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The electrical properties of conducting meshes are investigated numerically by solving the related Kirchhoff
equations with the Lanczos algorithm. The method is directly inspired by the recursion technique widely used to
study the electronic and vibrational spectra of solids. The method is demonstrated to be very efficient and fast
when applied to resistor networks. It is used to calculate equivalent resistances between arbitrary pairs of nodes
in simple resistive lattices. When the resistance fluctuates statistically from bond to bond, the method makes it
possible to evaluate the fluctuations of the electrical properties of the network. It is also employed to assign an
effective bulk resistivity to a discrete conducting three-dimensional mesh.
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I. INTRODUCTION

Three-dimensional (3D) printers make it possible to design
unprecedented structures with a geometry specially designed
to reach specific properties [1]. For example, the making
of lightweight periodic cellular architectures by 3D printing
has been demonstrated [2]. Polymer filled with graphene
nanoplatelets [3], multiwall carbon nanotubes [4], or other
forms of sp2 nanocarbons may be used for 3D printing. Dis-
persing a few atomic percentage of these nanomaterials suffices
to reach a good electrical conductivity of the host material
[5,6]. Depending on the polymer matrix and the filler, these
composites may have different mechanical, electrical, and ther-
mal properties [5–7]. By feeding a 3D printer with polymer-
conducting composites, light porous conducting media can be
fabricated [2,4,8]. The final product may be a periodic network
of interconnected rods with millimeter-size length. Figure 1
is an illustrative example. Cellular conductive carbon foams
with a structure similar to the considered 3D printed networks
have significant electromagnetic shielding efficiency [9]. Thus,
we assume that 3D printed meshes also may be effective
in electromagnetic interference-shielding applications [10].
Other applications such as electrostatic discharge protection
[11] can be foreseen for these artificial periodic networks.

Theoretical modeling of conductive properties of periodic
networks is an important issue for applications. It can be used to
choose materials and geometrical parameters of the lattice cells
yielding the largest possible effective conductance at a given
mass density. It makes it possible to investigate theoretically
the electrical properties of mesh structures which are expected
to have the best mechanical stiffness. Also, taking into account
the fluctuations of the electrical resistance of the lattice edges
is important, because fluctuations of the printing parameters
and composite composition cannot be avoided in practice.

The conductive properties of two-dimensional (2D) or 3D
meshes resort to the so-called theory of resistor networks that
dates back to the 1970s [12–16]. These networks consist of

resistors interconnected at points called nodes. This theory is
applicable here due to the similarity between printed meshes
and resistor networks: the rods correspond to the resistors in
a resistor network, and the crossing points between the rods
correspond to the nodes.

The theory of resistor networks is a simple formulation
of Ohm’s and Kirchhoff’s laws that leads to a set of linear
equations to be solved for the node potentials. Each equation
in the system may be expressed in terms of the so-called
lattice Laplacian [15]. For square and simple-cubic lattices, the
lattice Laplacian corresponds to second-order finite-difference
representations of the Laplace operator. Mathematically, the
problem may be seen as a discretized Poisson’s equation [17].

There are different interesting tasks related to the theory of
resistor networks: (1) the solution of the discrete Poisson-like
equation in the presence of current sources can be applied,
for example, for the calculation of the equivalent resistance
between two arbitrary nodes of the lattice [15,16]; (2) the res-
olution of the problem with appropriate boundary conditions
for finite-size systems (for instance, obtaining the electrical
potential distribution in the network when the electrical poten-
tial is set at predefined values at some boundaries of the model
can be used to define an effective conductivity of the lattice)
[12,14]; and (3) a combination of the previous tasks [17].

The equivalent resistance of a conductive mesh seen from
a given pair of nodes allows one to characterize the system
from the electrical point of view. Analytical methods can
be used to calculate the equivalent resistance between two
arbitrary nodes in a perfect resistor network. For simple
lattices, this particular task can be solved in terms of lattice
Green’s functions [15]. Analytical formulas are available for
triangular, honeycomb, square, rectangular, diamond, simple-
cubic, body-centered cubic, face-centered cubic, and hyper-
cubic (simple cubic in N dimensions) lattices [18–22]. Also,
Green’s function approach has been applied to uniform tiling of
space with electrical resistors [23]. The lattice Green’s function
formalism can be developed to address several types of defects,
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FIG. 1. (a) Periodic network of rods (octagonal prisms) meeting
at nodes located on a simple cubic lattice. (b) Detail of a rod with its
two ending sections �1 and �2.

including a broken resistor and an extra resistor between two
initially nonconnected nodes [24,25]. The way defects can
be dealt with is an iterative process that can be extended to
the simultaneous presence of several defects. However, the
number of defects is limited by the computational complexity
of the iterative process. By comparison, numerical methods
have no limitations in the concentration of defects, as long as
the network remains of finite size. An accurate solution of the
problem can be obtained by numerical methods for networks
containing up to several million resistors per processor core.
Nowadays, it is possible to solve linear problems with one
trillion unknowns on supercomputers [26].

In this work, Lanczos’s algorithm has been used to solve the
discretized Poisson-like equation. This algorithm, also known
in physics as the recursion method [27], can be applied to this
problem [28], because the Laplacian matrix, being sparse and
symmetric, can be efficiently reduced to a tridiagonal form.
The tridiagonal form is then used to express any diagonal
element of the lattice Green’s function in a continued fraction
[29]. Being an order of N for a given fixed number of recursion
steps, with N the number of nodes, this method may reach high
performance and requires little memory storage. Moreover, it
can be corrected to extrapolate the results to infinite networks.
This method has been used in the present work to calculate
the equivalent resistance between two nodes in different kinds
of infinite lattices, with and without defects. Results for some
simple infinite lattices are compared with available analytical
results.

The equivalent resistance that can be calculated in a resistor
network is what would be obtained experimentally with a
two-probe measurement technique. In a continuous medium,
the relevant quantity is the resistivity, which is best measured
by a four-probe method. Calculations mimicking a four-probe
experiment have also been carried out for 3D resistor lattices
to get an effective bulk resistivity. This quantity is an important
ingredient if one wants to compare the transport properties of
a conducting mesh with that of a continuous medium. The
effective resistivity can be further used to calculate the skin
depth and electromagnetic interference-shielding effectiveness
of the 3D discrete network.

The paper is organized as follows. After a brief description
of the equivalence between 3D meshes and resistor networks,
basic electrokinetic equations are derived in Sec. II. Then the
recursion algorithm used to solve these equations is presented.
Two ways of improving the accuracy of the numerical results
for infinite networks are proposed and discussed. In Sec. III an
effective conductivity is assigned to a discrete resistor network,
the aim being to mimic a conducting mesh by a continuous

medium. Both global and local point of views are explored.
Conclusions are drawn in Sec. IV. Some computational prop-
erties of the method are described in the Appendix.

II. THEORY OF RESISTIVE LATTICES

We assume that a 3D printed mesh, such as the one
illustrated in Fig. 1(a), is a periodic lattice of rods (called
edges or bonds) of length L, cross section S, and conductivity
σ0. The edges may have different lengths depending on the
lattice geometry. In a rectangular lattice, for instance, edges in
one direction are shorter than the edges in the perpendicular
direction. Each edge in the network may be characterized by
its resistance R = L/(Sσ0). The edge resistance may vary due
to fluctuations of L, S, and σ0 of the rods produced by the 3D
printer. In some situations, a few bonds are broken. How to deal
with some randomness of the resistors is described in Sec. II C.

Each node of a resistive mesh dispatches the current it
receives from an external source among the rods attached
to it. According to Kirchhoff’s law, the sum of the currents
flowing to a node is zero. Whatever the exact distribution of
the current density �j across a rod, like the octagonal prism
shown in Fig. 1(b), the potential drop between its two ending
faces �1 and �2 is related to the total current I flowing through
it by Ohm’s law �V = RI . Here �V = (1/S)

∫
�1

V dS −
(1/S)

∫
�2

V dS, with S the common area of �1 and �2.
This result is obtained by integrating −∂V/∂z = jz/σ0 in the
volume of the rod, where z is a local axial coordinate. The bases
�1 and �2 of the rod are two faces of the nodes interconnected
by the rod [see Fig. 1(b)]. We shall make the approximation
that each node is an equipotential volume that can therefore
be characterized by a single potential. Then �V becomes the
potential difference between the nodes interconnected by the
rod. The equipotential hypothesis is valid if the nodes are made
of a highly conducting medium or if their linear dimensions
are small compared to the length of the rods. The first case
supposes that nodes and rods of the mesh are made of two
different materials, which is indeed possible to achieve with a
3D printer. The second case is more realistic, especially if the
nodes are truncated polyhedra, like the cubes truncated at their
corners by height triangular faces in Fig. 1(b), that occupy the
smallest possible volume.

Under the hypothesis that a unique potential can be at-
tributed to each node, a resistive mesh can be approximated by a
resistor network. Let us therefore apply Ohm’s and Kirchhoff’s
laws to the nodes of the network:∑

j∈Z(i)

gij (Vj − Vi) + Ii = 0, (1)

where Z(i) is the set of nodes j connected to the ith node
through resistors, gij is the conductance of the resistors con-
necting node i to node j, Vi , and Vj are the electric potentials
of nodes i and j , respectively, and Ii is the external current
injected into node i.

The set of equations (1) may be rewritten in a compact form
by introducing the Laplacian matrix L:∑
j∈{i,Z(i)}

LijVj = −Ii, Lij = gij j �= i, Lii = −
∑

j∈Z(i)

gij ,

(2)
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and transformed in a matrix equation:

LV = −I, (3)

where I is the vector of external current sources connected to
the resistor network, and V is the vector of the unknown node
potentials.

The Laplacian matrix in (3) is singular. To solve the system
(3) we transform it as

(y1 − L)V = I, (4)

where 1 is the identity matrix and y is a real positive con-
ductance. All the nodes are thereby grounded to an absolute
reference of potential set to zero. We shall take the limit
y → 0+ afterward. The set of equations (4) can be solved
numerically for any finite-size lattice by application of some
high-performance direct methods, like block methods [30], and
iterative methods, like SOR [30] or conjugate-gradient [31]
methods. The formulation of the problem (4) is general and
allows us to find the node potentials generated by a given dis-
tribution of external current sources. In the absence of current
sources, some node potentials can receive predefined values
(Dirichlet boundary conditions), and all the terms involving
imposed potentials are transferred to the right-hand side, where
they play the same role as the vector I in Eq. (4) [17]. This latter
kind of problem with Dirichlet boundary conditions is involved
in numerical calculation of the equivalent bulk resistivity for
3D printed meshes; see Sec. III.

One way to solve Eq. (4) is via the resolvent matrix:

r(y) = (y1 − L)−1. (5)

The node potentials may thus be expressed from Eqs. (4) and
(5) as

V = lim
y→0+

r(y)I. (6)

There are two particular tasks for which the vector I consists
of a current source and a current sink: Ik = I0(δk,i − δk,j );
namely, the current I0 enters the network at node i and leaves
it at node j . The first task involves four nodes if we assume
that the voltage nodes m and n between which �V = Vm − Vn

is computed are distinct from the current nodes i and j . This
setup is analogous to the four-probe method widely used for
measuring the resistivity of bulk materials [32]. The second
task represents a two-probe setup yielding the equivalent
resistance R(i,j ) between two arbitrary nodes i and j of
the resistor network. Here the current and voltage electrodes
coincide.

The potential difference in the four-probe setup is

Vm − Vn = (rmi − rmj − rni + rnj )I0, (7)

where rmi represents the limit of the (m,i) element of the
resolvent matrix r(y) for a vanishingly small positive y. The
determination of R(i,j ) follows from the four-probe case by
setting m = i and n = j :

R(i,j ) = Vi − Vj

I0
= (rii − rij − rji + rjj ). (8)

R(i,j ) can been obtained numerically for ideal simple
lattices of finite size after the eigenvalues and eigenvectors
of the Laplacian matrix have been computed [16]. For ideal

infinite resistor networks, the resolvent matrix in Eq. (5) is the
lattice Green’s function G. When analytical expressions of G

exist, R(i,j ) can be calculated with high accuracy. The lattice
Green’s function is available for square, rectangular, triangular,
simple cubic, and some other lattices [18–23]. The perturbation
of the lattice Green’s function by defects in ideal networks
has been considered [24,25]. It allows one to obtain R(i,j )
in infinite networks containing a small number of defective
resistors.

Analytical methods based on Green’s functions are re-
stricted to simple lattices and limited by the number of
defective resistors in the network. Numerical methods for the
basic system of equations (4) are free from these limitations
but can be applied to finite-size systems only. Compared to an
infinite lattice, numerical results obtained on a finite network
deviate from the values given by direct analytical methods
based on Eq. (6) and Green’s functions. The error may be
expressed as

δR(i,j ) = |R(i,j )n − R(i,j )a|, (9)

where R(i,j )a is the equivalent resistance between two nodes
calculated by direct analytical method, and R(i,j )n is the same
calculated by numerical methods.

The error δR(i,j ) is due to the finite size of the system and
the concomitant neglect of paths of the current across resistors
that are outside the boundaries of the network. If the linear
size of the system increases to ∞, then assuming an error-free
algorithm, one obtains R(i,j )n → R(i,j )a and δR(i,j ) → 0.
In practice, the size of the system is limited by the amount of
computational operations and memory storage. However, there
is another way to increase the accuracy of the calculation by
the inclusion of some corrections in the calculation procedure;
see Sec. II B.

A. Recursion algorithm for numerical calculation of the
equivalent resistance between two nodes of a resistor network

For the calculation of, e.g., the equivalent resistance R(i,j )
between two nodes of an infinite network, we use the recursion
method initially designed for a tight-binding Hamiltonian in
solid-state physics [29]. To sketch how the method works, we
first rewrite Eq. (8) in Dirac notation:

R(i,j ) = 2 lim
y→0+

〈uij |r(y)|uij 〉 with |uij 〉 = |i〉 − |j 〉√
2

.

(10)

Here |uij 〉 is a normalized vector in the space sustained by the
nodes of the network, which has zero elements everywhere
except at the nodes i and j , where it takes the values +1/

√
2

and −1/
√

2, respectively. It is worth mentioning here that,
unlike in Ref. [28], the equivalent resistance is obtained in one
step as a diagonal element of the resolvent matrix [Eq. (10)].
There is no need to calculate separately diagonal elements rii

and off-diagonal ones rij , as Eq. (8) would suggest, which
improves the precision and saves computing time.

Starting from the state |0} = |uij 〉, the recursion method
generates recursively a set of normalized states through the
relation

bm+1|m + 1〉 = (L + am+11)|m} − bm|m − 1}, (11)
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FIG. 2. Physical interpretation of the continued fraction [Eq. (12)]
in the form of a transmission line. Each gray-shaded box represents
a resistor whose conductance is indicated along it.

where the so-called recursion coefficients am and bm are
defined at each step of the recurrence in such a way that the state
|m} be orthogonal to all the states obtained that far. In the basis
defined by these states, the Laplacian matrix is transformed in
a tridiagonal form, with coefficient −am as diagonal element
in the mth row and coefficients bm−1 and bm on both sides of
am in the same row.

After l steps, l pairs of recursion coefficients are obtained
from Eq. (11). Using the definition of the resolvent matrix and
the recurrence relation (11), one obtains

{0|r(y)|0} = 1

y + a1 − b1
{0|r(y)|1}
{0|r(y)|0}

,

{0|r(y)|m}
{0|r(y)|m − 1} = bm

y + am+1 − bm+1
{0|r(y)|m + 1}

{0|r(y)|m}
m = 1,2, . . . .

Combining these two relations together with Eq. (10) yields a
continued-fraction expansion for the equivalent resistance:

R(i,j ) = 2

a1 − b2
1

a2 − · · · b2
l−1

al − b2
l

s

, (12)

where s stands for all the terms that are not calculated when
stopping the recurrence at step l. The lth approximant of the
continued fraction corresponds to the limit s → ∞. The set of
approximants may converge slowly with increasing l. In prac-
tice, however, the convergence can be accelerated by using a
suitable, finite termination s. Interpreting a1, b1, a2 . . . bl , and s

as conductances, Eq. (12) can be viewed as the input resistance
of the transmission line illustrated in Fig. 2. Physically, the
load conductance s − bl should be positive. According to this
criterion, a value of s greater than bl must be used to terminate
the continued fraction (12). Hereafter, we shall refer to the
value s = bl as a “minimal termination parameter.”

For an infinite lattice, there is a relation between the size
of the cluster used for the calculations and the number l of
continued-fraction levels one may consider to calculate the
equivalent resistance R(i,j ) between nodes i and j . In the case
of periodic boundary conditions, artificial periodicity starts
playing a role if the shortest percolation path connecting site
i to the closest translational duplicate of site j comprises less
than 2l bonds. For the case of free boundary conditions, the
surface starts to influence the results if there exists a path
composed of less then 2l bonds going from i to j while passing

TABLE I. The computational complexity of the recursion algo-
rithm for the calculation of the equivalent resistance between two
nodes of a 2D square lattice and a 3D simple-cubic lattice is compared
with some other algorithms that can be used for solving Poisson’s
equation in two and three dimensions.

Computational complexity

Algorithm 2D 3D

Recursion (this work) O(N3/2) O(N 4/3)
Block [30] O(N 3/2)
Star-mesh transformation [33] O(N 3/2)
Conjugate gradient [31] O(N 3/2) O(N 4/3)
SOR [30,34] O(N 3/2 · log N ) O(N 4/3 · log N )
Jacobi and Gauss-Seidel [34] O(N 2 · log N ) O(N 5/3 · log N )

through a surface node. This rule is illustrated for small values
of l in Fig. 5 below: the computed value of the equivalent
resistance between two first-neighbor nodes does not change
by increasing the linear size of the cluster as soon as the latter
exceeds 2l.

Let us compare the efficiency of the recursion algorithm and
other well-known algorithms that can be applied to solve 2D
and 3D discrete Poisson’s equation. In two dimensions (resp.
three dimensions), the discrete Laplace operator obtained by
five-point (resp. seven-point) stencil finite-difference methods
has the same form as the Laplacian matrix given by Eq. (2)
for a square (resp. simple-cubic) resistor lattice. Solving
Eq. (4) for these particular resistor lattices is equivalent to
solving a discrete Poisson equation. Thus we can compare the
computational complexity of the recursion algorithm applied
to the calculation of the equivalent resistance R(i,j ) between
two nodes of square and simple cubic networks with the
computational complexity of 2D and 3D discrete Poisson
equation solvers, respectively. We consider square networks
with size (number of nodes) N = n · n and simple-cubic
networks with size N = n · n · n.

As shown in the Appendix, the computational complexity
of the recursion method for a three-dimensional lattice is
O(N4/3). In two dimensions, the computational complexity
becomes O(N3/2) when the number of continued-fraction
levels l is optimized to the linear size of the network, which
scales with N like n = N1/d , with d the dimension of space.
As demonstrated by Table I for both 2D and 3D problems, the
recursion algorithm can compete with direct block methods
[30], star-mesh transformation [33], conjugate gradient [31],
and the iterative successive over-relaxation (SOR) method
[30,34]. Moreover, the recursion method should run faster than
iterative Jacobi and Gauss-Seidel algorithms [34] according to
their respective computational complexity. In addition to its
relatively high speed, the recursion algorithm can be corrected
to improve the accuracy of the results in the case of infinite
lattices, as we now demonstrate.

B. Improvement of accuracy for infinite resistor networks

Here we present two ways of improving the accuracy of
the recursion method applied to infinite resistor networks
while necessarily dealing with a finite system. The first way
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FIG. 3. Principles of the core-shell model. In (a), the conductivity
of the boundary shell is higher than that of the core region allowing
keeping within the finite-size region as many current lines as in the
case of the infinite medium shown in (b). The core region in (a) has
the same conductivity as the infinite medium shown in (b).

is to adjust the continued-fraction termination parameter s

[Eq. (12)] in such a way that R(i,j )n between two nearest-
neighbor nodes i and j reproduces the analytical result R(i,j )a ,
when available [35]. The parameter s so obtained is used for all
pairs i, j of nodes. It is called the optimized termination (OT)
parameter in the following. Its value depends on the lattice
and the bond resistance, on the size of the cluster, and on the
number l of continued-fraction levels. The second way consists
in decreasing the resistance of the resistors in some boundary
region of finite-size medium (core-shell model); see Fig. 3.
The thickness of a boundary shell (BS) is taken to be equal
to a number of resistors which connect the core region with
the outer part of the network. The higher conductivity of the
boundary shell provides a larger current in it, which permits
one to replace the current in the outer infinite network by the
current in the shell. The resistance in the shell is chosen in
such a way that the computed equivalent resistance between
two nearest-neighbor nodes possesses the exact value. For
perfect resistor networks in which each node is connected to Z

equivalent bonds with resistance R0, the equivalent resistance
between a pair of first-neighbor nodes is 2R0/Z. The value of
Z is referred to as the coordination number of the lattice.

To illustrate these concepts, let us consider an ideal square
lattice with bond resistance R0 set to 1. The equivalent resis-
tance R(i,j ) is calculated on a 100 × 100 network between a
node j with coordinates (m,n) and the node i located at the
geometrical center of the network where it receives the coor-
dinates (0,0). Different sets of coordinates (n,m) of the node
j are considered. For comparison, the equivalent resistance
has been computed analytically using Green’s function. The
accuracy of the recursion method is measured with the absolute
error δR(i,j ) [Eq. (9)]. Three types of numerical calculations
are presented: (1) calculations with l = 60 continued-fraction
levels using the minimum value of termination parameter,
s = bl ; (2) calculations still with l = 60 and the termination
parameter s = 2.01426 adjusted to get the correct value of
the first-neighbor equivalent resistance (+OT); (3) calculations
with the core-shell model, now with l = 200, the boundary shell
having a thickness of 25 resistors and a bond resistance R1 =
0.56351 (+BS). In the latter calculations, s = bl is used, as in
calculations (1).

As Table II indicates, the recursion algorithm with the
minimum termination parameter allows one to obtain R(i,j )

TABLE II. Analytical results for the equivalent resistance be-
tween two nodes R(i,j )a for the ideal square lattice and absolute error
δR(i,j ) of numerical calculations based on the recursion algorithm
(see text).

(n,m) R(i,j )a δR(i,j ) δR(i,j ) +OT δR(i,j ) +BS

(1,0) 0.50000000 0.00002400 0.00000001 0.00000010
(2,0) 0.72676045 0.00011439 0.00001083 0.00000026
(4,0) 0.95398729 0.00044407 0.00003788 0.00000317
(1,1) 0.63661977 0.00005752 0.00001311 0.00000025
(2,2) 0.84882636 0.00022619 0.00002047 0.00000062
(4,4) 1.06709599 0.00086582 0.00006492 0.00000875

with an accuracy of three decimal figures. The correction based
on the adjusted termination of the continued fraction improves
the accuracy by at least a factor of 10. It is worth noting
that accuracy has improved for all the equivalent resistances
considered. The core-shell model requires more continued-
fraction levels in order to better probe the shell boundary zone.
Meanwhile, it leads to improving the accuracy by at least a
factor of 100 for all configurations of nodes.

Let us now consider a square network of size 100 × 100
with a single broken bond between two nearest-neighbor
nodes. Analytical calculation of R(i,j )a is provided using per-
turbation of the lattice Green’s function. Numerical methods
for the calculation of R(i,j )n are the same as for the ideal
square network. In particular, the same termination parameter
s = 2.01426 is used for the (+OT) improved calculations.

The same level of accuracy as for the perfect network is
obtained when using the recursion algorithm with either (+OT)
or (+BS) corrections. By contrast, δR(i,j ) with the minimal
continued-fraction termination (the third column of Table III)
increases by a factor varying between five and 10. One may
conclude that the recursion method remains efficient for a
network containing a local defect, if one applies the same
corrections as for the ideal network.

To illustrate the accuracy of numerical calculations of
R(i,j )n for 3D infinite networks, we consider an ideal simple
cubic lattice. Direct analytical results have been calculated with
Green’s functions. Numerical results have been obtained with
the recursion algorithm with and without adjusted termination.

TABLE III. Analytical results for the equivalent resistance be-
tween two nodes R(i,j )a for a square lattice with a single broken bond
between nodes (0,0) and (1,0). Absolute error δR(i,j ) of numerical
calculations is based on the recursion algorithm.

(n,m) R(i,j )a δR(i,j ) δR(i,j ) +OT δR(i,j ) +BS

(1,0) 1.00000000 0.00035614 0.00000005 0.00000039
(2,0) 0.99085083 0.00065079 0.00002707 0.00000058
(4,0) 1.13006365 0.00178588 0.00007674 0.00000274
(0,1) 0.56602259 0.00010111 0.00000259 0.00000010
(0,2) 0.82960106 0.00036826 0.00001378 0.00000022
(0,3) 1.07364385 0.00137990 0.00005134 0.00000322
(1,1) 0.83926213 0.00032515 0.00002758 0.00000045
(2,2) 1.01447645 0.00091827 0.00002940 0.00000105
(4,4) 1.21246892 0.00302011 0.00008516 0.00000724
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TABLE IV. Analytical results for the equivalent resistance be-
tween two nodes R(i,j )a in the ideal simple cubic lattice. Absolute
error δR(i,j ) of numerical calculations is based on the recursion
algorithm with the minimum termination parameter s = bl (third
column) and with an adjusted value of s (fourth column).

(n,m,l) R(i,j )a δR(i,j ) δR(i,j ) +OT

(1,0,0) 0.33333333 0.00002374 0.00000000
(2,0,0) 0.41968339 0.00008600 0.00000306
(3,0,0) 0.45037176 0.00017940 0.00000594
(1,1,0) 0.39507915 0.00004352 0.00000250
(1,2,0) 0.43359881 0.00010764 0.00000133
(2,2,0) 0.44935167 0.00016347 0.00000719
(1,1,1) 0.41830531 0.00006334 0.00000338
(2,2,2) 0.46015929 0.00023483 0.00001176
(3,3,3) 0.47502340 0.00042933 0.00004596
(1,2,3) 0.46314670 0.00025823 0.00002058

The size of the network is N = 45 × 45 × 45, and the resis-
tance of each resistor is set to 1. In both cases, calculations
with l = 20 continued-fraction levels are provided. By setting
s = 3.14605, the equivalent resistance between first-neighbor
sites is correctly reproduced.

Results presented in Table IV demonstrate that the level
of accuracy is similar as for the 2D square lattice, although
the number of continued-fraction levels has been considerably
reduced (20 against 60). Then the equivalent resistance R(i,j )
can be obtained with three significant figures with the minimal
termination s and with four significant figures when using the
adjusted termination.

C. Random distribution of the resistor values

In principle, the disorder in a conducting mesh produced by
a 3D printer can be described by some probabilistic distribution
of the resistance p(R) or conductance p(g) of the bonds. It is
possible to deal with such a disorder in the spirit of the mean
field theory [12,13]. The theory is remarkably simple when
the underlying lattice is infinite and the unit cell contains one
node where Z equivalent resistor bonds meet [12]. Then the
real system can be replaced by an ideal, ordered one, with an
effective bond conductance geff:∫ ∞

0
p(g)

(geff − g)

[g + (Z/2 − 1)geff]
dg = 0. (13)

This equation states that, having selected one bond i,j of the
ideal system and letting the conductance of that bond vary
according to the probability distribution p(g), then the average
value of the equivalent resistance R(i,j ) will be that of the
perfect lattice, 2/(Zgeff). Once geff has been calculated, one is
back to the theory of ideal resistor networks. The equivalent
resistance between any given pair of nodes i and j of the
ideal network with bond conductance geff has the meaning of
a configurational averaged value of R(i,j ) for random resistor
network [36]. It is worth noting that the accuracy of this
approach increases with increasing coordination number Z

(see, e.g., Refs. [14,36]).
Determining the distribution function p(g) for the bond

resistors of a realistic 3D mesh is not an easy task. For
simplicity, Gaussian distribution of the conductance of bond
resistors can be assumed with mean value g0 and standard
deviation �g. The Gaussian distribution is truncated on its
negative tail in order to avoid negative values of g: the tail on the
negative side is pushed upward and replaced by a Dirac delta
peak at the origin whose weight compensates for the weight
of the truncated tail. This delta peak physically represents the
probability that a rod in the 3D printed mesh be broken. Nu-
merical simulations performed for the diamond lattice (Z = 4)
are listed in Table V. The equivalent resistance, computed from
Eq. (13) with the truncated Gaussian distribution for �g/g0 =
0.1, is Reff = 1.005 g−1

0 . The data in Table V demonstrate
that the relative dispersion �R(i,j )/〈R(i,j )〉 of the equivalent
resistance between any two nodes, calculated for a sample with
7000 different but equivalent configurations of the resistors, is
less than the relative dispersion �g/g0 = 0.1 of the resistors
themselves.

We have explored how the equivalent resistance fluctuates
around its average value in a square lattice of resistors. The con-
ductance of the resistors was chosen according to the truncated
Gaussian distribution with �g/g0 = 0.2, and 1000 random
configurations were generated. For each of them, the equivalent
resistance R(i,j ) between the node i located at the center
(0,0) of a 200 × 200 network and the node j at coordinates
(d,0) was calculated for d = 1, 2, . . . , 20. The configurational
averaged value 〈R(i,j )〉 is represented versus the distance d

between the nodes i and j in Fig. 4. The gray-scale maps
visualize the fluctuations of R(i,j ), the horizontal blue bars
represent the 5th and 95th percentiles. The 5th–95th percentile
interval keeps reasonably the same for all the distances d > 3.
The results of the perfect lattice with effective resistance

TABLE V. Configurational average of equivalent resistance in the diamond lattice with a truncated Gaussian distribution of the bond
conductances (see text). The variance of the distribution is �g = 0.1g0, g0 being the average value. Each resistance is given in units of g−1

0 .
Calculations are performed on a 30 × 30 × 30 supercell with the recursion algorithm. The number of continued fraction levels is 25. We use
the optimized termination parameter s = 2.0495/Reff (see Sec. II B) for the perfect diamond lattice with bond resistance Reff.

Sites i,j 〈R(i,j )〉 �R(i,j ) = √〈[R(i,j ) − 〈R(i,j )〉]2〉 Effective medium

1st neighbor 0.502 0.026 0.5025
2nd neighbor 0.670 0.021 0.6700
3rd neighbor 0.715 0.019 0.7142
4th neighbor 0.747 0.019 0.7469
5th neighbor 0.749 0.019 0.7491
6th neighbor 0.778 0.019 0.7700
∞ 0.898 0.026 0.9009
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FIG. 4. Plot of the equivalent resistanceR(i,j ) between two nodes
i and j in a disordered square lattice of resistors. The nodes are
along the [1,0] direction and are separated by d lattice parameters.
The conductance of the resistors were taken randomly according
to a truncated Gaussian distribution (see text) with average value
g0 and standard deviation �g = 0.2g0. The vertical gray patterns
represent the fluctuations of equivalent resistances computed for 1000
independent configurations. The average values are shown by the
horizontal red bars. The 5th and 95th percentiles of the fluctuations
are shown by the horizontal blue bars. The green spots represent the
results obtained on the same square lattice with a uniform resistance
Reff. In all cases, a 200 × 200 lattice was used, and the continued
fraction (12) was truncated at its 75th approximant.

Reff = 1.021 g−1
0 are plotted in the same figure. They reproduce

the configurational averaged data very well. The effective
medium corresponds therefore to an efficient averaging of
R(i,j ) and makes the theory useful to approximate a random
resistor network by its equivalent ideal resistor network. The
same effective-medium approach has also been applied to
study the conductive properties of nanowire networks in two
dimensions [37]. Here cross-connections between randomly
dispersed nanorods form an irregular conducting net to which
Eq. (13) does not apply directly. Previously the nanowire
network has been mapped onto a regular square lattice where
the bond resistances vary according to probability distributions
of interwire junction resistances, intrawire resistances, and
infinite—nonelectrically active wire segment—resistances. In
spite of the regular network approximation used and com-
plex distribution functions of the resistances in a nanowire
network, the effective-medium theory accurately reproduces
the numerical values of the equivalent resistance between two
point electrodes similar to what is shown in Fig. 4 for a
disordered square lattice with a truncated Gaussian distribution
of resistances.

It is interesting that the fluctuations of equivalent resistance
between two nodes of the square lattice considered in Fig. 4 do
not vary significantly when d exceeds 3. A similar dependence
of fluctuations of the equivalent resistance versus distance has
been observed in the aforementioned modeling of 2D nanowire
networks’ topology [37]. In both cases, the random distribution
of the resistance between connected nodes is the source of
fluctuations. However, for the case of nanowire networks, an

additional source of fluctuations exists: the geometry of the
network changes from one arrangement of the nanowires to
the other, whereas the geometry of our square lattice is kept
the same for all resistor configurations. Despite this difference,
a close similarity is observed in the way the fluctuations of
the equivalent resistance depend on the distances between two
nodes. In our case, we can imagine that the fluctuations come
mainly from the finite number of resistance configurations
inside a small region around each node i and j . Outside
these two small regions, the network offers so many different
paths for the current that a configurational averaging is almost
automatically performed. Then the fluctuations of R(i,j ) do
not change with increasing the distance between the nodes
above a given small value. The same trends are revealed by
the data of Table V for the diamond structure: the standard
deviation �R(i,j ) keeps constant as soon as j lies outside the
third-coordination shell of i.

Irrespective of the type of distribution function, if p(g)
is peaked around its mean value g0 with a small standard
deviation �g, geff is close to g0. Then the value of g/geff has a
small probability to deviate strongly from 1. Rewriting Eq. (13)
in the following form:

2

Z

∫ ∞

0
p(g)

(1 − g/geff)

1 − (2/Z)(1 − g/geff)
dg = 0, (14)

and developing the integrand in power series of (1 − g/geff)
limited to second order terms, one readily obtains

g0

geff
≈ 1 + 2

Z

(
�g

g0

)2

. (15)

When g0 and �g are known, this equation can be used to
calculate Reff = 1/geff. This result also shows that if �g/g0 ≈
10%, then geff deviates from g0 by less than 1%.

III. EQUIVALENT BULK CONDUCTIVITY
OF A RESISTOR NETWORK

It is interesting for some applications to approximate a dis-
crete resistor network by a continuous medium. For example,
the effective medium approximation for a 3D printed mesh
may be used to investigate the electromagnetic properties of the
mesh in the long-wavelength limit (wavelength greater than the
linear size of the lattice unit cell). In a different but close con-
text, it has been shown that the electromagnetic properties of
conductive cellular carbon foams with a cell size of 0.5–1 mm
are well described in a continuous medium approximation up
to frequencies around 30 GHz (1 cm wavelength) [38]. Let us
consider different ways for the modeling of 3D printed mesh
as a continuous medium.

A. Global definition of the effective conductivity

The effective conductivity tensor σeff of an arbitrary inho-
mogeneous medium is defined by [39–41]

〈 �j 〉 = σeff〈 �E〉, (16)

where 〈· · · 〉 denotes the average of a physical quantity (here the
current density �j or the electric field �E) over a characteristic
volume of the inhomogeneous medium. In general, σeff can
be determined by solving the electrostatic equation with

043307-7



MELNIKOV, SHUBA, AND LAMBIN PHYSICAL REVIEW E 97, 043307 (2018)

appropriate boundary conditions for the electric potential �

[12,40]:

�∇ · [σ (�r) �∇�] = 0. (17)

Interestingly, this equation can be discretized using a finite-
difference scheme to yield a set of equations similar to those
derived for a discrete resistor network [Eq. (1) with Ii = 0].

The effective conductivity σeff of a periodic resistor network
can be addressed as follows. A slice of network, delimited by
two parallel planes of specific Miller indices and a distance of L

from each other, is contacted by two parallel infinite plates. The
nodes of the network in contact with one plate or the other are
set to the potentials 0 or �L, respectively. These are Dirichlet
boundary conditions [42,43]. Due to the assumed geometrical
periodicity of the lattice, periodic boundary conditions can be
imposed on the lattice in directions parallel to the electrodes.
The periodic boundary conditions make the sample essentially
infinite in two dimensions [12]. They are widely applicable to
the modeling of regular or random resistor lattices [12,14,44].

An important advantage of the slab geometry of the problem
is that the average electric field is known, and only the average
current density 〈 �j 〉 needs to be calculated. From the solution
of Eq. (1) with Dirichlet boundary conditions in one direction
and periodic boundary conditions in other directions, we can
find the electric potential distribution on the inner nodes of the
network. Knowing these potentials, we can find the currents
Iij flowing from node i to node j through the bond between
them:

Iij = gij (Vi − Vj ). (18)

From there the average current density can be obtained as
follows. Let �lij be the vector in Cartesian space connecting
node i to node j . Let � be the volume of the network slab
that is reproduced periodically in the directions parallel to the
electrodes. Then

〈 �j 〉 = 1

�

∑
�

〈Iij
�lij 〉, (19)

where the sum is over all the bonds contained in the volume
�. This relation provides us with the numerical value of the
average current density for the imposed averaged electric field
〈 �E〉 = �L�n/L, where �n is the unit vector perpendicular to
the plate electrodes. The calculations can be performed for
electrodes successively set normal to each axis of the Cartesian
coordinate system [41]. Using Eq. (16), the nine components
of the tensor σeff can be obtained.

Let us consider the particular case where the lattice is ideal,
periodic, and geometrically simple. We imagine a unit cell in
the form of a rectangular parallelepiped with resistors along
its edges. The lengths of the edges are denoted as a1, a2,
and a3, and the corresponding resistances are R1, R2, and R3.
The unit vectors �e1, �e2, and �e3 of the Cartesian coordinates
are taken parallel to the edges of the unit cell. We take the
plate electrodes to be normal to �e1, and the network slab has
a thickness L = N1a1. The smallest volume � that can be
reproduced periodically along �e2 and �e3 contains N1 × 1 × 1
unit cells. Due to the simple shape of the network, all nodes
that belong to a same plane parallel to the basis planes have
the same electric potential. The current flows only along the

TABLE VI. The effective conductivity σeff of resistor networks
with cubic symmetry in units of 1/(Ra) where R is the bond resistance
and a is the length of the conventional cubic cell.

Diamond sc bcc fcc

1 1 2 2

direction �e1 through linear and parallel chains composed of N1

resistances R1. Its value is I1 = �L/(N1R1). Equations (16)
and (19) readily yield σ11 = a1/(a2a3R1). The other diagonal
elements of σeff can be obtained in the same way. The same
reasoning is easily applied to lattices with cubic symmetry:
diamond, simple cubic (sc), body-centered cubic (bcc), and
face-centered cubic (fcc) lattices. Table VI gives the obtained
values of the effective conductance, which is diagonal and
isotropic.

If the structure of the resistor network is perturbed by
defects or by geometrical distortions, the method described
above can still be applied by considering a supercell to be
reproduced periodically in the lateral directions. Therefore,
the computation of σeff can quite generally be applied to
networks with different kinds of inhomogeneities: (1) lattices
with nonrandom spatial distribution of defects [45], (2) lattices
with fluctuations of the orientation and length of the bonds, and
(3) lattices with bond resistances varying in a correlated way.

The very same methodology can be used in practice to
characterize 3D printed meshes. The nodes located on two
parallel faces of a mesh are contacted to two electrodes, and
the resistance of the whole structure is measured across the
electrodes. An effective conductivity is obtained from this
measurement. If the lattice is simple like in Table VI, the bond
resistance can be deduced. When the lattice has a complex
geometric structure and contains different resistors, the same
task can be performed, but it may need several measurements
on slabs cut along different directions.

B. Local definition of the effective conductivity

Let us investigate the effective bulk conductivity of a
discrete network using a more local point of view. The idea
here is to resort to a four-probe-like setup where the current
I0 is injected at node i and is collected at node j , while the
potential drop is measured between two other nodes m and n.
Equation (7) allows us to obtain the apparent resistance Ra =
(Vm − Vn)/I0 in a form tractable by the recursion algorithm:

Ra = lim
y→0+

(〈u|r(y)|u〉 − 〈v|r(y)|v〉), (20)

where

|u〉 = |i〉 − |j 〉 + |m〉 − |n〉
2

,

|v〉 = |i〉 − |j 〉 − |m〉 + |n〉
2

.

Equation (20) demands computing two diagonal elements
of the resolvent operators r(y), which is easy to do by the
recursion algorithm.
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TABLE VII. Application of Eq. (20) to a simple cubic lattice
in the Wenner configuration along the [100] direction, the distance
between two successive probes being l times the lattice parameter a.
The results are given in units of the bond resistance R. The last row
lists the value of ρ in units of Ra and calculated by Eq. (22) from the
values of Ra contained in the row above.

l 1 2 3 4 5 6

Ra 0.0863 0.0452 0.0283 0.0205 0.0160 0.0132
ρ 1.084 1.136 1.067 1.030 1.005 0.995

The apparent resistance obtained with the very same setup
in a continuous and homogeneous 3D medium is

Ra = ρ

4π

(
1

dm,i

− 1

dm,j

− 1

dn,i

+ 1

dn,j

)
, (21)

where dm,i is the distance between nodes m and i and so on and
ρ is the bulk resistivity. In the so-called Wenner configuration
[32], the four probes are put along a straight line in the
sequence i,m,n,j and are equidistant: di,m = dm,n = dn,j = d.
Equation (21) simplifies and yields

ρ = 1/σ = 4πRad. (22)

If one injects in this relation the apparent resistance computed
by Eq. (20) for a resistor network, using four aligned and
equidistant nodes, one obtains a local value of the effective
resistivity (or the effective conductivity). By definition, it rep-
resents the characteristics that a continuous and homogeneous
medium should have to produce the same apparent resistance
when the measuring electrodes are placed at exactly the same
positions as in the discrete network.

In a simple cubic network, let us take the four probes along
the [100] direction with interdistance d = la, l = 1,2 . . . ,

where a is the bond length equal here to the lattice parameter.
The results of the computation are given in Table VII, assuming
R = 1 and a = 1. Here 20 levels of continued fraction were
used in a 53 × 45 × 45 supercell. The continued fraction was
terminated with the same optimized parameter s = 3.14605
as used for the equivalent resistances between two nodes. One
can deduce from these calculations that the effective resistivity
is not a constant, but it converges to the value listed in Table VI
when the distance between the electrodes increases. For small
values of l, there is deviation of ρ from the value of 1/σeff given
by the global approach. This is due to the radial asymmetry
of the current injected into the network at node i. It can flow
only along six equivalent directions in a simple cubic lattice.
In a bulk material, the current density is distributed uniformly
in all directions. The radial asymmetry of the current flow,
which is related to the nonhomogeneous geometry of network,
decreases with increasing distance between the current probes
i and j and the voltage probes m and n. When the distance
exceeds several bond lengths, the application of an effective
bulk conductivity to a discrete 3D network is justified.

The effective bulk resistivity calculated exactly as for the
simple cubic lattice is given in Table VIII for the body-centered
cubic structure. Thirty levels of continued fraction were used
in a 50 × 50 × 50 supercell with the optimized termination
parameter s = 4.177 (see Sec. II B). Here two directions are

TABLE VIII. Local bulk resistivity calculated by Eqs. (22) and
(20) for the Wenner configuration in the bcc lattice along the [111]
and [100] directions. The distance between two successive probes is
l multiplied by the first-neighbor distance

√
3a/2 for [111] direction

and l multiplied by the lattice parameter a for [100] direction,
respectively. The resistivity ρ is given in units of Ra, R is the bond
resistance, and a is the cubic lattice parameter.

Direction l 1 2 3 4 5

[111] ρ 0.550 0.535 0.513 0.505 0.501
[100] ρ 0.428 0.476 0.488 0.491 0.492

considered to illustrate the anisotropy of the discrete resistor
network. The equivalent resistivity seems to converge toward
0.5 (see Table VIII) faster along the [111] than [100] direction.

Obviously the simple electrokinetic equation (17) needs to
be corrected if one wants to reproduce the variations of the
apparent bulk resistivity of a discrete conducting mesh. Unlike
a homogeneous medium, the mesh has an intrinsic length unit,
i.e., bond length. Having realized that, a conducting mesh could
still be approached by a continuous medium, provided one
uses a nonlocal Ohm’s law. The formulation of the nonlocal
response of the network has to be designed so as to mimic as
best as possible the variations of its apparent local resistivity.
This question is under investigation.

IV. CONCLUSIONS

The recursion algorithm initially developed for the quantum
mechanical problems has been applied to tasks related to the
theory of resistor networks. The recursion method has
been demonstrated to be very efficient and accurate for the
characterization of the electrical properties of a 2D and 3D
finite-size conducting meshes. For accurate consideration
of infinite networks by numerical modeling, one needs to
use a cluster model with minimized finite-size effect. For
this, we propose the core-shell design of the cluster, where
the conductance of the resistors in the boundary shell of
the cluster is supposed to be increased. Another way to
minimize finite-size effects is by adjusting the termination
of the continued fraction in the recursion algorithm in order
to reproduce the equivalent resistance between two first
neighboring nodes. The efficiency of these two approaches
has been investigated by the comparison of numerical data and
exact analytical results obtained for infinite square and simple
cubic networks. The effective-medium theory allows one to
model a random resistor network by an ideal resistor networks
with effective bond conductance. Numerical calculations, in
particular, provided by the recursion method, make it possible
to go much beyond this mean-field approach and give access
to statistical data. It allows one to analyze the fluctuations
of the resistance between two nodes for any particular
configuration of current probes. For specific configurations of
current probes, it has been shown that the relative dispersion
of the equivalent resistance between two nodes is less than
the relative dispersion of the resistors themselves. Finally,
the question on how to assign a bulk resistivity or bulk
conductivity to a 3D conducting mesh has been addressed.
The general definition of the effective conductivity has been
applied to 3D conducting meshes. For a slice of the mesh lattice
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between two planar electrodes, an effective bulk conductivity
has been defined unambiguously. It reproduces the conductiv-
ity of a continuous medium which should have to transport the
same average current density from one electrode to another.
Following this consideration, the effective conductivity of
different resistor networks with cubic symmetry has been cal-
culated. Locally, an apparent resistivity of a conducting mesh
is defined in the same way as with a four-probe measurement
technique. The apparent resistivity has been calculated for sim-
ple cubic and body-centered cubic lattices. The results depend
on the crystallographic direction along which the pin electrodes
are aligned and on the distance between these electrodes.
When the distance between the electrodes exceeds several
times the bond length, the apparent resistivity reproduces the
resistivity defined globally in a slab, at least for simple lattices.
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APPENDIX: CONVERGENCE, COMPUTATIONAL
COMPLEXITY, AND ACCURACY OF THE

RECURSION ALGORITHM

In this Appendix, the convergence of the recursion
algorithm versus number of continued fraction levels l is
examined in the case of a simple cubic lattice of finite size.
The first point of interest is how to obtain the equivalent
resistance between two first-neighbor sites i and j with a
given accuracy. The underlying problem is the solution of the
3D discrete Poisson’s equation [Eq. (3)] in the presence of a
pair of current source and sink.

The results obtained with the minimal termination parame-
ter s are presented in Fig. 5 versus l. Three lattices, composed
of N = 10 × 10 × 10, 20 × 20 × 20, and 50 × 50 × 50 nodes,
were considered. For each of them, Fig. 5 allows us to find
the number l(n) of continued fraction levels that produces the
resistance R(i,j ) with a relative error 10−n. When n < 4, l(n)
does not depend on the lattice size N . For n > 6, l(n) increases
approximately like the linear size 3

√
N of the network.

The number of multiplication operations required by the
recursion algorithm is l(Z + 6)N with Z the coordination
number of the lattice (Z = 6 for simple cubic). Then, when
the equivalent resistance has to be obtained with more than six
exact figures, the number of multiplication operations scales
withN likeN4/3. In other words, the computational complexity
of the recursion algorithm is O(N4/3).

The second point of interest is linked to the accuracy of the
recursion method. The question is how precisely the equivalent
resistance R(i,j ) between two nodes i and j can be obtained
depending on the distance between them. We have addressed
that question in an infinite cubic lattice of identical resistors,
represented by a cluster of size N , either equal to 40 × 40 × 40
or 80 × 80 × 80. The number of continued-fraction levels l

for both cases was half the linear size of the cluster, namely,
20 and 40, respectively. The relative positions of the nodes i

FIG. 5. Relative accuracy of the equivalent resistance R(i,j )
between two first-neighbor nodes obtained with a given number l of
continued-fraction levels in a simple-cubic lattice of size N = 10 ×
10 × 10, 20 × 20 × 20, and 50 × 50 × 50. The relative accuracy is
defined by n = − log |δR(i,j )|/R0 [see Eq. (9)] with R0 the bond
rsistance.

and j were taken along three crystallographic directions, as
either (m,0,0), (m,m,0), or (m,m,m), with m = 1,2, . . . ,10.
The termination parameter s of the continued fraction (12)
was adjusted to reproduce the exact value of the equivalent
resistance between two nearest-neighbor nodes [(1,0,0) case].
Setting the bond resistance R0 to 1, the terminations parameters
used were s = 3.14605 for l = 20 and s = 3.07640 for l = 40.
The absolute error δR(i,j ) is plotted in Fig. 6 against m for the
three sets of pairs of nodes and for the two cluster sizes. The
error increases approximately like m2 for each crystallographic
direction. For a given m, the error increases on going from
(m,0,0) to (m,m,0) and from (m,m,0) to (m,m,m). Overall,
one can say that δR(i,j ) increases with the square of the
geometrical distance between the nodes i and j . For all m, the
error decreases approximately by a factor of eight by doubling
the linear size of the cluster.

FIG. 6. Plot of the error δR(I,j ) [Eq. (9)] versus the integer
parameter m that sets the distance between the node i at (0,0,0) and
the node j at (m,0,0), (m,m,0), and (m,m,m). Continued fractions
with l = 20 and 40 levels were used in a cluster of size 2l × 2l × 2l.
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