clusters, and so on. Detailed maps of
the resonances of animals on a square lattice can be found in
Refs. [10,28,45].

Peaks near the edges of the resonance spectrum are as-
sociated with complicated clusters formed by many bonds.
The probability of such cluster configurations to occur is low,
thus, these peaks are much less pronounced than the central
ones. Finally, at the very edges of the spectrum, the amount of
resonances is exponentially small, because these resonances
are associated with long linear chains of connected metallic
bonds which arise with an exponentially small probability [10].
Such a behavior is referred to as Lifshitz tails after Lifshitz,
who was the first to describe analogous phenomena in the
vibrational spectra of binary harmonic alloys [46]. As seen
from Fig. 2, the mentioned peaks are absent in the DOS given
by the RMT approach. This originates from our neglect of the
correlation between the matrices M and D. Indeed, the concept
of a cluster loses its meaning in this case. As a result, Lifshitz
tails are absent as well. They are replaced by resonance gaps
at 0 < λ < λ−(p) and λ+(p) < λ < 1.

At higher fillings p, the resonant peaks are less pronounced
because of a complication of the geometric structure, which
causes typical clusters to be less expressed. Indeed, if p is

FIG. 2. Numerically obtained DOS for networks with the topol-
ogy of (a)–(d) a square lattice and (e)–(h) a diamond lattice with
binary distributed bonds at different metal fillings p (black line). The
red (gray) line shows the RMT prediction given by Eq. (8) with the
corresponding p and z = 4. Numerical calculations are performed
for networks of the size 1002 and 303 sites, correspondingly, and
are averaged over 1000 network configurations using the kernel
polynomial method [47,48].

large enough, then typical clusters usually interact with nearby
clusters and are unlikely to be positioned in a large gap filled
with dielectric bonds. As a result, the numerical DOS becomes
smoother and more similar to the one given by the RMT
approach [Figs. 2(b) and 2(c)].

As the filling fraction p increases, the bond percolation
threshold is reached at some point pc [Fig. 2(d)]. The percola-
tion is a geometric phase transition, which means that at fillings
p > pc an infinite metallic cluster is formed that connects
the opposite sides of the system. Thus, an initially insulating
system becomes a conducting one in the stationary (dc) regime
at ω = 0. The percolation threshold can be obtained within
the RMT approach as follows. Since resonances correspond
to the poles of the conductivity of a system, a nonvanishing
dc conductivity corresponds to a nonvanishing DOS at ω = 0.
Hence, λ−(pc) = 0 [7], which gives the RMT estimate of the
percolation threshold,

pRMT
c = 2/z. (10)

This result is well known and has a transparent physical
interpretation. Indeed, the necessary condition for the existence
of a path connecting opposite sides of the network is that at least
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FIG. 3. Numerically obtained DOS for networks with the topol-
ogy of (a)–(d) a simple cubic lattice and (e)–(h) a triangular lattice with
binary distributed bonds at different metal fillings p (black line). The
red (gray) line shows the RMT prediction given by Eq. (8) with the
corresponding p and z = 6. Numerical calculations are performed
for networks of the size 303 and 1002 sites, correspondingly, and
are averaged over 1000 network configurations using the kernel
polynomial method [47,48].

two of the z bonds which connect a site with its neighbors are
metallic. Also, this estimate gives the exact value p

sq
c = 1/2

for a square lattice.
This result is the only analytically established percolation

threshold for a lattice. Its derivation is based upon a special
symmetry of the square lattice—the self-duality. This peculiar
property also causes a mirror symmetry of the DOS under the
transform λ → 1 − λ, clearly seen in Figs. 2(a)–2(d) [10,49].
The DOS for a diamond lattice is shown for comparison in
Figs. 2(e)–2(h). This lattice also has the coordination number
z = 4, hence it is described by the same RMT curve. However,
it is not self-dual, and, as a result, the corresponding symmetry
of ρ(λ) is absent. The percolation threshold in the diamond
lattice also differs slightly from that of the square lattice and
equals pd

c = 0.39.
Next, we compare the results for lattices with the coordi-

nation number z = 6. The DOS for the simple cubic and the
triangular lattices at different fillings p is shown in Fig. 3.
The whole situation is similar to the previous case with z = 4.
However, there is a difference in frequencies of the dipole
resonances of individual metallic bonds, so that λdip = 1/3.
It also corresponds to the frequency of the dipole localized

plasmon resonance in a metallic sphere ωp/
√

3. This is in
agreement with the fact that the dipole potential in the simple
cubic lattice decreases with distance as 1/r3 [28]. Resonances
of other lattice animals differ as well, also due to the different
geometries of typical clusters and different probabilities of
their occurrence. A map of the resonances of typical clusters
in a simple cubic lattice can be found in Ref. [11]. The
percolation thresholds in simple cubic and triangular lattices
are psc

c = 0.25 and pt
c = 0.35, correspondingly, which are still

close to the RMT prediction pc = 1/3.
As was pointed out in Ref. [10], some of the extensively

degenerate eigenvalues of Eq. (3) with λ = 0 and λ = 1 do
not correspond to resonances. A number of these nonphysical
eigenvalues is defined by a number of connected clusters
formed by dielectric and metallic bonds, correspondingly [31],
and can be easily obtained for any particular implementation
of a network.

Discussion and conclusions. Let us also point out an
interesting interplay between the results given by our RMT
approach and by the effective medium approximation (EMA).
The latter was introduced by Bruggeman as a self-consistent
homogenization scheme for the evaluation of the conductivity
of mixtures [7,50] and is widely applied to systems at finite
frequencies [5,10,13–15]. The main equation of the EMA on
a hypercubic lattice reads as [7]

p
σm − σeff

σm + (
z
2 − 1

)
σeff

+ (1 − p)
σd − σeff

σd + (
z
2 − 1

)
σeff

= 0, (11)

where σeff is an effective conductance of the lattice with
randomly arranged bonds of conductances σm and σd . The
above equation has an explicit solution which is nonvanishing
over the interval λEMA

− < λ < λEMA
+ , with λEMA

± given by
exactly the same expressions as in the RMT approach, λEMA

± =
p + 2−4p

z
± 2

z

√
2p(1 − p)(z − 2). Indeed, resonances of the

system are poles of its conductance, and thus in a nondissipat-
ing system ρ(λ) and σ (λ) should be nonvanishing in the same
spectral region. Some correspondence between the random
matrix theory and the effective medium description in the case
of Gaussian ensembles has been addressed in Refs. [51–54].

Predictions of the considered model are in qualitative agree-
ment with the results of recent experiments with lithographic
networks [55] and disordered nanocomposite films [56]. In
particular, experimentally measured Purcell enhancement and
absorption spectra demonstrate the presence of a broad maxi-
mum whose width depends on the metal filling p, as well as the
presence of an optimal filling which maximizes the absorption
band.

To conclude, we have considered a description of res-
onances in random impedance networks based on the Ja-
cobi ensemble of the random matrix theory. The obtained
expressions satisfy all natural symmetries of the considered
problem and demonstrate good agreement with the results of
numerical simulations, as well as a correspondence with the
effective medium approximation. A further development of
the obtained description, e.g., a comprehensive study of level
spacing statistics [57,58] and the properties of eigenvectors,
can be of major interest in the area of Anderson localization
[16,17].
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