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Precise algorithm to generate random sequential adsorption of hard polygons at saturation
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Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes
are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density
approaches a “saturation” limit. Although this limit has attracted particular research interest, the majority of
past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this
limit using finite computational time for spherical particles and could thus determine the saturation density of
spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of
two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and
obtain results that are consistent with previous, extrapolation-based studies.
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I. INTRODUCTION

Random sequential adsorption (RSA) [1], also called ran-
dom sequential addition [2], is a stochastic process widely
used to model a variety of physical, chemical, and biologi-
cal phenomena, including structure of cement paste [3], ion
implantation in semiconductors [4], protein adsorption [5],
particles in cell membranes [6], and settlement of animal terri-
tories [7]. Starting from a large, empty region in d-dimensional
Euclidean space, particles of certain shapes are randomly and
sequentially placed into the volume subject to a nonoverlap
constraint: New particles are kept only if they do not overlap
with any existing particles, and are discarded otherwise. One
can stop this process at any time, obtaining configurations
with time-dependent densities. As time increases, the density
approaches a “saturation” or “jamming” limit, φs .

The RSA process of various particle shapes have been
studied, including spheres in one through eight dimensions
[8–13], squares and rectangles [14–18], polygons [19], ellipses
[18,20,21], disk polymers [22], cubes [23], spheroids [24], su-
perdisks [25], sphere polymers [26,27], and four-dimensional
hypercubes [28]. For nonspherical shapes, particle orientations
may be random or fixed. Although previous researchers have
studied a myriad of combinations of space dimensions, shapes,
and orientations, the determination of φs has always been
of particular interest. However, doing so is also particularly
difficult since one cannot afford infinite computational time to
reach the saturation limit. To overcome this problem, a very
common strategy is to find out finite-time densities and then to
extrapolate to the infinite-time limit [9,12,14,15,18–24,26,27].

Instead of extrapolation, φs for some systems can be
ascertained by other strategies. For one-dimensional rods,
analytical calculations found φs = 0.7475979202 . . . [8]. For
disks, spheres, and d-dimensional hyperspheres, we have
previously found a numerical algorithm to reach the saturation
limit with finite computational time [13]. The algorithm takes
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advantage of the fact that when generating RSA packings of
spheres of radius R, the distance between any two sphere
centers cannot be smaller than 2R. The part of space that
is not within 2R distance to any existing sphere center is
called “available space,” since a new sphere will be kept
if and only if its center falls inside the available space.
Thus, one can avoid insertion attempts in the unavailable
part of the space [10–13,16]. Saturation can be achieved by
gradually increasing the resolution as additional spheres are
inserted, eventually eliminating all available spaces [10,13].
Specifically, our algorithm consists of the following steps:

(1) Perform a certain number of trial insertions to generate
a near-saturation configuration.

(2) Divide the simulation box into voxels (i.e., d-
dimensional pixels) with side lengths comparable to R. Some
voxels are completely covered by an existing sphere of radius
2R, and therefore cannot contain any available space. They are
excluded from the voxel list.

(3) Perform a certain number of trial insertions inside the
remaining voxels.

(4) Divide each voxel into 2d subvoxels by cutting it in half
in each direction, and find possibly available subvoxels.

(5) The process of trial insertions and voxel division is
repeated until the number of available voxels reaches zero,
at which point we know that saturation is guaranteed since we
only discard voxels that cannot contain any available space.

Reference [13] ended with a proposal to extend this al-
gorithm to generate saturated RSA packings of nonspherical
shapes with random orientations. In this case, whether an
incoming particle overlaps with existing ones depends on not
only its location but also its orientation. For a d-dimensional
particle with df rotational degrees of freedom, one can con-
struct a (d + df )-dimensional auxiliary space. Each point in
this space would correspond to a trial insertion at a particular
location with a particular orientation. One could thus use
voxels to track the available parts of this higher dimensional
auxiliary space and generate saturated RSA packings. How-
ever, Ref. [13] did not propose any method to test for voxel
availability, which is a nontrivial task.
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In this paper, we use this idea to generate saturated RSA
packings of 2D polygons with random orientations. We present
a way to test for voxel availability based on worst-case error
analysis in Sec. II B. We find that occasionally the general-
ization of this algorithm needs a special tweak, detailed in
Sec. II C. In Sec. III, we use this algorithm to find φs for regular
polygons, which generally increases as the number of sides
increases and approaches φs for disks.

II. ALGORITHMIC DETAILS

In order to use the algorithm described in Ref. [13], one
need to supplement two subroutines: one to determine if two
particles are overlapping and another to prove that certain
voxels that cannot contain any available space. Here we
describe these two subroutines.

A. Polygon overlap test

To test if two polygons overlap, we first perform sim-
ple tests using their inscribed circles and circumscribed cir-
cles: If the inscribed circles overlap, then the two polygons
must overlap. If the circumscribed circles do not overlap,
then the two polygons cannot overlap. If these two simple
tests fail to find a definitive answer, we then test if any
two sides of the two polygons intersect with the following
theorem [29]:

Define O(r1,r2,r3) = (y2 − y1)(x3 − x2) − (x2 −x1)
(y3 − y2), where ri = (xi,yi) is a two-dimensional point, and
then two line segments (r1,r2) and (r3,r4) intersect if and only
if

O(r1,r2,r3)O(r1,r2,r4) < 0 and (1)

O(r3,r4,r1)O(r3,r4,r2) < 0. (2)

B. Voxel availability test

Our test for voxel availability is based on the aforemen-
tioned polygon-overlap test. Since a two-dimensional polygon
has 1 rotational degree of freedom, the voxels are three
dimensional. Let (x,y) be the location of the center of a polygon
and let θ be the angle between the orientation of the polygon
and some reference orientation. A point in the voxel space can
be represented by (x,y,θ ), while a voxel centered at this point
can be represented as (x ± δx,y ± δy,θ ± δθ ), where δx, δy,
and δθ are a half of the side length of the voxel in each direction.
With this formulation, a voxel can be interpreted as a collection
of trial insertions near (x,y,θ ) with some error bounds δx, δy,
and δθ . To prove that a voxel cannot contain any available
space (i.e., to prove that such trial insertions always fail),
we just need to perform a rigorous worse-case error analysis
to prove that no matter how x, y, and θ vary in the ranges
[x − δx,x + δx], [y − δy,y + δy], and [θ − δθ,θ + δθ ], the
upcoming particle will always overlap with an existing one.
Specifically, let (r1,r2) be a side of an existing polygon and let
(r3,r4) be a side of an upcoming polygon inside the voxel; then
r3 and r4 carry uncertainties while r1 and r2 do not. Let (l3,θ3)
and (x3,y3) be the polar coordinates and Cartesian coordinates
of r3, we have x3 = x + l3 cos(θ3), and the associated error

bound is

δx3 = [x ± δx + l3 cos(θ3 ± δθ )] − [x + l3 cos(θ3)] (3)

� δx + l3δθ. (4)

Similarly,

δy3 � δy + l3δθ. (5)

For simplicity, we can require that a voxel always have equal
side lengths in x and y directions, in this case δx = δy and
δx3 = δy3. We define δ3 ≡ δx3 = δy3. The error bounds for
the Cartesian coordinates of vertex 4 are similar:

δx4 � δx + l4δθ ≡ δ4, (6)

δy4 � δy + l4δθ = δ4, (7)

The associated worse-case error in the O functions used in
Eqs. (1) and (2) are thus

δO(r1,r2,r3) = (y2 − y1)(x3 ± δ3 − x2)

−(x2 − x1)(y3 ± δ3 − y2) (8)

− (y2 − y1)(x3 − x2) − (x2 − x1)(y3 − y2) (9)

� (|y2 − y1| + |x2 − x1|)δ3; (10)

similarly

δO(r1,r2,r4) � (|y2 − y1| + |x2 − x1|)δ4 (11)

and

δO(r3,r4,r1) = (y4 ± δ4 − y3 ± δ3)(x1 − x4 ± δ4)

−(y4 − y3)(x1 − x4) (12)

+(x4 ± δ4 − x3 ± δ3)(y1 − y4 ± δ4) − (x4 − x3)(y1 − y4)

(13)

� (δ3 + δ4)(|x1 − x4| + |y1 − y4| + 2δ4)

+δ4(|y4 − y3| + |x4 − x3|); (14)

similarly

δO(r3,r4,r2) � (δ3 + δ4)(|x2 − x4| + |y2 − y4| + 2δ4)

+δ4(|y4 − y3| + |x4 − x3|). (15)

These error bounds allow us to prove certain voxels’ unavail-
ability: If Eqs. (1) and (2) hold, and if each O function’s error
bound is smaller than its absolute value, then we know these O

functions cannot change sign no matter how x, y, and θ vary
within their respective limit, and Eqs. (1) and (2) will always
hold. We thus proved that the voxel cannot contain available
space.

It is noteworthy that the errors could be smaller than the
worse-case bounds we derived. Thus, a completely unavailable
voxel could be miscategorized as an available one. This
is nevertheless not a problem for two reasons: First, such
miscategorization can cause us to retain unavailable voxels
but can never cause us to discard available ones. Second, as we
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FIG. 1. Plot of 10 randomly selected voxel centers when the
voxel-number-explosion problem happened when generating a sat-
urated RSA packing of squares. Note that a voxel center has a
three-dimensional coordinate (x,y,θ ) and represents a trial insertion
at location (x,y) and orientation θ . Hence, we use a black square to
represent a voxel center. Blue squares are adjacent existing particles.
The distance between points A and B is 0.999 992 times the side length
of a square. Therefore, inserting a new square at the place indicated
by these voxels is impossible.

repeatedly divide the voxels and drive all error bounds to zero,
such miscategorization will eventually disappear. The ending
configuration is thus still guaranteed to be saturated.

C. An unexpected problem and its solution

With the aforementioned subroutines supplementing the
split-voxel algorithm, we are ready to generate saturated RSA
configurations of 2D polygons. However, in doing so for 2D
squares and regular hexagons, we found an unexpected prob-
lem: The number of voxels occasionally grows to extremely
large numbers (> 108) for moderately sized systems (≈3000
particles). Sometimes the number of voxels suddenly drops
to zero after becoming extremely large, but sometimes our
program crashes because of insufficient memory before the
drop could happen. This is in contrast with the situation for
disks, equilateral triangles, and regular pentagons, where the
number of voxels always decays smoothly as they are split.

To understand the reason, we plotted 10 randomly selected
voxel centers when the problem happened in Fig. 1. Surpris-
ingly, all of the selected voxels are concentrated in a very
small part of the configuration. In Fig. 1, the distance between
points A and B is 0.999 992 times the side length of a square.
Therefore, inserting a new square at this place is impossible.
Nevertheless, the algorithm could not realize this impossibility
until voxel-space resolution becomes extremely fine. Figure 1

also indicates that this problem can only occur when the
polygon has at least one pair of parallel sides and therefore
explains why we observed this problem only for certain shapes.

Our solution to this problem is to run very deep tests of
voxel availabilities. Specifically, we define a level-0 test of
voxel availability as our original test outlined in Sec. II B. We
define a level-n (n > 0) test of voxel availability as follows:

(1) If the voxel can be proved unavailable with the proce-
dure outlined in Sec. II B, then declare the voxel unavailable.

(2) Otherwise, if the voxel center represents an incoming
particle that does not overlap with existing particles, declare
the voxel available.

(3) Otherwise, divide the voxel into 23 subvoxels and run a
level-(n − 1) test of each subvoxel. If any subvoxel is available,
declare the original voxel available.

(4) Otherwise, declare the original voxel unavailable.
The deep test retains a desired property of the original voxel

availability test: An unavailable voxel may be misjudged as an
available one if n is finite, but an available voxel will never
be misjudged as an unavailable one. Therefore, one can safely
employ a deep test on voxels and remove unavailable ones,
without worrying about discarding any available space. If the
particle has a pair of parallel sides, we randomly sample 100
voxels each time a voxel list is generated. If at least 50 of them
are within a distance of Rins , the radius of the inscribed circle
of a particle, then this problem is suspected. We run a level-4
check on all voxels and discard unavailable ones. If all of the
sampled voxels are within a distance of Rins , then this problem
is strongly suspected, and we run a level-12 check on all voxels
and discard unavailable ones.

The deep test successfully solves this problem but can
be very time-consuming. To illustrate this point, we show
the histogram of the time taken to generate a saturated RSA
configuration of enneagons and decagons in Fig. 2. Only
decagons are susceptible to this problem. The time distribution
for decagons resembles that for enneagons, except that the
former also exhibit a very long tail on the long-time side,
corresponding to the extra time needed for the deep test.

One could argue that as Fig. 1 shows, this problem only
happens in saturated locations. Thus, the simplest “solution”
would be to just declare the configuration saturated whenever
the problem is detected. If a strict proof of saturation is not
required, this simple “solution” may be desirable, especially

TABLE I. Saturation density φs for various particle shapes and system sizes. Here all error estimates are calculated from σ =√
(〈φ2

s 〉 − 〈φs〉2)/(Nc − 1), where 〈· · · 〉 indicates averaging over all configurations, and Nc is the number of configurations.

φs for Lparticle/Lbox =
Shape 0.01 0.003 0.001

Equilateral triangles 0.525892 ± 0.000064 0.525993 ± 0.000058 0.525820 ± 0.000066
Squares 0.527719 ± 0.000085 0.527482 ± 0.000080 0.527594 ± 0.000070
Regular pentagons 0.541319 ± 0.000087 0.541241 ± 0.000088 0.541344 ± 0.000072
Regular hexagons 0.539114 ± 0.000093 0.539216 ± 0.000087 0.539060 ± 0.000095
Regular heptagons 0.542143 ± 0.000093 0.542197 ± 0.000093 0.541959 ± 0.000124
Regular octagons 0.542329 ± 0.000094 0.542494 ± 0.000090 0.542328 ± 0.000098
Regular enneagons 0.544055 ± 0.000092 0.544044 ± 0.000098 0.544059 ± 0.000089
Regular decagons 0.544104 ± 0.000094 0.544278 ± 0.000100 0.544259 ± 0.000124
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FIG. 2. Histogram of the time taken to generate an RSA configu-
ration of (left) enneagons and (right) decagons of size Lparticle/Lbox =
0.01 on a computer with an Intel Xeon E5-2696 v3 central processing
unit.

since deep testing voxel availability is very time-consuming.
However, we choose the deep-test solution since in this work,
we want to ensure that each configuration is saturated.

III. RESULTS AND DISCUSSION

To demonstrate the correctness and usefulness of this
algorithm, we generate saturated RSA configurations of regular
polygons, and compare φs with previous results. For each par-
ticle shape, we generate 1000 configurations with system size
Lparticle/Lbox = 0.01, 100 configurations with Lparticle/Lbox =
0.003, and 10 configurations with Lparticle/Lbox = 0.001. Here
Lparticle is the distance between a particle’s center and its vertex,
and Lbox is the side length of the simulation box. The resulting
saturation density is summarized in Table I.

For all shapes, the difference in φs between different system
sizes is comparable to the error estimate, suggesting negligible
finite-size effect. Indeed, this is consistent with Ref. [30],
which found minimal finite-size effect for even smaller
(Lparticle/Lbox ≈ 0.2) saturated RSA configurations with
periodic boundary configurations. This is also expected in light
of Ref. [31], which found that the pair correlation functions of
RSA configurations decay superexponentially. With negligible
finite-size effect, we think the best estimate of φs for each
shape can be obtained by simply averaging the results for
different system sizes. This yields φs = 0.525902 ± 0.000036
for triangles, φs = 0.527598 ± 0.000045 for squares,
φs = 0.541301 ± 0.000047 for pentagons, φs = 0.539130 ±
0.000053 for hexagons, φs = 0.542100 ± 0.000060 for
heptagons, φs = 0.542383 ± 0.000054 for octagons,
φs = 0.544053 ± 0.000054 for enneagons, and φs =
0.544214 ± 0.000062 for decagons.

Previous researches by extrapolating finite-time RSA den-
sities found the saturation density of squares to be 0.523–0.532
[14] and 0.530 ± 0.001 (reported in both Refs. [17] and [18]).
Our result is within the former range but slightly below the
latter (by two and a half times their error bar). Could this

3 4 5 6 7 8 9 10
Number of sides
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FIG. 3. (Red solid line) RSA saturation density for regular poly-
gons, as a function of the number of sides. Note that each data point is
associated with an error bar that is barely visible. (Black dotted line)
RSA saturation density for disks.

indicate a mistake, for example, that leads to the generation
of unsaturated configurations? One way to double check is
to calculate RSA saturation densities of regular ngons with
large n, since as n increases, φs should approach that for
disks, 0.547067 . . . [30]. We thus calculated φs for 19gons
and 29gons, and found 0.546210 ± 0.000080 and 0.546701 ±
0.000067, respectively. These densities indeed approach φs for
disks, and thus this does not suggest the existence of such a
mistake.

We plot φs versus the number of sides of the polygon in
Fig. 3, which shows that φs increases as the number of sides
increases except that φs for hexagons is lower than that for
pentagons. More generally, φs tend to be slightly higher than
the trend when the number of sides is odd and slightly lower
otherwise. Overall, our results appear to be consistent with
Ref. [19], which plotted (but not listed) φs for regular polygons
obtained by infinite-time extrapolation.

IV. CONCLUSIONS

To summarize, we have developed in this paper a gener-
alization of the split-voxel algorithm described in Ref. [13],
based on worst-case error analysis method. We support the
correctness of this method by finding the RSA saturation
densities of 2D regular polygons with three to ten sides and
verifying their consistency with previous results.

A program implementing this algorithm is available as
Supplementary Material [32].
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