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Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann
simulations compared to the traditional staircase approximation of curved geometries. Usually, the required
unknown distribution functions emerging from the solid nodes are computed based on the known distribution
functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be
mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is
called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would
affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved
boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different
forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated
and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate
simulations.
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I. INTRODUCTION

In the last two decades, there has been growing interest in
using the lattice Boltzmann method (LBM) as a promising al-
ternative technique for simulating various fluid flow problems
[1–5]. Unlike the conventional computational fluid dynamics
(CFD) methods, the LBM does not solve the incompressible
Navier-Stokes equations directly, but instead the fluid flow
is described in terms of a discrete kinetic equation based
on the particle distribution functions [6]. The standard LBM
consists of two steps, namely, collision and streaming. The
collision step describes the local changes of particle density
due to collisions at each grid node. In the streaming step,
distribution functions are streamed from lattice nodes to their
neighbors. Macroscopic quantities, such as density or velocity,
are recovered as statistical moments of the particle distribution
functions. Therefore, the particle distribution functions are the
essential objects of the method.

Since the LBM is performed on equidistant Cartesian grids,
boundary condition schemes were first introduced for straight
walls. The bounce-back (BB) scheme is the most common,
simplest, and exactly mass conserving scheme for the solid wall
boundary condition and provides a particularly straightforward
approach for modeling no-slip conditions on solid walls. In this
scheme, when a particle distribution streams to a wall node, it
reflects back to the fluid node along its incoming link [6,7]. The
onsite BB and the mid-grid BB are two types of BB schemes
[8]. In the onsite BB scheme, the physical boundary nodes
lay exactly at the lattice nodes. In the mid-grid BB scheme,
the solid boundary is located exactly mid-plane between the
boundary fluid node and the off-lattice node inside the solid.
The onsite BB scheme is first-order accurate, whereas the
mid-grid BB scheme provides second-order accuracy in both
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space and time [6]. Alternative wall boundary conditions with
second-order accuracy were proposed by various researchers
[8–11]. For all of these boundary condition treatments, the solid
wall should be aligned with the computational grid [12,13].

The above-mentioned schemes have been quite successful
in improving numerical accuracy for flows with flat-wall
boundaries aligned with the computational grid. However,
they fail to accurately simulate curved boundaries (or flat-
wall boundaries inclined with respect to the computational
grid). For simulating flow with curved boundaries, we need
to determine the distribution functions at the nodes nearest the
curved boundaries based on the known boundary conditions.
The use of BB schemes with curved boundaries leads to
staircase shaped boundaries [14,15]. It should be noted that
with a stair-shaped approximation, not only the fidelity of real
geometry is lost, it may also introduce undesired errors (such as
a nonzero wall velocity) in a simulation that could contaminate
the results [16].

In the literature, various boundary treatments have been
developed that provide a more accurate treatment of curved
boundaries to determine the distribution functions on the
boundary nodes. The first method for treating curved bound-
aries with the LBM was proposed by Filippova and Hanel
based on interpolation or extrapolation of the distribution
functions [17]. It relies on ghost cells inside solid walls and
applies a linear interpolation of particle distributions to enforce
the boundary condition at the exact boundary location. This
scheme has second-order accuracy. However, it suffers from
poor numerical stability, particularly when the near-wall fluid
node is very close to the solid boundary. The stability issue of
this scheme was improved by Mei et al. [18] by placing the
boundary node used for velocity interpolation to the closest
fluid nodes, if the actual wall boundary is too close to a solid
node. The stability of this method was further improved by
various researchers [19–21].
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Bouzidi et al. [22] proposed a method with second-order
accuracy that does not require the extrapolations from the
ghost nodes in solid wall. The proposed scheme combines
the bounce-back concept with linear or quadratic interpolation
of the distribution functions from the internal fluid nodes.
The accuracy of this method has been improved by Ginzburg
and d’Humières [23] and extended to moving boundaries by
Lallemand and Luo [24]. Yu et al. [25] proposed a unified
version of the Bouzidi scheme by using a two-step sequential
interpolations to avoid the discontinuity in the boundary
treatment. Yin and Zhang [26] modified the Ladd scheme
with the boundary velocity at the mid-grid computed using
interpolation or extrapolation between the boundary node
and fluid node. In addition to the above-mentioned boundary
methods, several other approaches have been developed for
simulating curved boundaries in the LBM [27–30]. The dif-
ferent boundary conditions of LBM are compared on different
lattice configurations by Nash et al. [31].

Usually when using the interpolation- or extrapolation-
based curved boundary schemes in the LBM simulations, the
mass of the system is not conserved exactly. In other words,
there will be mass loss or gain at each time step during the
simulation, which is called mass leakage in the literature.
Lallemand and Luo [24] showed that the use of interpolation
breaks mass conservation near curved boundaries. They found
that the inaccuracy in evaluating momentum transfer can lead
to a net mass flux at the boundary. There are also flux based
finite-volume boundary schemes that are designed to conserve
mass [32,33]. However, these require estimates of the cut-cell
volume of the boundary cells, which add further complexity.
From an implementation point of view, link based interpolation
methods are much simpler. Various mass conserving boundary
treatments have been proposed to avoid the mass leakage
issue and improve the numerical stability of the simulations
[34–36]. However, such proposed mass conserving boundary
conditions either still exhibit minor leakage [34], are not
analyzed rigorously for mass leakage through various test
cases [32,35], or are applicable only for specific problems
such as tangential boundaries [36]. In general, such a mass
leakage does not affect simulation results for inflow-outflow
boundaries [37]. However, the mass leakage accumulates over
time for a periodic flow, driven by gravity. Such a flow problem
is widely used in different areas such as flows around stationary
arrays of particles and flows through porous media. For low
Re flows, such a leakage is minor and can be ignored in
general. However, at high Re, the change in system mass is
large and cannot be ignored. The issue becomes even severe
in the case of unsteady periodic flows, where a large number
of time steps is required to reach statistical equilibrium. This
subsequently results in drift in system mass and, therefore,
constantly increasing or decreasing forces.

Our objective is to keep the grid Re high (relatively coarser
grid and lower viscosity) since the mass leakage effects are
directly a consequence and proportional to the grid Re than the
flow Re itself. By this, we imply the importance of achieving
good solution accuracy using a coarse grid against finer grid
simulations as they are computationally more expensive.

Up to this point, there has not yet been a systematic
comparison of the performance of curved boundary schemes
with focus on mass leakage. We test the accuracy of most

popular curved boundary condition schemes and schemes that
showed potential for solving the mass leakage issue. It is the
aim of this paper to provide such a comparison for cases
with significant mass leakage issue, with focus on high Re
flows. Further, in this paper we introduce forced conservation
schemes that enforce strict mass conservation and test their
performance.

The rest of this paper is organized as follows. We briefly
introduce the LBM scheme in Sec. II. The selected curved
boundary condition schemes are briefly presented in Sec. III.
Results and discussion are presented in Sec. IV followed by
our recommendations and conclusions in Secs. V and VI,
respectively.

II. LATTICE BOLTZMANN METHOD

The general lattice Boltzmann equation with the single-
relaxation-time (SRT) approximation is written as [6]

fα(r + eα�t,t + �t) − fα(r,t)

= − 1

τ

[
fα(r,t) − f eq

α (r,t)
] + Sα, (1)

where fα is the particle distribution function signifying the
probability to find a particle at location r with a velocity in the
direction α, f

eq
α is the equilibrium distribution, �t = 1 is the

time interval, τ = 1/ω is the relaxation time, ω is the relaxation
factor, and Sα represents a general body force in the direction
α added to the equation. The equilibrium density distribution
function is given by

f eq
α = wαρ

[
1 + (eα · u)

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

]
, (2)

where cs = 1/
√

3 is the lattice speed of sound and ρ = ∑
α fα

and ρuα = ∑
α fαeα are the local density and momentum,

respectively. The lattice weights wα and the discrete veloc-
ities eα of a D2Q9-lattice model are given by wα=0 = 4/9,
eα = (0,0), wα=1∼4 = 1/9, eα = (cos θα, sin θα) with θα =
(α − 1)π/2 and wα=5∼8 = 1/36, eα = √

2(cos θα, sin θα) with
θα = (α − 5)π/2 + π/4. The viscosity and the pressure are
calculated as ν = c2

s (τ − 0.5) and p = ρc2
s , respectively. It is

clear that positivity of viscosity requires that τ > 0.5. The
standard LBM time step is performed in two steps, with the
collision and the streaming steps as

f̃α(r,t) = fα(r,t) − 1

τ

[
fα(r,t) − f eq

α (r,t)
] + Sα, (3)

fα(r + eα�t,t + �t) = f̃α(r,t), (4)

where f̃α is the post-collision state of the distribution function
but before the streaming. The effect of gravity as a body
force [38] is applied as Sα = −3wαρ(g · eα), where g is the
gravitational vector. For computing the fluid force on a body,
the momentum exchange approach [14] after the streaming
step is applied:

F =
∑
all rb

8∑
α=1

eα[fα(rb,t) + fᾱ(rf ,t)], (5)
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FIG. 1. One-dimensional representation of a regular lattice and a
curved-wall boundary.

where ᾱ denotes negative α direction and the summation is
done over all boundary nodes rb, which are connected to a
fluid node in the α direction according to rb = rf + eα�t .

III. TREATMENTS FOR CURVED-WALL BOUNDARY

Because a no-slip boundary with a wall can be modeled for
each velocity direction separately, it is sufficient to consider a
single lattice direction with a (curved) wall boundary surface
at rw, as shown in Fig. 1. The curved-wall boundary may be
located at an arbitrary position between the solid and fluid
nodes (i.e., rb and rf ). The fraction of an intersected link in
the fluid region is expressed using a parameter q as

q = |rw − rf |
|rb − rf | . (6)

Various treatments for curved-wall boundary condition have
been proposed in the literature to improve the accuracy of
the LBM simulations. The work of Filippova and Hänel [17]
and Mei et al. [18] were the first attempts to represent curved
boundaries of a solid body. However, they are not stable for
all relaxation times [34,39] and therefore are not considered in
this work. Since the boundary schemes are formulated based on
one-dimensional (1D) approximation of the lattice direction,
two-dimensional (2D) test cases are sufficient to investigate
their performance. For this reason, historically all or most of
the proposed curved boundary condition literatures contain
2D test cases. However, their extensions to 3D are always
straightforward and consistent. Therefore, we can also say that
the results from here can be applicable for three dimensions
(3D) in a straightforward manner. In this section, we briefly
introduce the schemes that are analyzed in this work.

A. Mid-grid bounce-back scheme (MGBB)

The most widely used boundary condition for the LBM
is the mid-grid bounce-back scheme. For a mid-grid bounce-
back scheme, the solid boundary is assumed exactly halfway
between the fluid node and the solid node (i.e., q = 1

2 ). The
mid-grid bounce-back scheme (see Fig. 1) is of second order
and is given by

fᾱ(rf ,t + �t) = f̃α(rf ,t). (7)

B. Bouzidi schemes (L-Bouzidi and Q-Bouzidi) [22,24]

In this scheme, an interpolation is applied to calculate the
unknown distribution function based on the position of the wall
boundary. When linear interpolation is applied, the Bouzidi
model (L-Bouzidi) is written as follows:

For q < 0.5,

fᾱ(rf ,t + �t) = (1 − 2q)f̃α(rff ,t) + 2qf̃α(rf ,t), (8)

and for q � 0.5,

fᾱ(rf ,t + �t) =
(

1 − 1

2q

)
f̃ᾱ(rf ,t) + 1

2q
f̃α(rf ,t). (9)

Alternatively, when quadratic interpolation is applied, the
scheme (Q-Bouzidi) has the following form for q < 0.5:

fᾱ(rf ,t + �t) = q(1 + 2q)f̃α(rf ,t) + (1 − 4q2)f̃α(rff ,t)

− q(1 − 2q)f̃α(rfff ,t), (10)

and for q � 0.5,

fᾱ(rf ,t + �t) = 1

q(2q + 1)
f̃i(rf ,t) + 2q − 1

q
f̃ᾱ(rf ,t)

− 2q − 1

2q + 1
f̃ᾱ(rff ,t). (11)

It can observed that in the Bouzidi schemes, the unknown
values of distribution functions are solved at the fluid nodes
using an interpolation technique.

C. Unified schemes (L-Uni and Q-Uni) [25]

The Bouzidi scheme requires separate treatments for q <

0.5 and q � 0.5 that may cause an abrupt change in calculated
distribution function when q changes from less than 0.5 to
more than 0.5 (as in moving boundaries). To overcome this
issue, a unified version of the Bouzidi scheme was proposed
by Yu et al. [25]. The linear interpolation of Yu scheme (L-Uni)
is written as

fᾱ(rf ,t + �t) = 1

1 + q
[qf̃α(rf ,t) + (1 − q)f̃α(rff ,t)

+ qf̃ᾱ(rf ,t)]. (12)

If quadratic interpolation is applied [34], the model (Q-Uni)
has the form

fᾱ(rf ,t + �t) = 1

(1 + q)(2 + q)
[q(1 + q)f̃α(rf ,t)

+ 2(1 − q2)f̃α(rff ,t)

− q(1 − q)f̃α(rfff ,t) + 2q(2 + q)f̃ᾱ(rf ,t)

− q(1 + q)f̃ᾱ(rff ,t)]. (13)

It can be seen that the Yu scheme does not require conditional
branching (by q < or > 0.5). However, compared to the
Bouzidi scheme, the Yu scheme involves more operations and
distribution function evaluations.

D. Interpolation-free schemes (OSIF and CPIF) [34]

Previous investigations [24] indicated that interpolation-
based schemes for treatment of curved boundaries destroy mass
conservation at the boundaries. To overcome the drawback
of these interpolation-based curved boundary treatments, an
interpolation-free technique was proposed by Kao and Yang
[34]. The interpolation-free schemes are based on the concept
of local grid refinement similar to Filippova and Hänel [40],
albeit without the actual grid refinement. The viscosities are
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modified depending on the q values, to mimic a finer local
grid. In the proposed onsite interpolation-free (OSIF) scheme,
the fluid distribution function is computed in the post-collision
step and is then streamed to the surface of the solid node rb.
For all 0 < q � 1,

f̃α(rf ,t) = f eq
α (rf ,t) + [f̃α(rf ,t)

− f eq
α (rf ,t)]

qωc(1 − ωf )

ωf (1 − ωc)
, (14)

where ωc = ω, ωf = 2q/(q − 1 + 2τ ) and the superscripts
c and f denote the coarse- and fine-grid quantities. The
composite interpolation-free (CPIF) model, as the name sug-
gests, is a hybrid approach encompassing mid-grid and onsite
bounce-back schemes. The viscosity is modified, accordingly
resembling a mid-grid bounce back for q � 0.5 and an onsite
bounce back for q > 0.5. For q � 0.5, the fine-grid relaxation
factor is ωf = 4q/(2q − 1 + 2τ ) and

f̃ᾱ(rb,t) = f eq
α (rf ,t) + [f̃α(rf ,t)

− f eq
α (rf ,t)]

2qωc(1 − ωf )

ωf (1 − ωc)
. (15)

For q > 0.5, ωf = 2q/(q − 1 + 2τ ) and

f̃α(rf ,t) = f eq
α (rf ,t) + [f̃α(rf ,t)

− f eq
α (rf ,t)]

qωc(1 − ωf )

ωf (1 − ωc)
. (16)

E. Yin-Zhang scheme [26]

Yin and Zhang [26] proposed a modified version (Yin-
Zhang) of the mid-grid BB scheme with moving boundaries
[14] based on the velocity at the mid-grid position instead of
the boundary velocity. The mid-grid velocity is obtained by
interpolating or extrapolating the velocities from the boundary
and the fluid node. For this purpose, the midpoint velocity of a
boundary lattice link is calculated as follows. With � = 1 − q,
and for � � 0.5,

um = 0.5u(rb,t) + (0.5 − �)u(rf ,t)

1 − �
(17)

and for � > 0.5,

um = 1.5u(rb,t) − (� − 0.5)u(rff ,t)

2 − �
. (18)

This midpoint velocity is utilized to calculate the bounced-back
distribution functions as

fᾱ(rf ,t + �t) = f̃α(rf ,t) − 2wαρ(rf ,t)

c2
s

um · eα. (19)

It is worth mentioning that from a coding perspective, when
using the curved boundary schemes, it is more efficient to com-
pute the unknown distribution functions after the streaming
step [24]. Streaming simply corresponds to shift of indices
of the spatial nodes. This means that f̃ᾱ(rb,t) = fᾱ(rf ,t +
�t) or f̃α(rff ,t) = fi(rf ,t + �t) and so on. Therefore, the
curved boundary schemes can also be rewritten based on the
distributions after the streaming. Regarding implementation,
all the schemes are straightforward to implement. However,
the CPIF scheme is slightly complicated due to its combined

FIG. 2. Simulation setup for flow around a square obstacle, driven
by gravity.

mid-grid and onsite bounce-back approach. Regarding com-
putational performance, we observed near similar behavior of
all boundary schemes for different test cases and, therefore,
the schemes are not compared for execution speed.

IV. RESULTS AND DISCUSSIONS

In this section, the no-slip curved boundary treatments of
Sec. III are applied to different flow test cases. Here, the mid-
grid bounce-back, linear Bouzidi, quadratic Bouzidi, linear
unified, quadratic unified, onsite interpolation-free, composite
interpolation-free, and the Yin-Zhang schemes are labeled as
MGBB, L-Bouzidi, Q-Bouzidi, L-Uni, Q-Uni, OSIF, CPIF
and Yin-Zhang, respectively. Also, we introduce few forced
mass conservation cases and a constant density scheme, and
investigate their performance.

A. Flow around square cylinder inside a channel

In this test case, we simulate the flow around a square
cylinder confined between two parallel walls. The flow is
periodic and is driven by gravity. The main advantage of this
test case is that all the simulation boundaries are grid aligned.
This enables accurate simulation of the flow field using mid-
grid bounce-back scheme and subsequently compare different
boundary conditions for arbitrary position of the obstacle. The
simulated test case is shown in Fig. 2 and is made of 200 × 51
nodes. The top and bottom walls of the channel are positioned
halfway between their respective solid-fluid nodes. Effectively,
the channel width is of 49 lattice units. The square obstacle is
of size 15 × 15 lattice units. Different boundary conditions are
tested with obstacle at different positions with the centers (Cx)
starting from 50 to 51 along x axis in 0.25 increments. All
four sides of the obstacle are halfway between the solid-fluid
node for the initial and final Cx positions, i.e., Cx = 50 and 51.
The top and bottom sides of the obstacle are always halfway
between solid-fluid nodes for all Cx . In other words, the q

values for top and bottom sides of the square are always equal
to 0.5, whereas q values change for front and rear sides of the
square for different Cx .

Two different Re are simulated by appropriately changing
the gravity: one with steady flow at Re = 150 and another
with unsteady flow at Re = 330. Here, Re = UmH/ν with Um

being the average x-velocity component (Ux) measured at the
outflow of the domain and H is the domain height. It should be
noted that the viscosity is maintained low such that the Re is
high in order to deliberately amplify the mass leakage effects.
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(a) (b)

FIG. 3. Change in system mass (m′) for different obstacle posi-
tions (Cx), for (a) Re = 150 (steady flow) and (b) Re = 330 (unsteady
flow). It should be noted that the scales are different for different Re.
The data for Q-Bouzidi and Yin-Zhang schemes are available only
for Cx = 50 and 51.

The relaxation time is maintained at τ = 0.52 for both cases.
At the same time, the maximum lattice velocity is kept below
0.15 to avoid compressibility effects.

The metrics we use to analyze the results are the change in
system mass (m′) at the end of simulations, the normalized flow
rate (Q′), and the normalized drag (F ′

D). The change in system
mass is given by m′ = mBC/minitial with mass m being the sum
of densities of all fluid nodes, m = ∑

i=fluid ρi . The subscript
BC denotes the final condition and “initial” denotes the initial
condition of the tested boundary scheme. The simulations
are run for 130 000 and 150 000 time steps for Re = 150
and 330, respectively. The normalized flow rate is given by
Q′ = QBC/QMGBB with Q = ∫ H

0 Ux dy at the outlet of the
channel. The normalized force is given by F ′ = FBC/FMGBB.
Here, the subscripts BC and MGBB denote the tested boundary
condition and the mid-grid bounce back, respectively. The m′,
Q′, and F ′

D for different schemes are shown in Figs. 3, 4, and
5, respectively. It can be observed that the mass leakage is
dependent on the Re on comparing Figs. 3(a) and 3(b) and
increases for increasing Re.

The MGBB scheme is perfectly mass conserving and
therefore serves as reference in Figs. 3–5. The linear Bouzidi
scheme recovers perfectly mass conserving MGBB scheme, if
the walls are exactly halfway. The walls are exactly halfway
(i.e., q = 0.5) on all sides for square obstacle at Cx = 50
and 51. In Fig. 3(b), the same can also be observed, i.e.,
perfectly mass conserving nature of linear Bouzidi scheme.
The same was also observed for quadratic Bouzidi scheme,
i.e., perfect conservation at Cx = 50 and 51. However, the

Av
g.

FIG. 4. Normalized flow rate (Q′) for different obstacle positions
(Cx), for (a) Re = 150 (steady flow) and (b) Re = 330 (unsteady
flow).

Av
g

FIG. 5. Normalized drag (F ′
D) for different obstacle positions

(Cx), for (a) Re = 150 (steady flow) and (b) Re = 330 (unsteady
flow).

quadratic scheme requires much finer grid and higher viscosity
(or lower grid Re) for arbitrary wall positions and therefore not
stable for Cx other than Cx = 50 and 51.

It has to be noted that the linear unified scheme (L-Uni)
does not recover MGBB, even for q = 0.5 as in the Bouzidi
scheme. The same can be verified in Fig. 3(b) that there is
a minor mass leakage even at Cx = 50 and 51. This is more
apparent from the deviation of the normalized flow rate (Q′) in
Fig. 4(b). The quadratic unified scheme [34] failed for all the
test cases. However, the scheme performed stable on a finer
grid with higher viscosity to simulate same flow Re.

Also, the Yin-Zhang boundary condition with velocity
interpolation or extrapolation was unstable for all positions
except for Cx = 50 and 51, where it recovers the mid-grid
bounce-back condition. The low viscosity, needed to reach high
Re at reasonable grid size, exposed the instability of different
boundary conditions, especially the quadratic schemes and also
the Yin-Zhang boundary condition, which were found only
stable for higher relaxation times (for τ = 0.6) and a finer grid.
This implies that for high Re flows, the application of such
boundaries is limited. More precisely, to simulate a specific
flow Re, such schemes require a finer grid with higher τ (or
low grid Re) than the other stable schemes.

It could be observed that the OSIF and the CPIF schemes
perform better than all other schemes. Overall, CPIF performs
best due to its composite design to recover both mid-grid and
onsite bounce-back schemes. However, it should be noted that
for other intermediate positions, such asCx = 50.25 and 50.75,
there is still a mass leakage for CPIF. The highest mass leakage
of around 15% is observed at Cx = 50.75 for Re = 330 [see
Fig. 3(b)]. At Cx = 50.5, q becomes zero for the right wall
of the square. Therefore, we use Cx = 50.49 for OSIF and
CPIF as their working range is for 0 < q � 1. For the same
reason, there is a minor leakage observed for CPIF for both Re
at Cx = 50.5.

The mass leakage phenomenon would be acceptable pro-
vided that the flow field and force experienced by the object
are not affected strongly. In reality, both the flow field and the
force experienced by the object could be correlated with the
mass leakage. Further, if the simulations are run for a longer
duration, the mass leakage increasingly affects the simulation
results. The linear Bouzidi scheme, which leaks up to 50% at
Cx = 50.5 [see Fig. 3(b)] shows a corresponding Q′ of 4% [see
Fig. 4(b)]. Similarly, the corresponding F ′

D deviates up to 40%,
as can be observed from Fig. 5(b). Even the best performing
CPIF scheme shows up to a deviation of 1% for Q′ and 10%
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deviation for F ′
D . Therefore, it can be concluded that none of

the available schemes are perfectly mass conserving.

B. Forced mass conservation schemes
and constant density scheme

To solve the mass leakage, one can enforce mass conserva-
tion by explicitly adding or removing mass from the system.
There are several ways to explicitly conserve the mass and
at the same time conserve local momentum. The following
first four cases conserve both mass and momentum. The last
proposed case is slightly different and does not enforce mass
conservation. Due to its simplicity, we test these corrections on
the popularly used linear Bouzidi scheme. However, it should
be observed that these concepts are general and can be applied
on any curved boundary scheme.

Case 1: Adding the local change in mass per time step (δρ),
only to the rest distribution of the particular fluid node: f0 =
f0 + δρ.

Case 2: Adding the local change in mass per time step, to
the distributions of the particular fluid node, multiplied by the
corresponding weights: fα = fα + wαδρ.

Case 3: Computing the global change in mass per time step
and evenly adding it to the rest distribution of all fluid nodes:
f0 = f0 + ∑

δρ/Nf , where Nf is the total number of fluid
nodes.

Case 4: Computing the global change in mass per time step
and adding it to the distributions proportional to the weights:
fα = fα + wα

∑
δρ/Nf . It should be noted that for cases

2 and 4, the density corrections are applied after the force
measurements. Otherwise, the modified distributions would
corrupt the actual force experienced by the particle. This
implies that an additional variable needs to be introduced to
save the leakage amount for individual fluid nodes. Therefore,
from an implementation point of view, cases 1 and 3 are simpler
to implement.

Case 5: Additionally, we discuss a special case, denoted as
case 5, based on the constant density approach [41], where the
feq is given by

f eq
α = wα

{
ρ + ρ0

[
(eα · u)

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

]}
. (20)

Here, ρ0 is the constant density (equal to the initial density) and
the momentum defined asρ0u = ∑

α fαeα . Further, the forcing
term also involves a constant density term Sα = −3wαρ0(g ·
eα) in Eq. (1). It should be noted that ρ0 is used here instead
of ρ earlier. Therefore, the fluid is driven with constant force
instead of constant gravity otherwise. As can be seen, this
scheme is different from the other four cases because it does not
enforce mass conservation. This means that the system mass m,
defined as

∑
ρ, is actually changing with time. However, as the

essential parts of the scheme are based on the constant density
ρ0 instead of the actual density ρ = ∑

α fα , the flow field and
the forces experienced by the particle are not influenced by the
mass leakage.

All the four strict mass conservation schemes are originally
conceived by us. However, we later found some literatures have
applied such corrections, albeit only in a specific form, only
case 1, i.e., adding the local mass leakage to the rest node [42].
Only in this paper, we study different combinations of mass

FIG. 6. Change in system mass (m′) for different obstacle posi-
tions (Cx), for (a) Re = 150 (steady flow) and (b) Re = 330 (unsteady
flow).

correction and their effects on flow field in a detailed manner
and thereby make useful suggestions to the LBM community.

Each of the above mentioned cases is unique and will have
its own implication to the flow field. Next, we apply these cases
to the previous test case and observe their performance. The
performances are compared with the linear Bouzidi scheme
without correction and also with the best performing CPIF
scheme. The m′ for different cases are given in Fig. 6. Due
to their perfectly conserving nature, there is no deviation in
system mass m′ for cases 1–4, as can be seen from both
Figs. 6(a) and 6(b). Case 5 shows slightly higher mass leakage
than the original linear Bouzidi scheme as it is not a mass
conservation enforcing scheme.

The Q′ for the different cases are given in Fig. 7. In terms
of flow fields, we observe that both cases 1 and 2 have similar
performance, both performing better than the CPIF scheme
for the steady flow, as can be seen in Fig. 7(a). For unsteady
flows, again a similar performance from cases 1 and 2 with
a comparable performance of CPIF, but slightly poorer only
at Cx = 50.5. This is because the Bouzidi scheme does not
recover onsite bounce back, which occurs for Cx = 50.5 for
the front and rear sides of the obstacle. The cases 3–5 perform
almost similar with slightly higher deviations shown by case
5. Importantly, it should be noted that all cases perform better
than the original Bouzidi scheme. Therefore, we recommend
the use of any explicit mass conserving scheme, specifically
cases 1 and 2, which offer superior performance among the
investigated cases.

For F ′
D , it can be observed that all cases perform identical

and show far superior performance over the CPIF scheme
itself, as seen in Figs. 8(a) and 8(b). Similarly from Q′, we
conclude that the explicit mass conservation as in cases 1–4

Av
g.

FIG. 7. Normalized flow rate (Q′) for different obstacle positions
(Cx), for (a) Re = 150 (steady flow) and (b) Re = 330 (unsteady
flow).
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Av
g.

FIG. 8. Normalized drag (F ′
D) for different obstacle positions

(Cx), for (a) Re = 150 (steady flow) and (b) Re = 330 (unsteady
flow).

and constant density approach of case 5 provide better accuracy
than the existing schemes without explicit mass conservation.
Even though case 5 shows significant mass leakage, the case
performs better in terms of computing the true velocity field
as observed from Q′ and also in terms of force experienced by
the obstacle as in F ′

D compared to conventional linear Bouzidi
scheme.

Next, we analyze the flow field in detail for steady flow
occurring at Re = 150. The horizontal velocity component
(Ux) is measured along the centerline of the domain. Here,
we consider the worst performing condition of the linear
Bouzidi scheme, which occurs at Cx = 50.5. Then, we apply
the proposed methods and compare their performance. The Ux

for the different cases are plotted in Fig. 9. The results are
compared with the true solution obtained from the mid-grid
bounce-back (MGBB) scheme. To maintain consistency, the
MGBB results are shifted by 0.5 along the x direction. From the
results, it can be observed that there is a large deviation of the
linear Bouzidi solution from the MGBB solution. However, on
applying the methods proposed, it is observed that the resulting
flow field is closer to the true solution (of the MGBB). As
mentioned earlier, cases 1 and 2 perform identical and are
closest to the solution obtained from MGBB, which is evident
from the zoomed Figs. 9(b)–9(d). Likewise, cases 3, 4, and
5 perform identical and are slightly away from the MGBB

FIG. 9. Distribution of horizontal velocity component Ux for
different schemes.
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FIG. 10. The normalized system mass (m′) of different schemes
for the inclined channel flow over time.

solution, but still better than the linear Bouzidi solution without
any correction.

The characteristic of the current test case is that the walls
are flat and are perfectly aligned to the grid. This implies, for a
particular wall, the interpolation distances qα are the same for
all wall-intersecting directions. Further, the test case replicates
flow conditions with strong pressure gradients, and therefore
strong density gradients, in the stagnation flow in front of the
square object.

C. Flow through an inclined channel

In this section, we simulate a pure shear flow through
a periodic channel driven by gravity. To include effects of
different interpolation distances qα , we simulate the flow in
an inclined channel. With this simulation, we investigate the
effects of mass leakage on pure shear flows. The channel width
is 7 lattice units and the channel has an inclination of 3/5.
The simulation parameters are τ = 0.52 and g = 10−4. The
change in system mass after 20 000 time steps for different
schemes is plotted in Fig. 10 and the resulting flow profile for
different schemes is plotted in Fig. 11. The flow velocities are
normalized against the maximum velocity obtained from the
theory.

Regarding the performance of different schemes, the
quadratic schemes perform better than linear schemes, even
though τ is low. The results are not shown here for brevity
and the interested reader can refer to Fig. 2 of Bouzidi et al.
[22]. Therefore, it can be inferred that the quadratic schemes

FIG. 11. The normalized tangential velocity (U ∗) of the flow
inside a straight channel with an inclination of 3/5. (b) Zoom-in of
the full velocity profile shown in (a).
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are stable, even with low τ , for flows with no density gradient,
as in the pure shear flow in this test case. However, due to
poor stability in flows with density gradients, as seen from
previous test case, these schemes are not considered for further
comparison.

The different schemes achieve steady velocity profiles even
after the steady leaking of the mass. Among the schemes
shown, the linear Bouzidi scheme showed best performance.
The performances of both the OSIF and CPIF schemes are
poor and are comparable to that of the staircase approximation
of the mid-grid scheme. The reason why the interpolation-free
schemes perform poor could be due to different qα values for
a boundary fluid node for different directions. In the previous
test case, the qα values are identical for all intersecting velocity
directions for a particular side. The interpolation-free schemes
are based on varying the viscosity depending on the qα .
Therefore, having different qα for different velocity directions
within a fluid node implies using different viscosities for a
single fluid node. These simultaneous effects can affect the
performance of the schemes.

Among the five cases proposed, cases 1 and 2 performed
slightly poorer than other correction cases. The reason why
such cases perform poorly is due to the fact the mass corrections
are applied locally at the boundary. The complete or significant
part of the correction goes to the rest distribution f0 and
therefore could slightly increase the pressure locally, resulting
in slight pressure fluctuations on the boundary. The cases 3,
4, and 5 perform identical and only slightly poorer than the
linear Bouzidi scheme. This is contrary to the previous test
case, where all the cases performed better than the default
linear Bouzidi scheme. However, it should be noted that many
practical LBM simulations involve both shear and pressure
effects. Therefore, we next select a test case which involves
both shear and stagnation pressure effects.

D. Flow around staggered circular cylinders

In order to emulate a general particulate system or a porous
medium, we simulate here periodic flow around staggered
circular cylinders. Inline cylinders are avoided as it would
result in flow channeling at higher Re and thereby purely
dominated by shear effects alone. The staggered configuration
considered here provides a good mix of stagnation and shear
effects. The flow setup is shown in Fig. 12. The solids-volume

FIG. 12. The staggered cylinder configuration: The domain is
periodic and the flow is driven by gravity.
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FIG. 13. The accurate velocity field for Re = 40 obtained using
the mid-grid bounce-back scheme with very high grid resolution.

fraction εs is 0.3 and the cylinder diameter D is chosen
appropriately, depending on the domain size.

Since there is no analytic solution available for such a flow
problem, a highly accurate solution is obtained withD = 131.1
in a 300 × 300 domain with the mid-grid bounce-back scheme.
The simulation has been performed for Re = 40 with Re =
U0D/ν. The flow is steady for this flow configuration. Here,
U0 = (1 − εs)Uav is the superficial fluid velocity with Uav the
average velocity in the fluid domain. Since the flow is driven by
gravity and the velocity field evolves accordingly, a feedback
loop is used to control the gravity to achieve the desired U0

precisely. The resulting velocity field is shown in Fig. 13. The
drag coefficient is computed as CD = FD/(1/2ρDU 2

0 ), where
FD is the drag acting on a single cylinder. A value of CD = 5.93
is obtained for the highly refined grid.

Next, we simulate a domain of size 30 × 30 with the
different boundary conditions, for the same Re, for 20 000
time steps. Based on the accurate CD computed before, the
true drag (FD,true) for the new resolution is computed. We
measure the FD for the different boundary schemes from the
simulations and compare with the FD,true as F ′

D = FD/FD,true.
The evolution of mass leakage is plotted in Fig. 14. The

t
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×104
0 0.5 1 1.5 2

0.95
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0.99

1

1.01

1.02

FIG. 14. The normalized system mass (m′) of different schemes
for the periodic flow around staggered cylinders.
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FIG. 15. The normalized drag (F ′
D) of different schemes for the

periodic flow around staggered cylinders. It should be noted that F ′
D of

L-Bouzidi scheme, though it appears closest to 1, is time dependent.
This implies a longer simulation would result in F ′

D further away from
1. Only the results of cases 1–5 and MGBB are time independent.

normalized drag F ′
D is plotted in Fig. 15. It should be noted that

the first three schemes in Fig. 15, the Bouzidi and interpolation-
free schemes, have drag dependent on the average density of the
system. This implies that they are dependent on the simulation
duration and exhibit different drag for a longer simulation.
In other words, although the linear Bouzidi scheme exhibits
F ′

D closest to 1, it should be noted that a longer simulation
would imply a different F ′

D with larger deviation due to mass
leakage. For the cases 1–5, the force observed is independent
of time, including case 5 which exhibits mass leakage. Further,
it can be observed that the proposed correction cases perform
better than the mid-grid bounce back, which experiences higher
drag on the particle due to the staircase approximation of the
geometry. Overall, the cases 3 and 4 performed slightly better
(F ′

D = 1.028) than all other cases (F ′
D = 1.029).

V. RECOMMENDATIONS FOR PRACTICAL USE

Among the five correction schemes proposed, we observed
that cases 1 and 2 (enforcing local mass conservation) per-
formed relatively better for flows with large stagnation effects.
However, we also found that their performance is slightly
poorer in case of pure shear flows. This could be attributed
to the fact that they are local correction schemes, which
introduce local pressure differences on the boundaries. On the
other hand, global correction schemes such as cases 3 and
4 perform relatively better in case of pure shear flows and
also for flow around staggered cylinders. Therefore, global
correction schemes (cases 3 and 4) are recommended if mass
conservation is a desired property for the system. Furthermore,
case 3 is easier to implement than 4. Mass corrections need

to be performed after the force measurement for case 4 as
the nonrest distributions are modified for case 4. Therefore,
we can conclude that case 3, globally correcting the mass by
distributing the correction over all fluid node rest distributions,
would be the best choice among the different correction
schemes proposed.

VI. CONCLUSION

We tested different curved no-slip boundary conditions for
LBM available in the literature with a focus on mass leakage
at high Re. Several test cases were proposed, such as periodic
flow around a square cylinder, periodic inclined channel flow,
and periodic flow around staggered cylinders. The performance
of different schemes was tested based on the mass leakage,
flow velocity, and the resulting force exerted by the fluid flow.
The results were also compared to analytical solutions, where
available.

Generally for flows exhibiting strong pressure gradients,
we observed that quadratic schemes are unstable at low
viscosities. However, for pure shear flows, they are relatively
stable and achieve better performance compared to linear
schemes. Overall, the linear schemes performed better in
terms of stability. We also observed that the variable viscosity
interpolation-free schemes such as the OSIF and CPIF were
stable for different flows. However, their performance was poor
in terms of accuracy for curved boundaries or boundaries with
different qα as in inclined channel flow. The Yin-Zhang scheme
has been found to be unstable for flows with high pressure
gradients and is therefore not recommended on the basis of
stability. For stable cases, the Yin-Zhang scheme did not yield
better performance than the linear Bouzidi scheme.

Apart from different existing boundary conditions, we have
also tested four different cases where mass conservation was
explicitly enforced and one constant density case, applied on
the linear Bouzidi scheme. For flows with large stagnation
effects, we observed that enforcing local mass conservation
performed slightly better than global correction schemes.
However, for pure shear flows, the global correction schemes
performed much better than local schemes. In a general
flow problem with combined shear and stagnation effects,
we observe that global correction schemes perform better
than local correction schemes. Overall, we recommend case
3 type correction (global correction of the fluid node rest
distributions) considering the ease of implementation.
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