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Spatiotemporal thermal response and characteristics of net entropy production rate of a gold nanosphere
(radius: 50–200 nm), subjected to a short-pulse, femtosecond laser is reported. In order to correctly illustrate the
temperature history of laser-metal interaction(s) at picoseconds transient with a comprehensive single temperature
definition in macroscale and to further understand how the thermophysical response of the single-phase lag (SPL)
and dual-phase lag (DPL) frameworks (with various lag-ratios’) differs, governing energy equations derived from
these benchmark non-Fourier frameworks are numerically solved and thermodynamic assessment under both the
classical irreversible thermodynamics (CIT) as well as extended irreversible thermodynamics (EIT) frameworks is
subsequently carried out. Under the frameworks of SPL and DPL with small lag ratio, thermophysical anomalies
such as temperature overshooting characterized by adverse temperature gradient is observed to violate the
local thermodynamic equilibrium (LTE) hypothesis. The EIT framework, however, justifies the compatibility
of overshooting of temperature with the second law of thermodynamics under a nonequilibrium paradigm. The
DPL framework with higher lag ratio was however observed to remain free from temperature overshooting and
finds suitable consistency with LTE hypothesis. In order to solve the dimensional non-Fourier governing energy
equation with volumetric laser-irradiation source term(s), the lattice Boltzmann method (LBM) is extended and
a three-time level, fully implicit, second order accurate finite difference method (FDM) is illustrated. For all
situations under observation, the LBM scheme is featured to be computationally superior to remaining FDM
schemes. With detailed prediction of maximum temperature rise and the corresponding peaking time by all the
numerical schemes, effects of the change of radius of the gold nanosphere, the magnitude of fluence of laser,
and laser irradiation with multiple pulses on thermal energy transport and lagging behavior (if any) are further
elucidated at different radial locations of the gold nanosphere. Last, efforts are further made to address the
thermophysical characteristics when effective thermal conductivity (with temporal and size effects) is considered
instead of the usual bulk thermal conductivity.
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I. INTRODUCTION

No natural phenomenon proceeds in nature instantaneously
with infinite velocity of propagation of disturbance. Heat
transfer further adds no exception to this constraint. Inves-
tigations and applications in small spatiotemporal scale are
not analyzed by the same principles and methodologies that
govern situations defined in macroscale [1–5]. With rapid
development of short-pulse lasers (with pulse duration as small
as a femtosecond), thermal interaction of laser pulse with
micro- or nanoscale metallic spatial domain (submicron), and
further analysis of thermal response at small (picoseconds)
temporal domain has gained significant attention from the
research community accounting for its huge applications in
past decades [1–7]. Characterized by nonequilibrium transition
of thermal energy, deviation of these problems from the
macroscopic quasiequilibrium thermodynamic transition are
well realized on account of a few facets as follows: extremely
short laser pulse duration (∼10−15 s) leading to response
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time shorter than the corresponding relaxation time as well
as nonequilibrium transition of thermal energy through an
extremely small spatial domain of the order of mean-free-path
of phonon-electron collision (∼10−9 m) during laser-material
interaction(s). Therefore, energy interaction(s) and transport
phenomena at these small spatial and temporal domains are not
thermophysically emulated by the classical phenomenological
diffusion energy equation (derived from Fourier’s law of heat
conduction).

The mathematical frameworks employed to depict transport
phenomena should promise to properly address the associ-
ated microscopic effects both in space and time. Among
numerous microscopic (two-step models) approaches reported
and deployed in literature [1–5] to address the thermophys-
ical characterization(s), for example the two-step model by
Qiu and Tien [2,3] for radiation-metal interactions and the
semiclassical two-temperature model by Chen et al. [4,5] for
ultrafast transient laser heating, had proved to become accurate,
evidenced by established experimental observations (Brorson
et al. [6] and Qiu et al. [7]) as well. Dependent variables,
described by the corresponding two-step frameworks are,
however, microscopic and do not find suitable interpretation
under the scope of local thermodynamic equilibrium (LTE),
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continuum, or macroscale. Since applications in practice de-
mand appropriate macroscopic meaning, investigations at the
micro- or nanoscale range demand suitable interpretation(s) in
macroscale without any generalized loss or compromise with
the related physics. The single-phase-lag framework (SPL)
[8,9] was initially developed conceiving the fact that heat flux
is established in continuum only after the relaxation time,
whereas temperature gradient is established instantaneously
in the physical domain. Unlike classical diffusion (the gov-
erning energy equation derived from Fourier’s law of heat
conduction), this framework (SPL) circumvents the infinite
velocity of thermal wave propagation predicted by the former
and results in consideration of finite thermal wave speed,
expected to manifest at small (picoseconds) time domain
with the possibility of encompassing microscale response in
time. Though SPL framework (Cattaneo’s equation) can be
derived from Boltzmann transport equation [10] and higher-
order continuum transport equations [11], consistency with the
second law of thermodynamics was, however, not ascertained.

Wave behavior at picoseconds time domain further implies
a thermal penetration depth of the order of micro- or nanome-
ters. Hence, heat transfer through a material domain of the
order of micro- or nanometer in the short-time (picosecond)
time domain must physically encompass the microscopic
spatial interaction(s), which remains beyond the capability
of the SPL framework [3]. This leads to the unlikeness of
the SPL framework with widely validated two-step models
[2–5] that considers the microscopic interactions of energy
carriers (phonon-electron, phonon-phonon, etc.) in space.
Experimentally, sharp thermal waves (with discontinuities)
predicted by the SPL framework were not witnessed within
any metallic domain during the picosecond response time of
heating. The dual-phase-lag heat conduction model (DPL)
proposed by Tzou [12], on the other hand, had fetched adequate
attention in the past three decades for generalizing the SPL
framework and providing a consistent macroscopic approach
by considering the microscopic interactions in time as well as
in space. Incorporation of microscopic spatiotemporal effects
in the macroscopic scale as a delayed thermal response [12]
formulates the DPL governing equation as

q̄(r̄ ,t + τq) = −k∇T (r̄ ,t + τT ). (1)

In Eq. (1) τq is the time lag (relaxation) of heat flux and τT

is the time lag (thermalization) of temperature gradient. Note
that Eq. (1) physically signifies that if the energy equation
is written at a time instant t , development of heat flux and
temperature gradient is shifted in continuum at a time instant of
(t + τq) and (t + τT ) respectively. Tzou [12] described τq and
τT as intrinsic properties of the medium. It may be mentioned
here that τT is described to capture the microscopic effects in
space (on account of phonon-electron interaction or phonon
scattering) defined to be as the finite time required to increase
the temperature of metal lattice by 1°. The wavelike behavior
of temperature is pronounced for τT < τq and further reduced
to the SPL (wave) framework for τT → 0. Similarly, τq >

τT is characterized by diffusionlike behavior of temperature
and further reduced to classical diffusion framework when
τq = τT or τq = τT = 0. Hence, with a comprehensive single
temperature definition and intrinsic (lagging) properties of
material shifting the spatiotemporal microscopic interactions

to a delayed thermal response in macroscale, the DPL or SPL
framework(s) is professed as a fancy macroscopic model. As
addressed by these non-Fourier frameworks, accountability of
macroscopic interpretation(s) of this microscopic phenomenon
(ultrafast transient heating of nanoscale metallic domain)
brings the rudimentary question(s) of qualitative attributes
of macroscopic “single temperature” defined by them. A
convincing explanation can, however, be addressed by the
second law of thermodynamics.

Interaction of short-pulse laser application with gold (Au)
nanoparticles or nanoshells has found profound importance
in biomedical applications because of their ability to absorb
electromagnetic energy on a scale much smaller than the
wavelength of incident radiation [13] and the thermophysical
properties of gold (Au) nanoparticles or nanoshells appear
to be compatible with biomacromolecules [13,14]. During
noninvasive laser photothermal therapy for cancer treatment,
ability of gold nanoparticles to absorb laser irradiation and
its successive conversion to heat results in a negligible pho-
tothermal destruction of neighboring nonmalignant cells [14].
Other than biomedical applications, considerable importance
of short-pulse nanoparticles is well realized in microtechnol-
ogy [15] as well as in manufacturing applications like selective
laser sintering (SLS) [16,17]. In all the above applications, the
importance of prediction of the correct temperature distribution
in small (picosecond) time transient during interaction of a
gold nanosphere (GNS) with a short-pulse, femtosecond laser
is well recognized. In order to retrieve the correct macro-
scopic temperature history in subpicoseconds transient, SPL
and furthermore DPL framework(s) are employed. However,
governing energy equations for a GNS are required to be
solved in spherical coordinate geometry [15]. Unlike problems
formulated on the Cartesian coordinate system, solution tools
employed to analyze laser-material interaction in axisymmetric
(cylindrical and spherical) geometry must be capable of han-
dling two important issues as follows: the first is the additional
terms appearing on the energy equation and the second is the
singularity witnessed at the center when the corresponding
geometry is modeled to be a solid axisymmetric system (in-
stead of considering a hollow one). Previous investigations per-
formed to solve the DPL governing equation for axisymmetric
geometries include the analytical solution [18,23], the hybrid
application of Laplace transform [19–22], the finite or control
volume method [23–25], the finite difference method [15,26–
30], and the lattice Boltzmann method [29,30]. In the present
study, the LBM scheme has been extended and, furthermore,
one implicit FDM scheme is reported to solve the dimensional
DPL governing energy equation (for spherical coordinate
geometry) with laser irradiation (volumetric) source terms. The
new FDM scheme has improvised the local accuracy of time
of the FDM [29–31] and inherits second order accuracy (both
locally as well as globally) in time and space. All results from
these three schemes are validated against the results obtained
from the three-level, convergent FDM scheme provided by Dai
et al. [15]. Furthermore, under the present scope, numerical
assessments of four numerical schemes are provided in terms of
accuracy, computational time, and convergence characteristics.

Numerous past investigations under SPL or DPL frame-
works had revealed the presence of certain thermophysical
anomalies for, e.g., evidence of a higher interior temperature
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of the physical domain compared to the temperature of ir-
radiated surface (boundary) [29,32–37]. This phenomenon
of overshoot of temperature becomes contradictory to the
directional constraint of heat transfer (from higher to lower
temperature) imposed by the second law of thermodynamics
under the macroscopic (continuum) framework. Xu et al.
[32] investigated the overshooting phenomenon on account
of thermal wave interference on the DPL model. Jou et al.
[33] provided the thermodynamic stability analysis of the DPL
framework in the context of the limiting condition of initial
temperature rate. Mishra et al. [34] performed a numerical ex-
periment to study the effect of the Fourier number and lag ratio
on overshooting. The influence of size effect and boundary
conditions on temperature overshoot was studied by Li et al.
[35]. For a thin layer of metallic material, the influence of initial
conditions of the first and second rate of change of temperature
on overshooting was studied by Al-Nimr et al. [36]. All these
studies were however, limited to planar geometry. For axisym-
metric geometries, Lin and Chen [37] reported the presence
of overshoot of temperature during the propagation reflection
of thermal waves from a hollow cylinder and sphere when
inner and outer boundary is perturbed. With the perturbation
of the outer surface, for one-dimensional (1D) cylindrical and
spherical geometries under the DPL framework, Mishra et al.
[25] reported the presence of overshooting of temperature for
a small lag ratio. However, qualitative explanations based on
the aspects of thermodynamics were not highlighted. The key
questions associated with overshooting, witnessed within the
interior of any physical domain (subjected to laser irradiation
at the surface) are (i) does the directional sense of heat,
transferred from the surface to the interior (i.e., from low to
high temperature) find any feasible thermodynamic meaning?
(ii) Does location(s) prone to temperature overshoot result in
a non-negative entropy production rate at any instant of time?
And, last, (iii) what does the “single temperature” definition
of SPL or DPL physically (macroscopically) signify if the
LTE hypothesis is violated? In the context of a solid, spherical
coordinate geometry, exposed to short-pulse laser irradiation
on the surface, we have tried to answer these questions by first
studying the sense (direction) of local heat flux distribution
at various instants of time and further by investigating the
spatiotemporal net entropy production rate calculated from the
classical irreversible thermodynamics (CIT) framework. If in-
vestigations under any of these non-Fourier frameworks (SPL
and DPL) at any location and time violates the CIT framework
[yields negative net (equilibrium) entropy production rate]
then, based on the extended irreversible thermodynamics (EIT)
framework, further thermodynamic assessment is carried out.
Under the EIT framework, certain thermodynamic properties
like entropy and temperature are redefined [33,38–41] with a
numerical difference between equilibrium and nonequilibrium
temperature (if any) estimated.

Once the accuracy of numerical schemes is ascertained and
the qualitative aspect(s) of the temperature retrieved from the
SPL or DPL framework is well judged, we further employ the
numerical schemes to study the thermal characteristics when a
GNS is irradiated with multiple series of laser pulses and pulse
train respectively. Subjected to different sources, the effect of
variation of laser fluence on temperature response was further
highlighted. Previously Tzou [42,43] studied the effect of size

of the physical domain (thickness) on heat transport, lagging
behavior, and peaking time at various locations of the gold
film(s) of small microrange thickness. We would like to add
here that variation of temperature and normalized heat flux
distribution with time at different locations in gold film with
laser pulse was reported by Ramadan et al. [44]. We here make
an effort to understand the (i) transportation of thermal energy
and, (ii) characteristics of thermal lagging within the interior
of a solid GNS (from surface to the center) with radius varying
from 50 to 200 nm, illuminated by various short-pulse(s) laser
irradiation. Since the change of absolute temperature is a
more important physical index than absolute temperature itself
during picoseconds temporal domain [42,43], normalized tem-
perature (reflectivity) change with time is depicted for various
radial locations. For completeness, maximum temperature rise
(surface) and the corresponding peaking time for all situations
studied are elaborately elucidated.

II. FORMULATION

The GNS under consideration is irradiated with a femtosec-
ond short-pulse laser with a range of wavelength varying from
the UV to near IR region [2]. Interaction of the laser pulse
with a highly conducting, optically opaque GNS results in
manifestation of temperature gradient in the radial direction,
and thereby heat transfer eventually by conduction. Under this
scenario, the response time of the GNS is O (ps) comparable
to its relaxation times τq and τT [12,42–43]. On account of
laser-metal interaction, because of a very intense attenuation
coefficient (105−106 cm−1) [45], the laser beam gets absorbed
in a very thin layer on the surface (10–30 nm). Typically, it
is characterized by the optical (radiation) penetration depth δ

which is 15.3 nm for the given case [2–5,15,17,43,45].
It is to be noted that the laser beam radius (0.1–0.3 mm) is

much larger than the radius (50–200 nm) of the GNS under
considerations [3,17]. For numerous practical applications
[13–17], on account of the presence of the surrounding medium
(several other nanoparticles or tissues), multiple scattering
of radiation leads to a nearly homogeneous distribution of
heat flux within the optically penetrated layer [17]. Hence the
surface of the GNS in the 4π spherical space receives laser
irradiation uniformly with almost normal incidence [Fig. 1(a)]
and thereby resulting temperature variations, taking place only
in the radial direction, and the problem therefore turns out to
be spatially 1D.

For a larger physical domain, optical penetration depth is
negligible as compared to the size of the domain, and laser
irradiation on the metal surface is generally modelled as a
surface source [45]. But for domain of the order of nanome-
ters, the optical penetration depth is not insignificantly small
compared to the radius of the GNS. Further, the irradiation of
short-pulse laser with the outer surface of the GNS in a very
small time scale results in deposition of thermal (radiation)
energy from surface to optical penetration depth [3]. Under
these circumstances, laser irradiation is considered volumetric
where the energy deposited by laser is absorbed by the medium
(GNS) and further decayed exponentially from the surface
towards the center following Beer’s law [46]. With u(r,t) as
the locally characterized specific internal energy, and g(r,t) as
the volumetric energy deposition rate in the GNS caused by
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FIG. 1. Physical representation of the problem.

laser irradiation, the energy balance equation is written as

ρ
∂u(r,t)

∂t
= ρc

∂T (r,t)

∂t

= − 1

r2

∂[r2q(r,t)]

∂r
+ g(r,t)

= −
(

2

r
q(r,t) + ∂q(r,t)

∂r

)
+ g(r,t). (2)

It is important to note that on account of the consideration
of a small material domain and the shortening of response
time; the physical phenomenon at this small spatiotemporal
scale is generally characterized by nonequilibrium transition
of thermal energy. In other words, local thermodynamic
equilibrium is questionable and subjected to investigation of
entropy generation characteristics. In order to circumvent this
difficulty, temperature is defined from a generalized notion. In
Eq. (1) and further in the entire article, T (r,t) is the generalized
absolute temperature. Qualitative meaning of T (r,t) is well
realized only after studying the characteristics of the net
entropy production rate under equilibrium and nonequilibrium
(if required) situations.

Expansion of both the left- and right-hand side terms of
Eq. (1) up to first order accuracy by Taylor series, neglecting
higher order terms, results in

q(r,t) + τq

∂q(r,t)

∂t
= −k

∂

∂r

(
T (r,t) + τT

∂T (r,t)

∂t

)
. (3)

Substitution of q from Eq. (3) into Eq. (2) yields the
governing energy equation

ρc

(
∂T

∂t
+ τq

∂2T

∂t2

)

= k

r2

∂

∂r

[
r2

(
∂T

∂r
+ τT

∂2T

∂r∂t

)]
+ G(r,t), (4)

where G(r,t) is the overall source term and can be expressed
as

G(r,t) =
(

g(r,t) + τq

∂g(r,t)

∂t

)
. (4a)

Operating the radial derivative ∂
∂r

on the first term on the
right-hand side of Eq. (4) gives the nonconservative form of
the corresponding DPL governing energy equation with laser
irradiation source term,

ρc
∂T

∂t︸ ︷︷ ︸
I

+ ρcτq

∂2T

∂t2︸ ︷︷ ︸
II

= k

r2

∂

∂r

(
r2 ∂T

∂r

)
︸ ︷︷ ︸

III

+ 2kτT

r

∂2T

∂r∂t︸ ︷︷ ︸
IV

+ kτT

∂3T

∂r2∂t︸ ︷︷ ︸
V

+G(r,t). (5)

In addition to a second order term in both time (term II)
and space (term III), i.e., a diffusion term, the governing
energy equation [Eq. (5)] contains one second order mixed
derivative (term IV) and one third order mixed derivative
(term V). The problem is mathematically closed with two
initial and two boundary conditions. Initially, the temperature
of the GNS is uniform and constant throughout and is equal
to the temperature of its surroundings (T0 = 300 K), i.e.,
T (r,0) = To. We further assume that no initial rate of heating
or cooling was imposed on the GNS which further leads to the
second initial condition as ∂T (r,0)

∂t
= 0.

As it is explained that the GNS surface receives laser
irradiation uniformly at its surface thermally for all time
t (on account of isotropic scattering from the surrounding
media), temperature distribution is symmetric about its cen-
ter (r = 0.0) [29,30,48]. This physical explanation supports
to circumvent the singularity at center (r = 0.0). Since the
investigation time is very short, the temperature gradient at
the outer surface (r = L) is negligible [2–5,29–31,33]. This
leads to the development of adiabaticlike situations both at
the center (r = 0) and outer surface (r = L) of the GNS.
With justifications as above, initial and boundary conditions
of temperature and heat flux are summarized as follows.

Initial conditions:

T (r,0) = To,
∂T (r,0)

∂t
= 0, q(r,0) = 0. (5a)

Boundary conditions:

∂T (0,t)

∂r
= 0,

∂T (L,t)

∂r
= 0, q(0,t) = 0, q(L,t) = 0.

(5b)

After the incident of laser pulse on the outer layer of the
GNS, penetration and attenuation of incident radiation take
place within the interior of the metal (participating) medium.
The effect of volumetric scattering is considered negligible
compared to absorption, throughout the mathematical model-
ing. With I (L,t) as the magnitude of incident laser irradiation
at the outer surface of the GNS, irradiation at any radial location
r at any instant time t is decayed exponentially, according to
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FIG. 2. Temporal intensity distribution of (a) one Gaussian pulse, series of (b) two, (c) three Gaussian laser pulses, and (d) Gaussian laser
pulse train.

Beer’s law as follows [48]:

I (r,t) = I (L,t) exp{−μa(L − r)} = I (L,t) exp

(
−L − r

δ

)
,

(6)

where μa is the linear absorption coefficient and δ is the optical
penetration depth and they are further inversely equal to each
other, (μa = 1

δ
) [45]. In Eq. (6), irradiation received by the

GNS surface at any instant of time I (L,t) is modeled to be
temporally Gaussian, elucidated as follows:

I (L,t) =
√

β

π

J

tp
exp

{
−β

(
t − 2tp

tp

)2
}

. (7)

In Eq. (7), J is the laser fluence defined as the total energy
delivered by the laser pulse per unit laser spot cross sectional
area, R is the reflectivity of the GNS, β is a constant, and tp
is the half width at full maximum (HWFM) of the Gaussian
pulse. Following Eq. (7), the peak of the single Gaussian pulse
is witnessed at t = 2tp. With the passage of time (t � 2tp),

following the temporal profile of pulse presented in Eq. (7),
I (L,t) is observed to decay exponentially with time. The
volumetric energy deposition rate g(r,t) in the GNS resulting
from the irradiation of a single pulse is given by [2–5,42,43,45]

g(r,t) = {(1.0 − R)μaI (r,t) + l(r,t)}

=
{(

(1.0 − R)I (r,t)

δ

)
+ l(r,t)

}

=
[√

β

π

(1.0 − R)

tpδ
J exp

{
−β

(
t − 2tP

tP

)2
}

× exp

(
−L − r

δ

)
+ l(r,t)

]
, (8)

where R is the reflectivity of the gold surface and l(r,t) is the
source term on account of phase changes or chemical reaction
(if any). Following previous studies [2–5,15,17,28,42,43], in
the present work, magnitudes of J R β, and 2tp are adapted as
13.4 (J/m2), 0.93, 4 ln 2, and 0.2 ps, respectively. The source
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term on account of phase changes or chemical reaction is not
considered throughout the study. In the present work, effects
of irradiation of multiple pulses are also considered. With two
consecutive pulses separated by t = 2tp, for p, the number of
pulses in series, the temporal incident laser irradiation I (L,t)
(at the GNS surface) can be represented by [47]

I (L,t) =
(√

β

π

J

tp

)
p∑

i=1

exp

{
− β

(
t − 2itp

tp

)2}
. (9)

Here, we have presented results and discussion up to three
series of pulses. Further, effect of another pulse train is also
reported where peaks of two consecutive pulses are separated
by t = 4tp. The temporal incident irradiation I (L,t) (at the
GNS surface) in this case can be presented by

I (L,t) =
(√

β

π

J

tp

)
×
⎡
⎣exp

{−β
( t−2tp

tp

)2}
, 0 � t < 4tp

exp
{−β

( t−6tp
tp

)2}
, t � 4tp

⎤
⎦.

(10)

The profile of the temporal incident irradiation I (L,t) at
the GNS surface for all the cases (single pulse, series of two
pulses, series of three pulses, and pulse train) are depicted in
Fig. 2.

A. Hybrid lattice Boltzmann method formulation (LBM)

Previously Mishra et al. [29] reported the application of
the LBM scheme to solve the nondimensional radial DPL
governing equation for 1D axisymmetric (cylindrical and
spherical) geometries without a volumetric source term. In this
study, we have extended the application of this scheme to study
the thermophysical characteristics of a GNS, irradiated by
femtosecond laser pulse(s) under the DPL or SPL framework.

Towards the solution of Eq. (5), it is appreciably noted
that it contains (i) second order derivatives of time and space,
(ii) second and third order mixed derivatives of time and space,
and finally (iii) the spatially and temporally varying source
term (short-pulse laser irradiation). The Boltzmann transport
equation, on the other hand, contains only the first order
derivatives of time and space and a nonlinear collision operator,
expressed as follows:

∂fi(r̄ ,t)

∂t
+ ēi · ∇fi(r̄ ,t) = �i. (11)

In Eq. (11), ei is the velocity and �i is the collision operator
corresponding to the ith particle distribution function (PDF),
fi . Applying the BGK approximation [49], Eq. (11) can
be further linearized to obtain the following kinetic LBM
formulation with f

(0)
i as the equilibrium PDF:

fi(r̄ + ēi	t,t + 	t) − fi(r̄ ,t) = ω
[
fi(r̄ ,t) − f

(0)
i (r̄ ,t)

]
,

(12)

where ω = −( 	t
τ

) and τ is the relaxation time. In order to
encompass all the attributes of the original DPL-transport
(energy) equation [Eq. (5)], the volumetric source term (�)
can be incorporated in Eq. (12) as follows:

fi(r̄ + ēi	t,t + 	t) − fi(r̄ ,t)

= ω
[
fi(r̄ ,t) − f

(0)
i (r̄ ,t)

]+ 	t ψi(r̄ ,t). (13)

ψ(r̄ ,t) must include the presence of (i) the second order
temporal derivative of T (r̄ ,t), (ii) additional terms on account
of axisymmetric (spherical) geometry, and (iii) the presence of
volumetric energy deposition rate g(r̄ ,t), on account of laser
pulse(s) irradiating the GNS, in the DPL governing equation
[Eq. (8)]. Following previous studies [15–18], ψ(r̄ ,t) can be
formulated as follows:

ψ(r̄ ,t) = A1

(
∂T (r̄ ,t)

∂t

)
+ A2

1

r

(
∂T (r̄ ,t)

∂r

)

+A3
1

r

(
∂f (r̄ ,t)

∂r

)
+ ϕ(r̄ ,t). (14)

Equation (14) contains the first order temporal term (I) and
a spatial derivative term (II) of T (r̄ ,t), the spatial derivative
term (III) of f (r̄ ,t), and finally the dimensional source term
ϕ(r̄ ,t) to encompass the volumetric laser irradiation source
term in Eq. (5), for the ith entity. From Eqs. (13) and (14),
the governing LBM formulation for the ith particle distribu-
tion functions, corresponding to the DPL governing equation
[(Eq. (5)], is written as

fi(r̄ + ēi	t,t + 	t) − fi(r̄ ,t)

= ω
[
fi(r̄ ,t) − f

(0)
i (r̄ ,t)

]+ 	t

⎛
⎜⎜⎜⎝A1

(
∂T (r̄ ,t)

∂t

)
i

+︸ ︷︷ ︸
I

A2
1

r

(
∂T (r̄ ,t)

∂r

)
i︸ ︷︷ ︸

II

+A3
1

r

(
∂fi(r̄ ,t)

∂r

)
︸ ︷︷ ︸

III

+ϕi(r̄ ,t)

⎞
⎟⎟⎟⎠, i = 0,1, . . . ,b. (15)

However, the consistency of Eq. (15) with Eq. (5) needs
to be mathematically justified. A1, A2, and A3 are arbitrary
constants imposed in Eqs. (14) and (15) and are derived
subsequently in the further sections. Though written discretely
for the ith PDF, Eq. (15) is not an algebraic difference

equation. Approximation of derivatives is solicited to initiate
the computations. We further provide the finite difference
discretization(s) of Eq. (15) as follows:

For i = 0, i.e., particle distribution functions that are sta-
tionary at the center of the lattices, discretization of spatial
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derivatives are performed by the second order central differ-
ence scheme, as follows:

term II ≈ A2

(
1

r

)(
	t

	r

)(
T (r + 	r,t)−T (r − 	r,t)

2

)
i=0

,

(16a)

term III ≈ A3

(
1

r

)(
	t

	r

)(
f0(r + 	r,t) − f0(r − 	r,t)

2

)
.

(16b)

For i �= 0, i.e., particle distribution functions that are
moving consecutively with nonzero velocity, discretization is
performed by first order upwind scheme as follows:

term II ≈ A2

(
1

r

)[[[
1

ēi

,0

]]
{T (r,t) − T (r − 	r,t)}

+
[[

0,− 1

ēi

]]
{T (r + 	r,t) − T (r,t)}

]
i �=0

,

(17a)

term III ≈ A2

(
1

r

)[[[
1

ēi

,0

]]
{fi(r,t) − fi(r − 	r,t)}

+
[[

0,− 1

ēi

]]
{fi(r + 	r,t) − fi(r,t)}

]
i �=0

,

(17b)

where ēi is the velocity given by

ēi =
{

	r
	t

i = 1,3,5 . . .

−	r
	t

i = 2,4,6 . . .
. (17c)

In Eqs. (17a) and (17b), [[A,B]] is an operator denoting
the greater of A and B [50]. Each PDF fi(r̄ ,t) is located
in the center of the ith lattice. For a given time step, the
energy transport is obtained following two steps: (i) when
the particle distribution functions collide on each face of the
lattice (collision step), followed by (ii) streaming of particle
distribution functions towards the next lattice (streaming step).
Instead of discretization, following previous investigations
[29,30], term I in Eq. (15), i.e., ∂T (r̄ ,t)

∂t
, can be related to

mesoscopic PDF fi(r̄ ,t) as follows:

∂T (r̄ ,t)

∂t
=
∑b

i=0 fi(r̄ ,t)

τq

. (18)

In order to retrieve ∂T (r̄ ,t)
∂t

, we need to compute fi(r̄ ,t)
following Eq. (15), where coefficients A1, A2, and A3, source
term ϕ(r̄ ,t), and lastly equilibrium PDF f

(0)
i stand unknown.

We employ Chapman-Enskog multiscale expansion to de-
rive theses unknowns and to further establish mathematical
consistency between LBM and DPL formulation. PDFs fi

are expanded up to the second order with respect to the

perturbation parameter ε(|ε| � 1) as

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + O(ε3). (19)

The summations of PDFs satisfy the following constraints:∑
fi =

∑
f

(0)
i and

∑
f

(1)
i =

∑
f

(2)
i = 0. (20)

Scaling of time and space are performed as follows:

∂t = ε∂t (1) + ε2∂t (2) + O(ε3), (21)

∂r = ε∂r (1) + O(ε2), (22)

1

r
= ε

1

r (1).
(23)

The temporal (unsteady) term ∂T
∂t

and laser irradiation term
ϕ in Eq. (15) are assumed to be of the scale of (ε2) as [49]

∂T

∂t
= ε2 ∂T

∂t (2)
, (24)

ϕi = ε2ϕ
(2)
i . (25)

In Eq. (15), the expansion of fi(r̄ ,ēi	t,t + 	t) around PDF
fi(r̄ ,t) by Taylor’s series is accomplished first. As per the
perturbation expansion in Eq. (19), fi(r̄ ,t) is further expanded
around equilibrium PDF f

(0)
i . Considering the above expan-

sions and implementing the scaling operations performed in
Eqs. (21)–(25) the resulting equations of the order of ε, ε2 are
obtained from Eq. (15) respectively as

∂t (1)f
(0)
i + ∂r

(1)
α

eiαf
(0)
i = − 1

τ
f

(1)
i , (26)

∂t (2)f
(0)
i +

(
−τ + 	t

2

)(
∂t (1) + ∂r

(1)
α

eiα

)2
f

(0)
i

= − 1

τ
f

(2)
i + A1

∂T

∂t(2)
+ 1

r (1)
∂r

(1)
α

(
A2T + A3f

(0)
i

)+ ϕ
(2)
i .

(27)

Summing, Eqs. (26) and (27) from i = 0 to b results in

τq∂t (1)
∂T

∂t
+ ∂r

(1)
α

b∑
i=0

eiαf
(0)
i = − 1

τ

b∑
i=0

f
(1)
i , (28)

∂t (2)

b∑
i=0

f
(0)
i +

(
−τ + 	t

2

)(
τq∂

2
t (1)

∂T

∂t

+∂r
(1)
α

∂r
(1)
β

b∑
i=0

eiαeiβf
(0)
i + 2∂t (1)∂r

(1)
α

b∑
i=0

eiαf
(0)
i

)

= − 1

τ

b∑
i=0

f
(2)
i A1(b + 1)

∂T

∂t(2)
+ 1

r (1)
∂r

(1)
α

[
A2T (b + 1)

+A3τq

∂T

∂t

]
+ (b + 1)ϕ(2)

i . (29)
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With the operation, Eq. (26)×ε+ Eq. (27)×ε2 performed
and the following constraints are imposed:

b∑
i=0

eiαf
(0)
i = 0, (30)

b∑
i=0

eiαeiβf
(0)
i = λT + τT γ

∂T

∂t
. (31)

In terms of temperature, the following temperature equation
is obtained from Eq. (29):

τq

∂2T

∂t2
− A1(b + 1)

∂T

∂t

=
(

τ − 	t

2

)[
λ

∂2T

∂r2
+ τT γ

∂3T

∂r2∂T

]

+ 1

r

[
A2(b + 1)

∂T

∂r
+ A3τq

∂2T

∂r∂T

]
+ (b + 1)ϕ

+
(

τ − 	t

2

)
ε2∂t(1)∂t(1)

(
τq

∂T

∂t
+ O(ε3) + O(	t3)

)
.

(32)

In Eqs. (31) and (32), λ,γ are arbitrary constants (un-
known). Since Eq. (32) needs to be consistent with the actual
DPL governing energy equation [Eq. (5)], all the related coef-
ficients, arbitrary constants (A1,A2,A3,λ,γ ), and dimensional
source term (ϕ) imposed in the formulation are derived by
comparing Eq. (32) with Eq. (5) as follows:

A2 = −
(

1

b + 1

)
, A2 =

(
2α

b + 1

)
, A3 =

(
2α

τT

τq

)
,

(33a)

λ = α

(τ − 	t/2)
, γ = α

(τ − 	t/2)
, (33b)

ϕi = G(r,t)

b + 1
, (33c)

where α = ( k
ρc

) is the thermal diffusivity of the GNS. The
truncation error term in this LBM scheme can be expressed as
follows:

TE =
(

τ − 	t

2

)
ε2∂t(1)∂t(1)

(
τq

∂T

∂t

)
+ O(ε3) + O(	t3).

(34)

Now, for the one-dimensional spherical coordinate geom-
etry, considering the D1Q3 lattice (i.e., substituting b = 2),
the three equilibrium PDFs f (0)

o , f
(0)
1 , and f

(0)
2 are derived as

follows:

f
(0)
1 = f

(0)
2 = λ

2e2
T + τT γ

2e2

∂T

∂t
, (35a)

f
(0)
0 = τq

∂T

∂t
− λ

e2
T − τT γ

e2

∂T

∂t
. (35b)

With the discretization applied in Eqs. (16a) and (16b) and
in Eqs. (17a) and (17b), coefficients A1,A2,A3,λ,γ , source
term ϕ derived in Eqs. (33a)–(33c), and finally equilibrium

FIG. 3. Schematic of D1Q3 lattice of LBM formulation for
concentric spherical coordinate geometry with implementation of
boundary conditions.

PDFs f (0)
o , f

(0)
1 , and f

(0)
2 obtained in Eqs. (35a) and (35b),

solution of Eq. (15), i.e., fi(r̄ ,t) distributions, can be computed
thoroughly. With the known fi(r̄ ,t) distributions, we retrieve
∂T (r̄ ,t)

∂t
and temperature at an advance time level (t + 	t) is

obtained from the Taylor series expansion up to the second
order accuracy,

T (r̄ ,t + 	t)

= T (r̄ ,t) + 	t
∂T (r̄ ,t)

∂t
+ 	t2

2

∂2T (r̄ ,t)

∂t2
+ O(	t3). (36)

Computations are initiated with the calculation of equi-
librium PDF, f

(0)
i (r̄ ,t) from the initial conditions depicted

in Eq. (6a). The boundary conditions [Eq. (6b)] towards the
solution are required in terms of PDF. Since at the center
(r = 0) and surface (r = L) adiabaticlike boundary conditions
prevail, following previous studies [29,30,48], we assume the
PDFs are completely reflected from boundaries at any given
instant of time signifying f1 = f2 at r = 0 and f2 = f1 at
r = L. The schematic of D1Q3 lattice with implementation of
boundary conditions is depicted in Fig. 3.

B. Finite different method scheme (FDM1)

This three-level, implicit, unconditionally stable finite dif-
ference scheme proposed by McDonough et al. [31] was
further extended by Mishra et al. [29] to solve the DPL
governing equation in a cylindrical or spherical coordinate
system without considering the volumetric source term. This
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finite difference scheme inherits first order global accuracy and
second order local accuracy in time. The detailed formulation
and is provided in the Appendix A1, for reference. With
required discretization(s) performed, for N + 1 grid points,
the following difference equations are obtained:

a1iT
m+1
i + a2iT

m+1
i+1 + a3iT

m+1
i−1

= a4iT
m
i + a5iT

m
i+1 + a6iT

m
i−1 + a7iT

m−1
i + a8i ,

1 � i � N − 1, (37)

where the, coefficients a1i ,a2i , . . . a8i are given by the follow-
ing:

a1i = ρcτq

	t
+ ρc + 2kτT

(	r)2 + k	t

(	r)2 , (38a)

a2i = − kτT

(	r)2 − 2kτT

2ri	r
− k	t

2(	r)2 − 2k	t

4ri	r
, (38b)

a3i = − kτT

(	r)2 + 2kτT

2ri	r
− k	t

2(	r)2 + 2k	t

4ri	r
, (38c)

a4i = 2ρcτq

	t
+ ρc + 2kτT

(	r)2 − k	t

2(	r)2 , (38d)

a5i = − kτT

(	r)2 − 2kτT

2ri	r
+ k	t

2(	r)2 + 2k	t

4ri	r
, (38e)

a6i = − kτT

(	r)2 + 2kτT

2ri	r
+ k	t

2(	r)2 − 2k	t

4ri	r
, (38f)

a7i = −ρcτq

	t
, (38g)

a8i = Gm
i 	t =

(
gm

i +
(

∂g

∂t

)m

i

)
	t. (38h)

C. Finite difference method (FDM2)

Here we provide an alternative discretization approach
where, locally and globally second order accuracy is preserved
in both time and space. The detailed formulation is provided
in the Appendix A2, for reference. The reported three-level,
implicit finite scheme leads to the following difference equa-
tions:

a1iT
m+1
i + a2iT

m+1
i+1 + a3iT

m+1
i−1

= a4iT
m
i + a5iT

m
i+1 + a6iT

m
i−1 + a7iT

m−1
i

+ a8iT
m−1
i+1 + a9iT

m
i−1 + a10i , 1 � i � N − 1, (39)

where the coefficients a1i ,a2i , . . . a10i are derived as follows:

a1i = ρc

2
+ ρcτq

	t
+ kτT

	r2
+ k	t

2	r2
, (40a)

a2i = − kτT

2	r2
− kτT

2ri	r
− k	t

4	r2
− k	t

4ri	r
, (40b)

a3i = − kτT

2	r2
+ kτT

2ri	r
− k	t

4	r2
+ k	t

4ri	r
, (40c)

a4i = 2ρcτq

	t
− k	t

	r2 , (40d)

a5i = k	t

2	r2
+ kτT

2ri	r
, (40e)

a6i = k	t

2	r2
− kτT

2ri	r
, (40f)

a7i = ρc

2
− ρcτq

	t
+ kτT

	r2
− k	t

2	r2
, (40g)

a8i = − kτT

2	r2
− kτT

2ri	r
+ k	t

4	r2
+ k	t

4ri	r
, (40h)

a9i = − kτT

2	r2
+ kτT

2ri	r
+ k	t

4	r2
− k	t

4ri	r
, (40i)

a10i = Gm
i 	t =

(
gm

i +
(

∂g

∂t

)m

i

)
	t. (40j)

D. Finite difference method (FDM3) [15]

In order to assess the accuracy of the present results based
on the formulation presented above, the same problem is
also revisited and further validated against the formulation
proposed in the literature by Dai et al. [15,28]. For complete-
ness, the scheme is briefly presented below. Time and space
discretizations lead to the following difference equations:

a1iT
m+1
i + a2iT

m+1
i+1 + a3iT

m+1
i−1

= a4iT
m
i + a5iT

m
i+1 + a6iT

m
i−1 + a7iT

m−1
i + a8iT

m−1
i+1

+ a9iT
m
i−1 + a10i , 1 � i � N − 1, (41)

where the coefficients a1i ,a2i , . . . a10i are derived as follows:

a1i = 2ρcτq

	t
+ ρc +

r2
i+ 1

2
k

r2
i (	r)2

(
	t

2
+ τT

)

+
r2
i− 1

2
k

r2
i (	r)2

(
	t

2
+ τT

)
, (42a)

a2i = −
r2
i+ 1

2
k

r2
i (	r)2

(
	t

2
+ τT

)
, (42b)

a3i =
r2
i− 1

2
k

r2
i (	r)2

(
	t

2
+ τT

)
, (42c)

a4i = 2ρcτq

	t
−

r2
i+ 1

2
k	t

r2
i (	r)2 −

r2
i− 1

2
k	t

r2
i (	r)2 , (42d)

a5i =
r2
i+ 1

2
k	t

r2
i (	r)2 , (42e)

a6i =
r2
i− 1

2
k	t

r2
i (	r)2 , (42f)

a7i =
r2
i+ 1

2
k

r2
i (	r)2

(
	t

2
− τT

)
, (42g)

a8i = ρc − 2ρcτq

	t
+

r2
i+ 1

2
k

r2
i (	r)2

(
τT − 	t

2

)

+
r2
i− 1

2
k

r2
i (	r)2

(
τT − 	t

2

)
, (42h)
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a9i =
r2
i− 1

2
k

r2
i (	r)2

(
	t

2
− τT

)
, (42i)

a10i = Gm
i 	t =

(
gm

i +
(

∂g

∂t

)m

i

)
	t. (42j)

It can be observed that the difference equations in Eqs. (37),
(39), and (41) have three time levels, viz., m − 1, m, and
m + 1, where the right-hand side contains the known values at
time levels m − 1 and m. In order to solve these equations,
discretization of initial conditions and boundary conditions
are solicited. We apply forward difference discretization of
the initial condition (time derivative term) [Eq. (6b)] and
the forward for space derivative at r = 0 and the backward
difference for space derivative at r = L of boundary conditions
[Eq. (6b)] result in

initial condition: T 1
i = T 0

i , (43a)

boundary conditions: T m
1 = T m

0 , T m
N−1 = T m

N . (43b)

Hence the present algebraic (difference) equations, obtained
from finite difference schemes FDM1 [Eq. (37)], FDM2
[Eq. (39)], and FDM3 [Eq. (41)] with discretized initial and
boundary conditions presented in Eqs. (43a) and (43b), form
a system of linear equation(s) with a tridiagonal coefficient
matrix. Because of being extremely efficient [50], all the
N + 1 linear algebraic equations have been solved using the
tridiagonal matrix algorithm (Thomas algorithm). The steady-
state (SS) condition was ascertained when the root mean
average of the square of the differences of temperatures at two
consecutive time levels, at all discrete i locations was � the
set limit as per the L2 norm, as follows:

ξ2 =
√∑N

i=0

(
T m

i − T m−1
i

)2
(N + 1)

. (44)

E. Heat flux distribution and net entropy production rate

With temporal temperature distribution retrieved by the
above numerical schemes, the nature of the heat flux dis-
tribution can also be obtained by discretization of Eq. (3)
by a second order central difference scheme. Physical inter-
pretation of generalized absolute temperature from the SPL
or DPL framework(s) is investigated by studying the net
entropy production rate under equilibrium and nonequilibrium
(if required) situations by classical and extended irreversible
thermodynamics respectively. Formulations of net entropy
production rate characteristics are illustrated as follows.

Based on the framework of classical irreversible thermody-
namics (CIT), following the postulates of local thermodynamic
equilibrium (LTE), the entropy of a small part of the system
of specific volume v and specific internal energy u during
nonequilibrium transitions (e.g., spontaneous transfer of heat
from higher to lower temperature) can be defined under local
thermodynamic equilibrium as

s = s(u,v). (45)

The definition of equilibrium absolute temperature θ can be
extended from property relations as the partial derivative of s

with respect to u,

1

θ
=
(

∂s(u,v)

∂u

)
v

. (46)

Following the framework of the extended irreversible ther-
modynamics (EIT), thermodynamic properties are redefined
suitably to inculcate the nonequilibrium attribute(s). For high-
rate heat flux applications, generalized (nonequilibrium) en-
tropy of a small part of the system of specific volume v and
specific internal energy u is considered to be an additional
function of the local heat flux q and is defined as follows
[38–40]:

s = s(u,v,q). (47)

Nonequilibrium absolute temperature � can be interpreted
as

1

�
=
(

∂s(u,v,q)

∂u

)
(v,q)

. (48)

Nonequilibrium entropy and equilibrium entropy can be
mathematically bridged up by expansion of s(u,v,q) about
s(u,v) up to second order approximation in q as follows [40]:

s(u,v,q) = s(u,v) − �
2

(q · q)︸ ︷︷ ︸
I

. (49)

� is the expansion parameter in Eq. (49) and will be interpreted
subsequently. Equilibrium entropy s(u,v) and nonequilibrium
entropy s(u,v,q) differ because of the presence of term I in
the right-hand side of Eq. (49). For applications involving a
lower rate of heat flux (q � 1 W/m2) transport, a magnitude
of (q · q) on term I of Eq. (49) becomes negligibly small. In
this context, s(u,v,q) is reduced to the equilibrium entropy
s(u,v) and � becomes equivalent to θ . However for high-
rate laser irradiation applications, s(u,v) and s(u,v,q) differ.
Differentiation of Eq. (49) partially with respect to u and
substituting expressions of Eqs. (46) and (48) into Eq. (49)
further leads to the relation between θ and �,

1

�
=
(

1

θ
− 1

2

(
∂�
∂u

)
(v,q)

(q · q)

)
. (50)

Considering the GNS to be incompressible, a differential
form of s(u,v,q) can be expressed as

ds(u,v,q) = ds(u,q)

=
(

∂s

∂u

)
q

du +
(

∂s

∂q

)
u

dq

=
(

du

�
− �q · dq

)
(51)

Equation (51) can be further rewritten in temporal term(s)
as follows:

∂s(u,v,q)

∂t
=
{

1

�

(
∂u

∂t

)
− �q · ∂q

∂t

}
. (51a)

If absolute temperature history T , retrieved under the SPL
or DPL framework, is generalized to nonequilibrium absolute
temperature �, then further substitution of the expression of
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∂u
∂t

from Eq. (2) into Eq. (51a) yields

∂s(u,v,q)

∂t
=
(

−∇ · q

ρ �
+ g

ρ �
− �q · ∂q

∂t

)
. (52)

Substituting the identity relation ∇ · ( q

�
) = ( ∇·q

�
− q·∇�

�2 )
into Eq. (52) eventually results in the generalized entropy
transfer equation (with nonequilibrium terms)

[
ρ

∂s(u,v,q)

∂t
+ ∇ ·

(
q

�

)]
︸ ︷︷ ︸

I

=

⎛
⎜⎜⎝ g

�
− q · ∇T

�2
− ρ�q · ∂q

∂t︸ ︷︷ ︸
II

⎞
⎟⎟⎠

= Sgen. (53)

Equation (53) can be further reduced to the equilibrium
entropy transfer equation (Clausius-Duhem inequality) when
the (1) term II of Eq. (53) does not appear and (2) absolute
temperature history T is reduced to equilibrium absolute
temperature θ as follows:[

ρ
∂s(u,v)

∂t
+ ∇ ·

(
q

θ

)]
=
(

g

θ
− q · ∇T

θ2

)
= Sgen. (54)

If Eq. (54) results in negative equilibrium entropy pro-
duction rate, Sgen < 0 (i.e., violation of the Clausius-Duhem
inequality), Eq. (53) is subsequently employed to investigate
the compatibility of the corresponding framework (SPL or
DPL) with the second law of thermodynamics under the
nonequilibrium (EIT) framework. In order to evolve q and ∇T

and further derive �, we simply express the right-hand side of
Eq. (53) as follows:

−
(∇�

�2
+ ρ�∂q

∂t

)
=
(

χq + ℵ ∂

∂t
(∇�)

)
, (55)

where χ and ℵ are arbitrary positive quantities (unknown).
Equation (55) can be further rearranged as follows:(

q + ρ�
χ

∂q

∂t

)
= −

( ∇�

χ �2
+ ℵ

χ

∂

∂t
(∇�)

)
. (56)

Comparing the coefficients of Eq. (56) with the first order
DPL equation, i.e., Eq. (3), yields

ρ�
χ

= τq,
1

χ�2
= k,

ℵ
χ

= kτT . (57a)

Rearranging terms from the above relations in Eq. (57a);
coefficients �, ℵ, and χ are derived as

� = τq

ρk�2
, χ = 1

k�2
, ℵ = τT

�2
. (57b)

Inserting the magnitude of � into Eq. (50) and further
rearrangement leads to(

θ − �

θ

)
= τq

ρck

(
q · q

�2

)
. (58)

Equation (58) illustrates the quantitative difference between
equilibrium and nonequilibrium absolute temperature. Simi-
larly, the final expression of the net nonequilibrium entropy
production rate following the DPL governing equation can be

derived by inserting the magnitude of� into Eq. (53) as follows:

Sgen =
{

g

�
− q

�2
·
(

∇� + τq

k

∂q

∂t

)}

=
{

g

�
+ q

�2
·
(

q

k
+ τT

∂

∂t
(∇�)

)}
. (59)

The above formulation [Eq. (59) is written under the
DPL framework, which can be reduced to SPL and classical
diffusion frameworks. However, Eq. (59) can be generalized
to derive the equilibrium entropy production rate as

Sgen =
(

g

θ
− q · ∇θ

θ2

)
. (60)

III. RESULTS AND DISCUSSION

In this section, the above illustrated numerical schemes
are further employed to predict the temperature history of
the GNS, irradiated with various short-pulse laser sources. In
order to understand how the thermophysical response of the
single-phase lag (SPL) and dual-phase lag (DPL) frameworks
(with various lag ratios) differs and to further characterize
thermophysical anomalies (if any), heat flux distribution and
entropy generation characteristics are studied under the equi-
librium and nonequilibrium paradigm. An expression of effec-
tive thermal conductivity is formulated considering unsteady
and size (radius) effects, and the temporal thermophysical
response is illustrated. The computational performance of each
numerical scheme is also highlighted.

A. Validation, accuracy, and grid convergence test

Before proceeding to discuss all the results in hand in
greater detail, the accuracy and grid convergence test of the
above reported schemes are provided. Let us first consider the
following function:

Tex(r,t) = e(−π2t) cos(πr). (61)

Tex(r,t) is globally continuous and derivable with respect
to r and t and subsequently satisfies the following DPL-like
partial differential equation:

∂T

∂T
+
(

1

2π2

)
∂2T

∂t2
= 1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

π2r2

∂

∂r

(
r2 ∂2T

∂t∂r

)

− π2

2
e(−π2t) cos(πr); 0 � r � 1.

(62)

Therefore Eq. (61) can be considered an analytical solution
of Eq. (62) [15]. Since mathematically Eq. (62) appears to
be equivalent to the initial boundary value problem describing
the DPL governing equation for spherical coordinate geometry
(with a spatially temporally varying source term), the valida-
tion and accuracy of numerical methods (depicted in Sec. II)
can be assessed by employing them to solve Eq. (62) and
subsequently compare with the analytical solution, Tex(r,t).
For any given instant t , the relative error is calculated as per
the L1 norm as follows:

ξ1 =
∑N

i=0 |Ti − Tex |
(N + 1)

. (63)
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FIG. 4. (a)–(c) Distribution of T vs r at t = 0.1, 0.2, and 0.5 and (d)–(f) relative error, ξ1 vs t plot for N = 100, N = 200, and N = 400.

043302-12



EVALUATION OF TEMPERATURE HISTORY OF A … PHYSICAL REVIEW E 97, 043302 (2018)

(a) 

(c)   (d) 

No. of control volumes, N

G
rid

co
nv

er
ge

nc
e

hi
st

or
y,

100 200 300 400 500 600 700
10-3

10-2

10-1

100

101

0.3 ps
0.4 ps
0.6 ps
1.0 ps

Convergence Criteria

FDM 1

(b) 
No. of control volumes, N

G
rid

co
nv

er
ge

nc
e

hi
st

or
y,

100 200 300 400 500 600 700
10-3

10-2

10-1

100

101

0.3 ps
0.4 ps
0.6 ps
1.0 ps

Convergence Criteria

FDM 2

No. of control volumes, N

G
rid

co
nv

er
ge

nc
e

hi
st

or
y,

100 200 300 400 500 600 700
10-3

10-2

10-1

100

101

0.3 ps
0.4 ps
0.6 ps
1.0 ps

Convergence Criteria

FDM 3 [15]

No. of control volumes, N

G
rid

co
nv

er
ge

nc
e

hi
st

or
y,

20 40 60 80 100 120
10-3

10-2

10-1

100

101

0.3 ps
0.4 ps
0.6 ps
1.0 ps

Convergence Criteria

LBM

FIG. 5. Grid convergence history (ξ∞ � 10−3) for (a) FDM1, (b) FDM2, (c) FDM3 [15], and (d) LBM with numbers of lattice or control
volumes.

In Eq. (63), Ti and Tex are the results at the ith (0 � i � N )
grid from the numerical scheme(s) and analytical method
respectively. A lesser magnitude of ξ1 at any given temporal
instants of t and r signify an accurate result that approaches
the analytical solution. A detailed description of numerical
solution by all the schemes at t = 0.1, 0.3, and 0.5 along
with an analytical solution [presented in Eq. (61)] for various
numbers of grid points (N = 100, 200, and 400) are elucidated
in Figs. 4(a)–4(c). Distribution of the relative error ξ1 with
t for all the numerical schemes are further presented in
Figs. 4(d)–4(f).

In terms of accuracy (i.e., least magnitude of relative error),
the LBM scheme is observed to be superior to other numerical
schemes, for all situations. With the exception of the temporal
region t � 0.15, accuracy of the FDM2 scheme is found to
be higher than FDM3 [15]. FDM1 [29–31] yields the least
accuracy among all the schemes in all situations although the
accuracy of this scheme can be appreciably enhanced with
increasing grid points. For N = 400, the accuracy of FDM1
is found to retain less than 10−2 for all values of t . A similar
trend is observed for other numerical schemes too, when the
number of grid points is increased. For N = 400, the LBM

scheme reports the highest accuracy with ξ1 � 10−4, the least
among all the numerical schemes for all values of t .

Following the lead by several researchers [15,17,28,43],
in order to solve the dimensional DPL governing energy
equation, the averaged thermophysical properties of gold are
considered to be ρ = 19 300 (kg/m3), c = 129 (J/kg K),
τq = 8.5 ps, and τT = 90.0 ps. In Secs. III A–III E, the usual
bulk thermal conductivity (kb) at initial (room) temperature
(300 K) is adopted to be the thermal conductivity, i.e., k =
kb = 315 (W/mK). However, temporal as well as size (radius)
dependence of thermal conductivity and a detailed review
of the corresponding thermophysical response is elucidated
in Sec. III F. Before presenting all the results, the effect of
grid sizing on temperature distribution is ascertained. For a
100-nm GNS, an additional simulation for various numbers
of equispaced grids in multiples of 10 (N = 10, 20, 30, 40,
and so on) is carried by considering the time step to be
	t = 0.0001 ps, unless required convergence (ξ∞ � 10−3) is
obtained as per L∞ norms, expressed as

ξ∞ = max
N

|TN ′ − TN | , (64)
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FIG. 6. Temporal temperature rise and heat flux distribution of a 100-nm GNS irradiated with one laser pulse under DPL framework by all
the numerical schemes.

where N ′ and N represent the previous and current numbers
of control volumes respectively in Eq. (64). Compared to
the FDM schemes (FDM1, FDM2, and FDM3), the LBM
scheme dramatically accelerates the decay of ξ∞ with N and
finally convergence is witnessed for much smaller numbers
of grid points for all time instants under investigation. This
will save a considerable amount of computational storage to
obtain grid-independent results with reasonable accuracy by
the LBM scheme. All the results at t = (0.3 − 1.0) ps are
depicted in Fig. 5 for all the numerical schemes till required
convergence.

With the validation of numerical codes performed and the
grid convergence test accomplished, numerical experiments
are performed to obtain the characteristics of temporal tem-
perature history and heat flux distribution, under DPL and SPL
frameworks.

B. Temporal temperature rise and heat flux distribution
by DPL and SPL frameworks

Under the DPL framework, temporal temperature rise
(	T = T − T0) and heat flux [q(r,t)] distribution within the
interior of a GNS of radius 100 nm, irradiated by a single
laser pulse, are depicted in Fig. 6 by all the numerical schemes
(FDM and LBM), till required convergence is met and steady
state (SS) is subsequently highlighted.

Solutions obtained from all the schemes are observed to
match exceedingly well with each other. Since the peak of a
single laser pulse is situated at 2tp = 0.20 ps, the temperature
of the GNS surface comprehensively increases (peaking time
is 0.27 ps). From 0.3 ps onwards, the temperature of the interior
is enhanced gradually leading to enlarged thermal penetration
from surface to the interior of the GNS until steady state (SS) is
witnessed. The gradual propagation (penetration) of heat flux
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FIG. 7. Temporal temperature rise and heat flux distribution for a 100-nm GNS irradiated with one laser pulse under SPL framework by all
the numerical schemes.
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TABLE I. Penetration depth of thermal wave (xpen) calculated from the surface of GNS at different transient levels.

Time, t(ps) 0.2 0.4 0.6 0.7 1.0 10.0 15.0 20.0 25.0

Penetration depth, xpen (nm) 0.771 1.543 2.313 2.700 3.858 38.578 57.566 77.155 96.444

from surface to interior with time is also depicted in Fig. 6(b).
This result is attributed to the consideration of an additional
phase lag of temperature gradient (which is also defined as time
required felicitating phonon-electron interactions) by the DPL
framework that accounts for microscopic effects resulting in
pronounced thermal response at the subpicosecond temporal
scale.

As the interior of the GNS is thermally diffusive and the
laser irradiation source term is temporally decaying, with the
increase of time, the effect of thermal perturbation is found
to be reduced. Temperature converges towards steady state
(SS) and magnitude of heat flux distribution (approaching
SS) is found to be negligibly small [Figs. 6(a) and 6(b)].
Results obtained from all the schemes match exceedingly well
with each other. With the omission of τT , phonon-electron
interaction is subsequently neglected and the DPL framework
is reduced to the SPL framework. Being a special case of
DPL (τT → 0), reliable temperature history under the SPL
framework can be obtained by any of the described numerical
schemes with reasonable accuracy. In order to understand the
qualitative difference between DPL and SPL, the same problem
is considered under the SPL framework in Fig. 7, where the
temporal temperature rise and heat flux distribution is further
elucidated.

Under the SPL framework, the temperature gradient is
established instantaneously in the spatial domain while heat
flux does not, leading to the experience of thermal inertia (τq)
due to fast-transient heating and containment of collimated
energy within the neighborhood of the GNS surface without
effective transport towards the interior at the initial time of
evaluation. Since the governing energy equation under the SPL
framework is a second order wave equation which is hyperbolic
in nature [characteristic thermal wave speed equal to

√
α
τq

=
3857.76 m/s (for gold)]; this phenomenon of marginal thermal
penetration can be explained in the light of thermal penetration
depth, xpen(=

√
α
τq

t) (measured from the surface towards the

center) at any instant of time.

The penetration depth for thermal wave, measured from the
surface of the GNS, at a given instant of time, for temporal
level t = (0.2−25.0) ps is further illustrated in Table I.

Up to t = 0.6 ps, it is observed that thermal penetration
depth is lower than 2.5 nm from the surface of the GNS.
This leads to negligible penetration of thermal energy towards
the interior leading to further confinement of thermal energy
within the neighborhood of the GNS surface. Therefore at
the initial time of evaluation, the temperature rise of the
GNS surface and the corresponding peaking time is observed
to be larger compared to the DPL framework. The detailed
prediction of maximum temperature rise at the GNS surface
and corresponding peaking time by all the numerical schemes
(LBM and FDM), for SPL, DPL, and classical diffusion
frameworks is presented in Table II.

More clarity can be obtained by studying the normalized
temperature change at the surface during the initial time of
evaluation, presented in Fig. 8.

At the initial temporal domain (t < tmax), the temperature
response of all the frameworks does not differ. However,
the temporal region following peaking time shows a distinct
thermal response of all the frameworks. Up to 2.0 ps, the SPL
framework reports a maximum normalized temperature rise
at the surface followed by classical diffusion and the DPL
framework. However from t = 3.0 ps onward, a normalized
temperature rise at the surface starts decreasing under the
SPL framework. With a further rise of time, the normalized
temperature predicted by the SPL framework attains the
least magnitude, preceded by classical diffusion and the DPL
framework respectively.

At a higher temporal range, transportation of localized
energy is observed from the surface towards the interior,
leading to enlargement of the thermal penetration depth.
For, e.g., t = 10.0 ps, the thermal penetration depth (xpen)
is predicted to be 38.578 nm (cf. Table I), which matches
well with the numerical solution depicted in Figs. 7(a) and
7(b). This region within the GNS, from surface to xpen, is
characterized by adverse temperature gradient ( ∂T

∂r
� 0), since

TABLE II. Prediction of maximum temperature (	Tmax) and the corresponding peaking time (tmax) at the 100-nm GNS surface irradiated
with one laser pulse under the frameworks of DPL, SPL, and classical diffusion by all the numerical schemes.

Schemes: LBM FDM 1 FDM 2 FDM3 [15]

DPL framework
	Tmax(K) 13.957 13.896 13.900 13.900
tmax(ps) 0.270 0.270 0.270 0.270

SPL framework
	Tmax(K) 23.680 23.677 23.679 23.679
tmax(ps) 0.315 0.315 0.315 0.315

Classical diffusion framework
	Tmax(K) 19.312
tmax(ps) 0.290
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FIG. 8. Normalized temperature change at the surface of a 100-
nm GNS irradiated with one laser pulse under the frameworks of DPL,
SPL, and classical diffusion.

the temperature is found to overshoot (from the surface towards
the interior). With the increase of time, as the discontinuity of
the thermal wave moves further downstream with enhanced
thermal penetration depth, the overshoot of temperature is
found to be more severe. Further downstream from xpen, a
decay of temperature is witnessed on account of volumetric
source term G(r,t) alone, signifying a negligible amount of
heat transported on account of conduction. Results retrieved
by the DPL framework do not show this phenomenon of
overshooting at all spatial and temporal domains. As discussed
earlier, the paradox of overshooting from the point of view of
the LTE hypothesis is well realized, since a higher temperature
within the interior of the GNS does not support the feasibility
of spontaneous transfer of heat from the surface (at lower
temperature) to the interior (at higher temperature) as per the
directional constraint imposed by the second law of thermody
namics.

Surprisingly, instead of the presence of adverse temper-
ature gradient, the domain prone to overshooting shows a
nonpositive heat flux distribution [Fig. 7(b)], q(r,t), in most
of the temporal levels (0.2–15.0 ps). This observation signifies
a transfer of heat from the surface to the interior of the
GNS. Unlike Fourier’s law of heat conduction, at a given
instant of time, heat flux in the case of the SPL framework
depends additionally on the rate of change of heat flux, ( ∂q

∂t
).

Following Eq. (3), it can be appreciated that on account of
the simultaneous presence of negative heat flux distribution
and adverse (negative) temperature gradient, the region of
overshoot must mathematically satisfy ( ∂q

∂t
) � 0. Therefore,

the expected direction of heat transfer (surface to the interior)
is retained for most of the subpicosecond temporal domain
with some exceptions, obtained from 15 ps onwards. Since
the laser-irradiation source is temporally decaying, the rate
of change of heat flux starts decreasing with time and might
lead to the change of sign of ( ∂q

∂t
) to negative. Considering

this circumstance, if the temperature gradient term of the SPL
framework dominates over the term of temporal derivative of
heat flux then, a non-negative heat flux distribution can be de-

veloped within the GNS (for, e.g., at t = 20.0 ps, positive heat
flux distribution is witnessed within the domain of overshoot).
As the adverse temperature gradient mostly reveals the right
sense of heat flux distribution, unlike Fourier’s law of heat
conduction, the nature of heat flux distribution is difficult to
assess singly from the temporal temperature history. In order to
further verify and comment on the correctness of overshooting
of temperature observed under the SPL framework described
above, a detail thermodynamic analysis (entropy generation
characteristics) remains the only recourse to provide the
justified answer.

C. Entropy generation characteristics

First, the net (equilibrium) entropy production rate under
the CIT framework is illustrated at various temporal instants.
For t = 0.4 ps, the net entropy production rate under the
DPL framework is observed to enhance from the surface to
the interior following the trend of heat flux distribution [cf.
Fig. 6(b)] and further to yield a positive definite entropy
production rate everywhere [see Fig. 9(a)], whereas, at the
same temporal instant (0.4 ps), under the SPL framework, a
very thin thermal penetration depth leads to a marginal rise
of the net entropy production rate. As thermal penetration
depth enhances with the rise of time, from 0.7 ps onwards,
appreciable temperature overshooting was observed under the
SPL framework [Figs. 9(b)–9(f)]. This region of temperature
overshoot (from surface to xpen), for all instants of time
t = (1.0−20.0) ps, is observed to yield negative (equilibrium)
entropy production rate. Local thermodynamic equilibrium no
longer holds true and further, temperature overshooting ob-
served under the SPL framework is characterized to be a highly
nonlocal phenomenon. Therefore, the absolute temperature
yielded by the SPL framework can no longer be interpreted
as “(local) equilibrium temperature.” With reference to the
discontinuity of temperature and heat flux witnessed at a
distance of xpen from the surface of the GNS, at a given instant
of time (Fig. 7), the entropy production rate (equilibrium) is
further observed to discontinue at the same location. For, e.g.,
at t = 15.0 ps, the discontinuity of the entropy production rate
is predicted to be 57.866 nm which matches accurately with
the thermal penetration depth (cf. Table I). Further downstream
from xpen towards the center of the GNS, the rise of the entropy
production rate is witnessed and subsequently yields a positive
definite for all the time instants studied. The reason can be
the presence of the volumetric source term (absorbed by the
thermally participating GNS) on account of laser irradiation,
since the effect of heat transfer on account of SPL conduction
past xpen is imperceptible.

Under the DPL framework, effective transportation and
substantial penetration of thermal energy at an earlier time
level, t = (0.2 − 1.0) ps (compared to SPL framework), lead to
the development of a small magnitude of temperature gradient
and a marginal rise of entropy production rate (equilibrium)
for 10.0 ps. and onwards. In order to investigate the thermody-
namic consistency of the temperature overshooting observed
from the SPL framework, the net entropy production rate
is estimated considering nonequilibrium (nonlocal) high-rate
heating effects, under the EIT framework. Results, however,
reveal a positive definite (nonequilibrium) entropy production
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FIG. 9. Net entropy production rate distribution in 100-nm GNS irradiated with one laser pulse under DPL and SPL frameworks at (a) 0.4,
(b) 0.7, (c) 1.0, (d) 10.0, (e) 15.0, (f) 20.0 ps.

rate, observed to increase from surface to xpen (see Fig. 9). This
result thermophysically connects the phenomenon of over-
shooting with extended irreversible thermodynamics. The ab-
solute temperature history retrieved from the SPL framework
can be qualitatively conceived to be a nonequilibrium tem-

perature (or a nonlocal thermal disturbance). Unlike a (local)
equilibrium temperature, any macroscopic interpretation of
nonlocal thermal response as potential of heat flux (transferred
through successive thermodynamic quasiequilibrium states)
stands inappropriate.
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FIG. 10. Absolute difference between equilibrium and nonequi-
librium absolute temperature at the interior of 100-nm GNS irradiated
with one laser pulse under SPL framework.

For completeness, the absolute difference between nonequi-
librium temperature and equilibrium temperature is estimated
at various temporal levels, following Eq. (67) and is further
depicted in Fig. 10 where the corresponding profile follows
the same trend of temperature distribution [see Fig. 7(a)].

On the other hand, a few thermophysical attributes for,
e.g., (i) account of no trace(s) of temperature overshooting,
(ii) justified direction of heat transfer (from surface towards
interior), and (iii) yield of positive definite (equilibrium)
entropy production rate at all temporal levels enables the
DPL framework to be thermodynamically admissible to the
LTE hypothesis. Under short-time picosecond applications,
the temperature history retrieved under the DPL framework
becomes qualitatively equivalent to “local equilibrium tem-
perature” which finds a suitable macroscopic meaning.

With the consideration and further insertion of an additional
phase lag (of temperature gradient, τT = 90.0 ps) to the SPL
framework, the DPL framework employed for gold appears to
be consistent with the LTE hypothesis. But this outcome does
not imply the deliberate generalization of the DPL framework
to the LTE hypothesis in all situations, since the mathematical
nature of the DPL governing energy equation ranges largely
between wave to overdiffusion, depending severely on the lag
ratio, LR(=τT /2τq) [25,43]. Hence the LR singly has a pro-
found effect on temperature overshoot and entropy generation
characteristics. Keeping thermophysical properties (k,ρ,c) un-
altered, with reference to τq = 8.5 ps, influnce of the LR, vary-
ing from 0 (SPL) to 1 (overdiffusion), on temporal temperature
rise, heat flux distribution, equilibrium and nonequilibrium
entropy production rate, and absolute temperature difference
(if any) are investigated. An increase of LR further leads
to the following observations: (i) the temperature overshoot
is found to be lowered, (ii) the negative entropy production
rate (equilibrium), witnessed within the zone of overshoot
(surface to xpen), is decayed, (iii) the entropy production rate
under the EIT framework is decreased retaining non-negative
magnitudes, signifying thermodynamic consistency for all
values of LRs, (iv) the absolute numerical difference between

equilibrium and nonequilibrium temperature is decreased with
maximum magnitude being witnessed for LR = 0 (SPL), and
last (v) the sharp wave fronts (discontinuities) observed under
the SPL framework are observed to be smeared (diffused). With
the increase of LR from 0.5 onwards, the temperature history
is observed to be free from overshooting with non-negative
magnitude of entropy production rate (equilibrium) retained.
All the results, with reference to t = 10 ps, are depicted in
Fig. 11.

Based on the magnitudes of τT and τq adopted, the magni-
tude of LR was considered to be 5.29 (overdiffusion) for the
GNS under consideration. Therefore, the results were found to
be admissible to the LTE hypothesis under the CIT framework,
whereas the DPL framework with smaller LR might not extend
the same thermodynamic characteristics.

D. Irradiation with multiple series of pulses and pulse train

We have further extended the applications of reported
numerical methods to obtain temporal temperature rise and
heat flux distribution of three different cases of laser irradiation:
(i) series of two laser pulses, (ii) series of three laser pulses,
and (iii) laser pulse train. The corresponding temporal intensity
distribution is presented in Eqs. (9) and (10) and is further
depicted in Figs. 2(b)–2(d) respectively. Results obtained from
all the numerical schemes (see Fig. 12) match extremely
well with each other for all situations where no overshooting
of temperature is witnessed within the interior of the GNS.
Physically it signifies that the surface of the GNS shows
maximum temperature rise and heat is observed to transfer
from surface to interior, yielding nonpositive magnitudes of
(equilibrium) entropy production rate for all spatiotemporal
domains. On account of more numbers of intensity peaks (local
maxima of intensity) and larger temporal spread of intensity
distribution, the maximum temperature rise of the GNS surface
and the corresponding peaking time is observed to be enhanced
for irradiation with multiple series of pulse and pulse train.

Because of the presence of a maximum number of intensity
peaks, possessing a magnitude (1.037 Imax) higher compared
to other sources, the maximum temperature at the surface is
observed to be largest for irradiation of a GNS with a series
of three laser pulses. Similarly, the maximum peaking time
is witnessed during irradiation of a GNS with a laser pulse
train, on account of the maximum separation of two peaks of
pulses (4tp) leads to a maximum spread of temporal intensity
distribution (8tp). The maximum temperature rise and the
corresponding peaking time predicted by all the numerical
schemes for all laser irradiation sources are presented in
Table III.

E. Effect of change of laser fluence and radius
of GNS on thermal lagging

Previous laser-heating experiments [2–7,42,43] reveal that
for small time (picoseconds) transients, the change of reflec-
tivity and electron temperature of the surface was observed to
vary linearly with the change of laser fluence during ultrafast
transient heating of gold film. Following this nature, it was
concluded that having being normalized by their correspond-
ing maximum magnitudes, both electron temperature and
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FIG. 11. Effect of lag ratio on (a) temperature rise, (b) heat flux, (c) equilibrium, and (d) non equilibrium entropy production rate,
(e) absolute equilibrium and non equilibrium temperature difference.

reflectivity change at the surface retain the same magnitude
during picoseconds transients. Inspired by this outcome, we
have examined the nature of temperature rise retrieved from the
DPL framework with a change of laser fluence (0−40 J/m2), at

various locations (from surface to center) of a GNS irradiated
by all four laser-irradiation sources in Fig. 13. The time of
observation was selected to be the respective peaking time of
laser irradiation source(s).
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FIG. 12. Temporal temperature rise and heat flux distribution of a 100-nm GNS irradiated with series of (a),(b) two, (c),(d) three, and
(e),(f) pulse train under DPL framework respectively by all the numerical schemes.

It is observed that the temperature rise at various loca-
tion(s) of a GNS varies linearly with change of laser flu-
ence. Therefore, similar to the electron temperature of two

step models, the temperature change retrieved by the DPL
framework can be quantitatively related to the change of
reflectivity change of a GNS during small time response,
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FIG. 13. Temperature rise at various interiors ( r

L
= 0.0, 0.25, 0.50, 0.75, 1.0) of 100-nm GNS vs laser fluence for (a) one, series of (b) two,

(c) three laser pulses, and (d) laser pulse train under DPL framework.

(	T /	Tmax) = (	R/	Rmax). Motivated by this observation,
a GNS of various radius L = 50, 100, 150, and 200 nm are
considered and further, transport and lagging characteristics of
thermal energy at various radial locations (r/L) = 0.0, 0.25,
0.5, 0.75, and 1.0 are illustrated in terms of normalized tem-
perature change, (	T /	Tmax). During irradiation with a single
laser pulse (Fig. 14), the maximum normalized temperature
(reflectivity) change is witnessed on the GNS surface with the
presence of a peak (local maxima) at the respective peaking
time. Because of transfer of thermal energy from the surface
towards the interior, the peak observed at the surface starts
getting diffused at the interior locations and the corresponding
peaking time shifts further rightwards.

For a GNS of smaller radius, L = 50 nm, it is observed
that normalized temperature changes at various radial locations
are closely packed with each other, signifying a uniform
temperature response and marginal change of temperature
gradient along the radial direction with a slight shift of
peaking time. With the increase of radius, temperature re-
sponse becomes nonuniform with enhancement of spacing of
corresponding normalized temperature profiles, attributed to
the higher temperature gradients along the radial direction.
However, it can be noted that the normalized temperature
profiles at (r/L) = 0 and 0.25 are found to be closely packed

compared to profiles observed at other radial locations. Since a
zero temperature gradient is imposed as a boundary condition
at the center and surface of a GNS [Eq. 5(b)] with transportation
of thermal energy towards the interior, the temperature gradient
increases from the surface towards the interior and further
adjusts itself to attain “zero” magnitude at the center. This
reveals the observation of a smaller temperature gradient in
the neighborhood of the center of the GNS.

The higher temperature gradient witnessed in a GNS of
larger radius physically signifies transportation of a larger
amount of thermal energy from the surface towards the interior.
Therefore, enhancement of the GNS radius leads to the decay
of maximum temperature rise at the surface (cf. Table III). This
trend of a drop of maximum temperature of the surface with
an increase of radius is also retained for irradiation of the GNS
with other source terms. The temperature peak observed at the
GNS surface was observed to spread more towards the interior
with a shift of peaking time towards the right with the increase
of radius. However, the peaking time at the surface (r = L) is
observed to remain almost invariant with a change of radius
of the GNS (i.e., for a 50–200-nm GNS). This observation
indicates that the peaking time of surface is uninfluenced by
the increase of the radius of the GNS (cf. Table III), albeit
the interior peaking time is influenced effectively because of
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FIG. 14. Normalized temperature change at various interiors ( r

L
= 0.0, 0.25, 0.50, 0.75, 1.0) of (a) 50-nm, (b) 100-nm, (c) 150-nm,

(d) 200-nm GNS irradiated with one laser pulse.

appreciable thermal lagging (relaxation and thermalization).
Further investigations with a series of two pulses, depicted in
Fig. 15, reveals the presence of two peaks on the normalized
temperature change profile, at the surface of the GNS.

This observation is an outcome of the temporal intensity
distribution [Fig. 2(b)] where, after attaining the first peak (lo-
cal maxima) (1.018 Imax) at t = 2tp, the magnitude of intensity
decreases, attends a local minima (0.736 Imax) at t = 3tp, and
finally increases subsequently to attend the second peak (local
maxima) (1.018 Imax) at t = 4tp. Similarly, irradiation with the
series of three pulses [Fig. 2(c)] results in the presence of three
peaks on the normalized temperature change profile, at the
GNS surface (cf. Fig. 16).

For both cases (Figs. 15 and 16), on account of the transfer
of thermal energy towards the interior, the intermediate peak(s)
get(s) diffused completely when reaching the center. In addi-
tion to a nonuniform temperature profile, a GNS of larger radius
exhibits a significant smearing of the intermediate peak(s). The
last irradiation source, i.e., the laser pulse train [Fig. 2(d)] is
characterized by two aspects: (i) a maximum intermediate drop

of intensity (Imax to zero) at t = 4tp following the presence
of the first peak, and (ii) a maximum temporal distance
between subsequent peaks (4tp). This triggers the spread of the
intermediate peak on the normalized temperature change at the
surface of the GNS. Therefore, compared to irradiation with
previous sources, the dominant presence of the intermediated
peak is observed at the surface (cf. Fig. 17).

However, with the rise of the radius of the GNS, temper-
ature peaks are observed to diffuse and L = 200 nm shows
a negligible presence of intermediate peak at the interior
locations [Fig. 17(d)]. These results highlight the appreciable
presence of thermal lagging (with more transportation and
penetration of thermal energy), when the radius of the GNS
is enhanced. However, closer viewing of the temperature
response reveals that the continuous increase of the GNS
radius does not necessarily enhance thermal lagging equally
at the same rate for all cases. For, e.g., with reference to
surface temperature response between L = 50 nm and 100 nm,
temperature response between L = 150 nm and 200 nm is
observed to be closely packed for all laser-irradiation cases.

043302-23



ARNAB LAHIRI AND PRANAB K. MONDAL PHYSICAL REVIEW E 97, 043302 (2018)

  (a)   (b) 

  (c)   (d) 

Response time, t (ps)

N
or

m
al

iz
ed

te
m

pe
ra

tu
re

ch
an

ge
,

m
ax

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

FDM 1
FDM 2
FDM 3 [15]
LBM

r = 50, 37.5, 25, 12.5, 0.0 nm

50 nm GNS

Response time, t (ps)

N
or

m
al

iz
ed

te
m

pe
ra

tu
re

ch
an

ge
,

m
ax

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

FDM 1
FDM 2
FDM 3 [15]
LBM

r = 0.0, 25.0, 50.0, 75.0, 100.0 nm

100 nm GNS

Response time, t (ps)

N
or

m
al

iz
ed

te
m

pe
ra

tu
re

ch
an

ge
,

m
ax

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1 FDM 1
FDM 2
FDM 3 [15]
LBM

150 nm GNS

r = 150.0, 112.5, 75.0, 37.5, 0.0

Response time, t (ps)

N
or

m
al

iz
ed

te
m

pe
ra

tu
re

ch
an

ge
,

m
ax

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1 FDM 1
FDM 2
FDM 3 [15]
LBM

r = 0.0, 50.0, 100.0, 150.0, 200.0

200 nm GNS

FIG. 15. Normalized temperature change at various interiors ( r

L
= 0.0, 0.25, 0.50, 0.75, 1.0) of (a) 50-nm, (b) 100-nm, (c) 150-nm,

(d) 200-nm GNS irradiated with series of two laser pulses.

F. Role of effective thermal conductivity
(temperature dependence and size effect)

It is crucial to address that the analysis of microscale heat
transfer by macroscopic non-Fourier frameworks does not
explicitly take any spatiomicroscopic effects (for, e.g., the
inclusion of mean free path or Knudsen number in math-
ematical formulation) into account. With the shortening of
length scale (reduced to the order of mean effective path), the
number of molecular collisions (between energy carriers) gets
successively reduced and the ballistic behavior in heat transfer
becomes pronounced. Although this highly nonlocal phe-
nomenon observed in a GNS is qualitatively addressed by the
DPL framework with a macroscopic temperature [satisfying
the CIT framework with yield of non-negative (equilibrium)
entropy production rate], the definition of thermal conductivity
was hardly revised to be an “effective” one. Thermal conduc-
tivity taken into the majority of studies [15,17,28,43] involving
non-Fourier two-step or SPL or DPL frameworks is actually
the electron thermal conductivity (ke) whereas the conductivity
of metallic lattice was largely neglected. Later, single or bulk
thermal conductivity (k), employed by Qiu and Tien [7], was

related to electron thermal conductivity (ke) as a function of
temperature as follows:

ke ≡ k

(
Te

Tl

)
. (65)

In Eq. (65), Te and TL are the electron temperature and
lattice temperature respectively and the relation becomes valid
when the electron temperature is considered much lower
than the Fermi temperature [7]. With the accomplishment
of thermal equilibrium (i.e., thermalization between electron
temperature and lattice temperature, Te ≈ Tl), the bulk thermal
conductivity eventually becomes equal to the electron thermal
conductivity. However, under short-pulse heating, for small
time (picoseconds) transients, the majority of the penetrated
thermal energy is transferred to the interior via free electrons
leading to larger electron temperature; Te � Tl. Therefore,
following the correlation presented in Eq. (65), thermal con-
ductivity (k) under picosecond transient should become less
than the conventional single or bulk thermal conductivity.
Further, with the significant enhancement (or reduction) of
spatial dimension(s) of physical domain, a larger (or smaller)
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FIG. 16. Normalized temperature change at various interiors ( r

L
= 0.0, 0.25, 0.50, 0.75, 1.0) of (a) 50-nm, (b) 100-nm, (c) 150-nm,

(d) 200-nm GNS irradiated with series of three laser pulses.

number of interactions of energy carriers (viz. phonon and
free electron) commence at a given instant of time. Under
these circumstances, the number of collisions experienced by
the energy carrier(s) must influence the thermal conductivity
which eventually ceases to remain a sole function of electron
thermal conductivity alone.

Considering these circumstances and the following previous
lead efforts [38,39,42,51], we are formulating an expression
of effective thermal conductivity (keff ) as functions of (i) bulk
thermal conductivity (temporal temperature dependence form)
[42] and (ii) the Knudsen number Kn, based on the radius of
a GNS (defined to be the ratio of mean free path of collision
and length scale) as follows [38]:

keff (�1,�2) = �1[k(T (r,t))] · �2(Kn). (66)

In Eq. (66), �1 and �2 are respective functions of tem-
perature dependent (bulk) thermal conductivity and Knud-
sen number and further are formulated mathematically as

follows:

�1[k(T (r,t))] = kb

(
T (r,t)

To

)0.6

, (67a)

�2(Kn) =
(√

1 + 4π2Kn2 − 1

2π2Kn2

)
; Kn =

(
λm

L

)
. (67b)

In Eq. (67a), kb is the bulk thermal conductivity at initial
(room) temperature T0(=300 K). Since at picosecond transient
the problem is thermophysically unsteady, �1 in Eq. (67a)
encompasses the unsteady effect(s). However, �2 in Eq. (67b)
does not inherit any unsteady feature(s) [38] and solely remains
dependent on the size (radius) of the physical domain, emulated
by Kn. In this case, for a GNS of given radius, Kn is conceived
to be a constant (although for high temperature applications,
it can strongly depend on a change of temperature). With the
enlargement of physical length scale of the problem, i.e., a
very low Knudsen number; Kn � 1, we observe �2 → 1.
This signifies that the independence of effective thermal
conductivity from the size (radius) of the GNS and heat
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FIG. 17. Normalized temperature change at various interiors ( r

L
= 0.0, 0.25, 0.50, 0.75, 1.0) of (a) 50-nm, (b) 100-nm, (c) 150-nm,

(d) 200-nm GNS irradiated with laser pulse train.

transfer characteristics eventually turns to be thermophysically
diffusive, rather than ballistic. Since, in the current situation,
the radius of the GNS is varied from 50 to 200 nm and the mean
effective path λm is considered to be 25 nm [52], the magnitude
of Kn varies from 0.125 to 0.5 with �2 varying from 0.465 to
0.880. Therefore, keff becomes clearly less as compared to the
corresponding magnitude of kb. It is worth discussing that in
situations where Kn appears to be greater than 1, the source
term on account of laser-material interaction has to be modeled
by appropriate frameworks (e.g., the phonon-radiative transfer
equation) rather than implementing Beer’s law [as considered
here in Eq. (6)].

In order to understand (i) the characteristics of temper-
ature response while adopting effective thermal conductiv-
ity (instead of bulk thermal conductivity) and (2) temporal
distribution of effective thermal conductivity at picosecond
transient, computation(s) are performed for a GNS of ra-
dius L = 50, 100, 150, and 200 nm, irradiated with a short-
pulse laser. However, inclusion of temperature dependence in
Eq. (66) turned the governing algebraic equation(s) (derived
from various schemes in Sec. II) highly nonlinear. Therefore,

effective thermal conductivity needs to be further linearized as
follows [42]:

[keff (�1,�2)]m+1
i = {�1[k(T (r,t))]}m+1

i · [�2(Kn)]m+1
i

= kb

(
T m

i

To

)0.6

· �2(Kn)

[
∵ [�2(Kn)]m+1

i = �2(Kn)
]
. (68)

In Eq. (68), for a GNS of given radius �2 remains a
constant (i.e., independent of physical and temporal index i

and m respectively). In this entire study, we further assume that
(i) other than k, remaining intrinsic thermophysical properties
(τq, τT , ρc) are temperature averaged (as depicted in Sec. III A)
and (ii) effective thermal conductivity is independent of the
imposed frequency of short-pulse laser. All the results obtained
for a GNS of various radii are subsequently depicted in Fig. 18.

For all the cases, the peaking time of the surface of the
GNS is observed to remain invariant to the inclusion of effec-
tive thermal conductivity. However, the surface temperature
response past the local maxima is found to retain a lower
magnitude compared to the temperature response witnessed
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FIG. 18. Normalized temperature change and temporal variation of effective thermal conductivity at surface and center of (a),(b) 50-nm,
(c),(d) 100-nm, (e),(f) 150 nm, and (g),(h) 200-nm GNS respectively: the role of effective thermal conductivity.

considering bulk thermal conductivity. This is because for
0.125 � Kn � 0.5, effective thermal conductivity is always
lower than the bulk thermal conductivity. Since volumetric
effects are more pronounced on the interior (r = 0.0) of a
GNS (Sec. III E), the thermophysical response at the center
is observed to deviate (lower) significantly with respect to the
conventional situation where bulk thermal conductivity was
considered.

With reference to Fig. 18 and observations noted while
investigating thermal lagging in Sec. III E, we first summarize
the benchmark thermophysical aspect(s) when the radius of
a GNS is enlarged. With the rise of the radius of GNS, (i)
the corresponding Knudsen number decreases, (ii) the mag-
nitude of the effective thermal conductivity simultaneously
increases [cf. Figs. 18(b), 18(d), 18(f), and 18(h)] (though
in the present case, it still remains much less than the bulk
thermal conductivity), and, last but not least, (iii) the vol-
umetric lagging phenomenon becomes appreciable with the
presence of larger phonon-electron interaction(s). Therefore,
the temporal temperature response witnessed for both cases
(effective and bulk thermal conductivity) is found to remain
closed with the rise of the GNS radius (e.g., the temperature
response at the surface with effective thermal conductivity
is almost superimposed with the temperature response at the
surface considering bulk thermal conductivity). Interestingly,
it is noted that the temporal variation of the effective thermal
conductivity profile follows almost the same trend of temporal
normalized temperature change profile (with effective thermal
conductivity).

For a GNS of a given radius, the peaking time of effective
thermal conductivity also remains identical to the respective
peaking time of temperature response at the surface and
center. Progressive relaxation and thermalization result in the
enlargement of spacing between the corresponding effective
thermal conductivity profiles at the surface and center (similar

to temperature profiles) for a GNS of higher radius (lower
Knudsen number). Since pronounced thermal lagging facili-
tates a larger temperature gradient with higher transportation
of thermal energy towards the interior (cf. Sec. III E), the keff

distribution at the surface varies (decays past the local maxima)
significantly when the radius of GNS is enlarged. On the other
hand, a lower (rate of) temperature rise at the interior eventually
results in a timidly varying keff with a further shift of peaking
time towards the right (the center of a GNS).

G. Convergence characteristics and CPU time

With the background of accuracy reported in Sec. III A,
efficiency of the schemes to solve the DPL governing energy
equation with the laser irradiation source term is assessed
by studying the convergence characteristics as well as the
corresponding CPU time per unit step. For irradiation of a
GNS with single laser pulse and time step 	t = 0.0001 ps, the
simultaneous decay of error and rise of CPU time are depicted
in Figs. 19(a) and 19(b) respectively. From Fig. 19(a), it is
observed that the error ξ2 decays fastest by both LBM and
FDM2 schemes up to 3 × 10−9(650 ps), after which ξ2 does not
change significantly for FDM2. The LBM scheme, however,
converges with the same rate and furthermore, a convergence
as low as 10−12 is obtained. FDM1 shows an excellent rate
of convergence (the same as that of FDM2 and LBM) up to
240 ps, beyond which ξ2 remains almost constant and does
not converge beyond 3 × 10−7(lowest among all the schemes).
Convergence of FDM3 [15] is found to remain in between
FDM1 and FDM2 in most of the situations.

From Fig. 19(b), it is observed that CPU time increases
linearly with physical time (number of iterations) for all
schemes, with the lowest slope seen in the LBM scheme. At
various levels of convergence, the CPU time of LBM is found
to be 5–12 times faster than in other FDM schemes, signifying a
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FIG. 19. (a) Convergence history with physical time, (b) CPU time vs physical time under DPL framework for all the numerical schemes.

lower computational cost per iteration (time step). Since all the
three level, implicit FDM schemes are solved by the same linear
solver (TDMA), CPU time does not vary appreciably. Among
the FDM schemes, the maximum computational time and slope
is observed by the FDM3 [15] scheme for all situations and
the minimum is observed for FDM1. All the computations are
performed in a Linux operating system with 20 GB RAM.
For a broad scale of iterations performed, results show the
computational superiority of the LBM scheme to the remaining
FDM schemes, in terms of both aspects of convergence and
CPU time.

IV. CONCLUSION

In this article, a brief numerical study is accomplished
to illustrate the temperature history and thermal lagging
characterization of a gold nanosphere (GNS) irradiated with
femtosecond laser pulse(s) by non-Fourier SPL and DPL
frameworks such that the problem could be viewed as a
delayed response in macroscale. LBM schemes and FDM
schemes were employed to obtain the correct temperature
distribution. In order to understand the qualitative meaning
of single-variable temperature defined by these frameworks
and their qualitative thermodynamic interpretation in the con-
text of thermophysical anomalies like overshooting, entropy
generation characteristics by the frameworks of classical and
irreversible thermodynamics are presented. Useful observa-
tions, conclusions, and future work from the numerical study
are presented briefly as follows:

(i) At the subpicosecond temporal domain, effective pen-
etration of thermal energy within the interior of a GNS
is observed under the DPL framework, whereas under the
SPL framework, thermal energy is contained within the
neighborhood of the GNS surface resulting in a higher temper-
ature rise and a larger peaking time of the GNS surface. The
ineffective transportation of thermal energy observed under
the SPL framework was further justified by the calculation of
the penetration depth of a thermal wave. With the increase
of time, the temperature discontinuity propagates inwards

and overshooting within the GNS, characterized by adverse
temperature gradient, was noticed.

(ii) Instead of the presence of an adverse temperature
gradient, heat was observed to transfer from the surface
towards the interior (unlike with Fourier’s law where a sense of
heat-flux and temperature gradient were mutually exclusive).
Thermodynamic analysis further reveals that the zone of tem-
perature overshoot is characterized by a negative (equilibrium)
entropy production rate (under the CIT framework) violating
LTE, whereas, under the EIT framework, a nonzero entropy
production rate is observed at all temporal levels. It can be
concluded that temperature obtained under the SPL framework
is qualitatively equivalent to a nonlocal thermal wave (with no
appreciable equilibrium interpretation).

(iii) The DPL framework, free from temperature over-
shooting, satisfies the LTE hypothesis by yielding a positive
definite (equilibrium) entropy production rate. The tempera-
ture history retrieved in the paradigm of DPL qualitatively
becomes equivalent to (local) equilibrium temperature. Results
at all temporal levels under the DPL framework show the GNS
surface to attain the highest temperature.

(iv) It is important to infer that the DPL framework for
all magnitudes of LR is not globally admissible to the LTE
framework. For LR < 0.5, temperature overshooting is ob-
served yielding a negative equilibrium entropy production rate.
Since for gold, LR(=5.29) is considered to be greater than 0.5,
consistency with the LTE framework is observed. However,
this observation is limited to fixed thermal diffusivity α and
heat capacity ρc.

(v) Studying the linear rise of temperature with laser
fluence under the DPL framework, under spherical coordinate
geometry, it was concluded that the normalized temperature
change is equal to the normalized reflectivity change. The
effect of the change of radius of the GNS on thermal lagging
and irradiation with various laser sources was further assessed.
It was concluded that with the enhancement of radius, pene-
tration and lagging of thermal energy is more pronounced on
account of phonon-electron interaction in space resulting in a
nonuniform temperature response. However, thermal lagging
is not enhanced appreciably at the same rate for all situations.
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(vi) An expression of effective thermal conductivity is
formulated considering unsteady (temperature) effect and size
(Knudsen number) dependence. The quantitative difference
between thermophysical response obtained from situations
involving bulk and effective thermal conductivity is illustrated
in detail with the change of radius of a GNS. It was concluded
that the thermal response(s) obtained considering bulk and
effective thermal conductivity vary significantly for a GNS
of lower radius (i.e., a higher Kn and a lower keff ). The
temporal effective thermal conductivity profile is observed to
follow the same trend of temporal normalized temperature
response. With the increase of a GNS radius (i.e., lower kn

and higher keff ), spacing between the keff profile at the surface
and center enhances progressively on account of pronounced
phonon-electron interaction (thermal lagging). We feel that
more experimental studies are warranted to judge the rightness
of the effective thermal conductivity formulated above and left
further, as an open debate.

(vii) Results obtained from four numerical schemes match
each other exceedingly well, for all cases. Comparing with an
analytical solution, the LBM scheme was observed to yield
maximum accuracy for all situations. The LBM scheme was
also observed to converge as low as 10−12 with minimum
CPU time required per time step. The reported FDM scheme
(FDM3) appears to be an effective scheme with reasonable
accuracy, convergence, and CPU time (superior to the FDM
scheme of Dai et al. [15], in most of the situations). Maximum
temperature rise at the surface and the corresponding peaking
time are computed by all the numerical schemes. We feel
the temperature history of the GNSs depicted in this work
as well as the solution tools (to retrieve the former) will be
extremely useful to review numerous applications of nanoscale
heat transfer, subjected to short-pulse (femtosecond), high-rate

heating (micromanufacturing, nanoscience and noninvasive
biological applications, etc.). Though high frequency heating
is the focus of attention in this study, the thermal response
of gold nanoparticles exposed to small frequency heating
also fetches paramount interest for medical applications [53].
The applicability of non-Fourier frameworks to this genre of
problems remains an open question.

(viii) In this current analysis, we have considered a GNS
illuminated to high-rate short-pulse laser heating. We sincerely
believe that the current physical modeling will be highly cred-
ible for practical situations (e.g., where the GNS is surrounded
by other entities, say, biological tissues or other nanoparticles)
where, on account of the presence of the surrounding medium,
a laser pulse is irradiated uniformly over the GNS surface with
normal incidence. Therefore, the solution tools depicted will
be useful to provide a first-hand approximation of temperature
rise of a GNS at picosecond transient. However, for more
accurate analysis of this genre of problems where a GNS is
coupled with entities of different thermophysical attributes, the
effect of interfacial condition(s) on thermal energy transport
needs to be thoroughly analyzed both quantitatively as well
as qualitatively. We are currently investigating the scope
of implementing the above reported numerical schemes to
efficiently elucidate the role of the interfacial phenomenon on
temperature response and thermodynamic characteristics.
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APPENDIX: DETAILED FORMULATIONS OF FINITE DIFFERENCE SCHEMES (FDM1 AND FDM2)

1. FDM1 scheme

For the solution of the current problem using this scheme involving the volumetric laser irradiation source term, Eq. (5) is first
integrated between time levels (m) and (m + 1) as follows:

∫ (t+ 	t
2 )

(t− 	t
2 )

{
∂

∂t

[
ρc

(
T + τq

∂T
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)
− kτT

∂2T
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+ G
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dt. (A1)

With m the index for the current time level, the time integration of Eq. (A1) yields,

[
ρc

(
T + τq

∂T

∂t

)
− kτT
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I

+
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II

. (A2)

Time integration performed in Eq. (A2) preserves first order global accuracy in time (left-hand side). Rearranging terms I and
II on the left-hand-side, and further evaluating the integration of various terms of the right-hand side by (i) applying a straight line
interpolation (trapezoidal integration) between the two consecutive time levels m and m + 1 of term I (which preserves second
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order accuracy in time), and (ii) using the initial value of integrand for the term II, we further obtain
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With the solution space 0 � r � L equally divided into N control volumes, and the FDM nodes placed at the boundaries of
the control volumes, the number of grid points considered are N + 1. Next, in Eq. (A3), for the time derivative terms I and II, a
second-order backward difference and a central difference scheme, respectively, is applied. All the spatial derivatives (both first
and second order) are discretized using a second order central difference scheme. For all the discretizations performed, second
order accuracy in both space and time are preserved. In the discretized forms, these terms are the following:
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Substituting discretization of time and space derivative terms from Eqs. (A4)–(A9) into Eq. (A3), and rearranging the terms,
we get the difference equation illustrated in Eq. (37).

2. FDM2 scheme

Instead of integrating between consecutive time levels (m) and (m + 1), time integration is simply initiated by integrating
Eq. (5) between two intermediate time levels (m − 1

2 ) and (m + 1
2 ) respectively as follows:

∫ (t+ 	t
2 )

(t− 	t
2 )

{
∂

∂t

[
ρc

(
T + τq

∂T

∂t

)
− kτT

∂2T

∂r2
− 2kτT

r

∂T

∂r

]}
dt =

∫ (t+	t/2)

(t−	t/2)

(
k
∂2T

∂r2
+ 2k

r

∂T

∂r
+ G

)
dt. (A10)

With m as the index for the current time level, the time integration of Eq. (A10) yields
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Terms I and II on the left-hand side in Eq. (A11) are rearranged and similar terms are further grouped together. Integration of
terms I and II of the right-hand side are performed by (1) applying a straight line interpolation (trapezoidal integration) between
the two consecutive time levels (m − 1/2) and (m + 1/2) for term I (preserves second order accuracy in time), and (2) using the
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initial value of the integrand (at time level m) for the term II, we further obtain
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In Eq. (A12), term I is interpolated as the average of the preceding and succeeding levels and term II can be further approximated
by the central difference scheme. In each of the operations, second order accuracy is preserved,
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Similarly, spatial derivatives of temperature at the intermediate levels (terms III–VI) of Eq. (A12) are also interpolated as the
average of the preceding and succeeding time levels,(
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Spatial derivatives in the right-hand side of Eqs. (A15) and (A16) are discretized, as presented in Eqs. (A4)–(A9), and are
substituted further into Eq. (A12) to obtain the difference equation illustrated in Eq. (39).
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