
PHYSICAL REVIEW E 97, 043301 (2018)

Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model
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While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte
Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase
transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-
bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic,
we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to
10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the
same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we
have obtained the critical inverse temperature Kc = 0.221 654 626(5) and the critical exponent of the correlation
length ν = 0.629 912(86) with precision that exceeds all previous Monte Carlo estimates.
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I. INTRODUCTION

The Ising model [1] has played a seminal role in the theory
of phase transitions and has served as a testing ground for
innumerable numerical and theoretical approaches. Although
it has been solved in one and two dimensions (1D and 2D) [1,2],
its analytic solution for three dimensions is still a mystery.
Nevertheless, by the end of the past century, various numerical
methods like Monte Carlo [3], nonequilibrium relaxation
Monte Carlo [4], Monte Carlo renormalization group [5,6],
field-theoretic methods [7,8], and high-temperature series
expansions [9] have provided precise information about the
nature of the phase transition [10] and critical exponents,
although in some cases the results did not agree within the
error bars. In addition, Rosengren made an “exact conjecture”
for the critical temperature for the 3D Ising model [11] and
the precision of numerical calculations was insufficient to
determine if this prediction was correct. Fisher, however,
pointed out that a number of other “exact conjectures” could be
derived that gave quite similar numerical values [12]. Hence,
while rather precise values existed for the 3D Ising critical
temperature, there were still unanswered questions. (For a
rather complete review of results prior to 2002 see Ref. [10].)

Since the mid-2000s, several new developments appeared
that reinvigorated interest in the critical behavior of the 3D
Ising model. Recently, the conformal bootstrap method, using
the constraints of crossing symmetry and unitarity in conformal
field theories, has given unparalleled precision in the estimates
for the critical exponent ν for the 3D Ising model [13–15].
New Monte Carlo simulation based, in part, on nonperturbative
approaches [16–18] and tensor renormalization group theory
with high-order singularity value decomposition [19] have also
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yielded very precise results. In clarifying work, Wu, McCoy,
Fisher, Chayes, and Perk [20–22] gave very convincing argu-
ments that a supposed “exact” solution was simply wrong.

Precise numerical estimates for various critical properties
play an important role as a testing ground for developing theo-
ries and supposed exact solutions, and Monte Carlo simulation
is potentially one of the best suited methods for delivering
quantitative information about the critical behavior. In this
paper, we present the results of high-precision Monte Carlo
simulations of critical behavior in the 3D Ising model, using
histogram reweighting techniques [23,24], cross-correlation
analysis [25,26] and finite-size scaling methods [27–30] to
obtain high-resolution estimates for the critical coupling and
critical exponents.

II. MODEL AND METHODS

A. Three-dimensional Ising model

We have considered the simple cubic, ferromagnetic Ising
model with nearest-neighbor interactions on L × L × L lat-
tices with periodic boundary conditions. Each of the lattice
sites i has a spin, σi , which can take on the values σi = +1
for spin up and σi = −1 for spin down. The interaction
Hamiltonian is given by

H = −J
∑
〈i,j〉

σiσj , (1)

where 〈i,j 〉 denotes distinct pairs of nearest-neighbor sites and
J is the interaction constant. We also define the dimensionless
energy E as

E = −
∑
〈i,j〉

σiσj . (2)

In discussing the critical properties of the Ising model, it is
easier to deal with the inverse temperature, so we define the
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dimensionless coupling constant K = J/kBT and use K for
the discussion.

B. Monte Carlo sampling method

We have simulated L × L × L simple cubic lattices using
the Wolff cluster flipping algorithm [31]. Single clusters are
grown and flipped sequentially. Bonds are drawn to all nearest
neighbors of the growing cluster with probability

p = 1 − e
−2Kδσi σj . (3)

To accelerate the Wolff algorithm, we calculated the energy
and magnetization by only looking at the spins that actually
get flipped in the process. To do that, rather than flipping spins
immediately, we temporarily set them equal to zero and keep
a list of those spins. By setting the spins in that cluster equal to
zero, we do not calculate the internal energy of the cluster since
the energy change only comes from the edges of the cluster.
The magnetization change, however, is related to the number
of spins in the cluster. After calculating the changes, we go
back and set all of the “zeroed” spins to their correct value
(flipped from their original value). So we calculate the energy
and magnetization once, then add the changes to them to get
the new values.

In the simulation, a new random number was generated for
each bond update, using the Mersenne twister random number
generator [32]. We have implemented the Mersenne twister
algorithm with using both 32-bit word length and 53-bit word
length.

The simulations were performed at K0 = 0.221 654, which
is an estimate for the critical inverse temperature Kc by Monte
Carlo renormalization group analysis [6] and also used in
an earlier, high-resolution Monte Carlo study [3]. Data were
obtained for lattices with 16 � L � 768, after 2 × 105 Wolff
steps were discarded for equilibrium. Even for the largest
lattice size, L = 1024, the system had reached the equilibrium
value of the energy by 130 000 cluster steps, and the simulation
was then run another 10 times the equilibrium relaxation time
before data accumulation began. Actual lattice sizes studied
were L = 16, 24, 32, 48, 64, 80, 96, 112, 128, 144, 160, 192,
256, 384, 512, 768, and 1024. For L � 768 we started from
an ordered state and the relaxation to equilibrium was less
than a thousand Wolff flips in all cases [33]. Our procedure
insured not only that equilibrium had been reached but also that
correlation with the initial state had been lost. For L = 1024
we began with random states but our procedure insured that the
system had reached equilibrium and that more than 10 times
the equilibrium relaxation time had elapsed before data were
taken. We performed between 6000 runs to 12 000 runs of
5 × 106 measurements for each lattice size. In total, we have
used around 2 × 107 CPU core hours and generated more than
5 TB of data using five different Linux clusters. For the largest
lattice (L = 1024), the run length for a single run is around
4000 times the correlation time for the internal energy, and the
average cluster size is around 1.1 × 106.

C. Histogram reweighting

One limitation on the resolution of Monte Carlo simulations
near phase transition is that many runs must be performed at

different temperature to precisely locate the peaks in response
functions. Using histograms we can extract more information
from Monte Carlo simulations [23,24], because samples taken
from a known probability distribution can be translated into
samples from another distribution over the same state space.

An importance sampling Monte Carlo simulation (in our
case using cluster flipping as described above) is first carried
out at the inverse temperature K0 to generate configurations
with a probability proportional to the Boltzmann weight,
exp(−K0E). The probability of simultaneously observing
the system with total (dimensionless) energy E and total
magnetization M is

PK0 = 1

Z(K0)
W (E,M) exp(K0E), (4)

where Z(K0) is the partition function and W (E,M) is the
number of configurations with energy E and magnetization
M . Then, a histogram H0(E,M) of the energy and the mag-
netization at K0 is constructed to provide an estimate for the
equilibrium probability distribution. Thus,

H0(E,M) = N

Z(K0)
W̃ (E,M) exp(−K0E), (5)

where W̃ (E,M) is an estimate for the true density of states
W (E,M) and N is the number of measurements made. In
the limit of an infinite-length run, we can replace W (E,M)
with W̃ (E,M), which will yield the relationship between the
histogram measured at K = K0 and the (estimated) probability
distribution for arbitrary K ,

PK (E,M) = H0(E,M)e�KE∑
E,M H0(E,M)e�KE

, (6)

where �K = K0 − K . Based on PK (E,M), we can calculate
the average value of any function of E and M , f (E,M),

〈f (E,M)〉K =
∑
E,M

f (E,M)PK (E,M), (7)

As K can be varied continuously, the histogram method
is able to locate the peaks for different thermodynamic
derivatives precisely (e.g., using the golden-section search
technique [34]), and it provides an opportunity to study the
critical behavior using Monte Carlo with high resolution.

D. Quantities to be analyzed

Ferrenberg and Landau [3] showed that the critical exponent
ν of the correlation length can be estimated more precisely from
Monte Carlo simulation data if multiple quantities, including
traditional quantities which still have the same critical proper-
ties, are included. The logarithmic derivative of any power of
the magnetization

∂ ln 〈|m|i〉
∂K

= 1

〈|m|i〉
∂〈|m|i〉

∂K
= 〈|m|iE〉

〈|m|i〉 − 〈E〉, (8)
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for i = 1,2, . . . , can yield an estimate for ν and we have
considered the logarithmic derivatives of 〈|m|〉, 〈|m|2〉, 〈|m|3〉,
and 〈|m|4〉 in this analysis. We also included (reduced) mag-
netization cumulants U2i [35] defined by

U2i = 1 − 〈|m|2i〉
3〈|m|i〉2

, i = 1,2,3, . . . , (9)

whose derivatives with respect toK can also be used to estimate
ν. In this analysis we have considered the second-order, fourth-
order, and sixth-order cumulants U2, U4, and U6.

Once ν is determined, we can estimate the inverse critical
temperature Kc(L) from the locations of the peaks in the above
quantities. Apart from those quantities, we can also use the
specific heat

C = K2L−d (〈E2〉 − 〈E〉2), (10)

the coupling derivative of |m|,
∂〈|m|〉
∂K

= 〈|m|E〉 − 〈|m|〉〈E〉, (11)

the finite-lattice susceptibility,

χ ′ = KLd (〈|m|2〉 − 〈|m|〉2), (12)

and the zero of the fourth-order energy cumulant

Q4 = 1 − 〈(E − 〈E〉)4〉
3〈(E − 〈E〉)2〉2

. (13)

Note that in Eq. (12), it is the finite-lattice susceptibility, not
the “true” susceptibility calculated from the variance of m,
χ = KLd (〈m2〉 − 〈m〉2). The “true” susceptibility cannot be
used to determine Kc(L) as it has no peak for finite systems. For
sufficiently long runs, 〈m〉 = 0 for zero magnetic field (h = 0)
so that any peak in χ is merely due to the finite statistics of the
simulation.

We have calculated all of the above quantities by using the
GCC Quad-Precision Math Library which provides quadruple
(128-bit) precision.

E. Finite-size scaling analysis

At a second-order phase transition the critical behavior of
a system in the thermodynamic limit can be extracted from
the size dependence of the singular part of the free energy
density. This finite-size scaling theory was first developed by
Fisher [27–30].

According to finite-size scaling theory, and assuming ho-
mogeneity and hyperscaling and using L (linear dimension)
and T (temperature) as variables, the free energy of a system
is described by the scaling ansatz,

F (L,T ) = L−(2−α)/νF(εL1/ν,hL(γ+β)/ν), (14)

where ε = (T − Tc)/Tc (Tc is the infinite-lattice critical tem-
perature) and h is the magnetic field. The critical exponents α,
β, γ , and ν assume their infinite lattice values. The choice of the
scaling variable x = εL1/ν is motivated by the observation that
the correlation length, which diverges as ε−ν as the transition
is approached, is limited by the lattice size L. The various

thermodynamic properties can be determined from Eq. (14)
and have corresponding scaling forms, e.g.,

m = L−β/νM0(εL1/ν), (15)

χ = Lγ/νχ0(εL1/ν) + bχ , (16)

C = Lα/νC0(εL1/ν) + bC, (17)

where M0(x), χ0(x), and C0(x) are scaling functions and
bχ ,bC are analytic background terms. Because we are inter-
ested in zero-field properties (h = 0), x is the only relevant
thermodynamic variable.

A number of different practical implementations based
on finite size scaling (FSS) schemes have been derived and
successfully applied to the analysis of the critical phenom-
ena [3,10,16]. In our analysis, we determine the effective
transition temperature very precisely based on the location of
peaks in multiple thermodynamic quantities as discussed in
Sec. II D.

Take the specific heat C, for example; for a finite lattice, the
peak occurs at the temperature where the scaling function C0

is maximum, i.e., when

∂C0(x)

∂x

∣∣∣∣
x=x∗

= 0. (18)

The temperature corresponding to the peak is the finite-lattice
(effective) transition temperature Tc(L), on the condition x =
x∗ varies with L asymptotically as

Tc(L) = Tc + Tcx
∗L−1/ν . (19)

The finite-size scaling ansatz is valid only for sufficiently
large lattice size, L, and temperatures sufficiently close to Tc.
Corrections to scaling and finite-size scaling must be taken
into account for smaller systems and temperatures away from
Tc. Basically, there are two kinds of correction terms; one is
due to the irrelevant scaling fields which can be expressed
in terms of an exponent θ leading to additional terms like
a1ε

θ + a2ε
2θ + · · · , while the other is due to the nonlinear

scaling fields which can be expressed like b1ε
1 + b2ε

2 + · · · .
The temperatures that we consider in our analysis differ from
Tc (or ε = 0) by amounts proportional to L−1/ν [Eq. (19)], so
that the correction terms can be expressed by the power law
a1L

−θ/ν + a2L
−2θ/ν and b1L

−1/ν + b2L
−2/ν .

If we take correction terms into account, then the estimate
for Tc(L) can be expressed to be

Tc(L) = Tc + A′
0L

−1/ν(1 + A′
1L

−ω1 + A′
2L

−2ω1 + · · ·
+B ′

1L
−ω2 + B ′

2L
−2ω2 + · · · + C ′

1L
−(ω1+ω2) + · · ·

+D′
1L

−ων + D′
2L

−2ων + · · · + E′
1L

−ωNR + · · · ),

(20)

where ωi (i = 1,2, . . . ) are the correction exponents, ων =
1/ν is the correction exponent corresponding to the nonlinear
scaling fields [36], and ωNR is the correction exponent due to
the rotational invariance of the lattice [37]. As we have defined
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the coupling as K = J/kBT , Kc(L) can be expressed as

Kc(L) = Kc + A0L
−1/ν(1 + A1L

−ω1 + A2L
−2ω1 + · · ·

+B1L
−ω2 + B2L

−2ω2 + · · · + C1L
−(ω1+ω2) + · · ·

+D1L
−ων + D2L

−2ων + · · · + E1L
−ωNR + · · · )

(21)

Rather than using Eq. (21) to estimate Kc directly, we
can first estimate the critical exponent ν using the quantities
discussed in Sec. II D. After obtaining a precise estimate for ν,
we can insert it into Eq. (21), so that there is one less unknown
parameter to do the nonlinear fit to Eq. (21).

To estimate ν precisely, we can use the following critical
scaling form without the prior knowledge of the transition
coupling Kc,

∂U2i

∂K

∣∣∣∣
max

= Ui,0L
1/ν(1 + a1L

−ω1 + a2L
−2ω1 + · · ·

+ b1L
−ω2 + b2L

−2ω2 + · · · + c1L
−(ω1+ω2) + · · ·

+ d1L
−ων + d2L

−2ων + · · · + e1L
−ωNR + · · · ),

(22)

∂ ln 〈|m|i〉
∂K

∣∣∣∣
max

= Di,0L
1/ν(1 + a1L

−ω1 + a2L
−2ω1 + · · ·

+ b1L
−ω2 + b2L

−2ω2 + · · ·
+ c1L

−(ω1+ω2) + · · · + d1L
−ων

+ d2L
−2ων + · · · + e1L

−ωNR + · · · ). (23)

Once ν is determined from the fit of Eq. (22) and Eq. (23),
we can estimate the critical inverse temperature Kc with a fixed
value of ν.

Another method which can be used to determine the inverse
transition temperature is Binder’s fourth-order cumulant cross-
ing technique [35]. As the lattice size L → ∞, the fourth-order
magnetization cumulant U4 → 0 for K < Kc and U4 → 2/3
for K > Kc. U4 can be plotted as a function of K for different
lattice sizes, and the location of the intersections between
curves for the two lattice sizes is given by

Kcross(L,b) = Kc + a1L
−1/ν−ω1

(
b−ω1 − 1

b1/ν − 1

)

+ a2L
−1/ν−ω2

(
b−ω2 − 1

b1/ν − 1

)
+ · · · , (24)

where L is the size of the smaller lattice, b = L′/L is the ratio
of two lattice sizes, and ω1, ω2 are correction exponents in the
finite-size scaling formulation.

F. Jackknife method with cross correlations

Ideally, in a Monte Carlo simulation, a configuration only
depends on the previous configuration, but in practice, it is
also likely to be correlated to earlier configurations. Generally,
the farther away two configurations are, the less correlation.
Because measurements in the time series are correlated, the
fluctuations appear smaller than they should be. To deal with
this issue, we can consider blocks of the original data and use
jackknife resampling [38].

An important advance was made by Weigel and
Janke [25,26] via the seminal observation that there could
be significant cross correlation between different quantities
that could lead to systematic bias in the estimates of critical
quantities extracted from the data.

Suppose we have a set (sample) of n measurements of
a random variable x = (x1,x2, · · · ,xn) and an estimator θ̂ =
f (x). To estimate the value and error of θ̂ the jackknife focuses
on the samples that leave out one measurement at a time. We
define the jackknife average, xJ

i , by

xJ
i = 1

n − 1

∑
j �=i

xj , (25)

where i = 1,2, . . . ,n, so xJ
i is the average of all the x values

except xi . Similarly, we define

θ̂ J
i = f

(
xJ

i

)
. (26)

The jackknife estimate of θ̂ = f (x) is the average of θ̂ J
i , i.e.,

θ̄ = 1

n

n∑
i=1

θ̂ J
i = 1

n

n∑
i=1

f
(
xJ

i

)
, (27)

and the jackknife error, σ (θ̂ ), is given by

σ (θ̂) =
[
n − 1

n

n∑
i=1

(
θ̂ J
i − θ̄

)2
]1/2

. (28)

In Eq. (27) and Eq. (28), each data block has only one
element, but generally there can be multiple adjacent elements
in each block. For example, we can have n data blocks, where
each block has Nb = N/n adjacent elements (N is the total
number of measurements in the time series).

When attempting to extract the parameter θ̂ based on
multiple estimates θ̂ (k)(k = 1,2, . . . ,m) from the same original
time-series data, Weigel and Janke [25,26] showed that there
could be significant cross correlation between estimates θ̂ (k)

and θ̂ (l). For example, we can determine a number of estimates
for ν from Eq. (22) and Eq. (23). Denoting them ν(k)(k =
1,2, . . . ,m), we obtain different ν(k) from different quantities,
although they are all calculated from the same configurations
of the system.

To reduce the cross correlation effectively, we considered
the jackknife covariance matrix G ∈ Rm×m [38]. For a number
of estimates θ̂ (k), the rth row, cth column entry of matrix G is
given by

Grc(θ̂ ) = n − 1

n

n∑
i=1

(
θ̂

J,(r)
i − θ̄ (r))(θ̂ J,(c)

i − θ̄ (c)). (29)

The m different estimates θ̂ (k)(k = 1,2, . . . ,m) for the same
parameter θ̂ , should have the same expectation value. So
the estimated value for θ̂ can be determined by a linear
combination,

θ̄ =
m∑

k=1

αkθ̂
(k), (30)

where
∑

k αk = 1. Based on the cross-correlation analysis
from Refs. [25,26], a Lagrange multiplier can be introduced,
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where the constraint
∑

k αk = 1 is enforced to minimize the
variance,

σ 2(θ̂) =
m∑

k=1

m∑
l=1

αkαl(〈θ̂ (k)θ̂ (l)〉 − 〈θ̂ (k)〉〈θ̂ (l)〉). (31)

The optimal choice for the weights is

αk =
∑m

l=1[G(θ̂ )−1]kl∑m
k=1

∑m
l=1[G(θ̂)−1]kl

, (32)

where G(θ̂ )−1 is the inverse of the covariance matrix. Tradi-
tionally, the weights are bounded to be 0 � αk � 1; however,
the optimal choices given in Eq. (32) are the more general
unbounded weights, which can be negative. The negative
weights may lead to the average lying outside the range of
individual estimates, where individual variances are connected
due to cross correlations. Thus, they can help alleviate the effect
of cross correlations.

Based on the optimal choice for the weights, the variance
can be expressed by

σ 2(θ̂ ) = 1∑m
k=1

∑m
l=1[G(θ̂)−1]kl

. (33)

G. Testing methodology and quality control

A new challenge that arises at the level of accuracy of
this study is the finite precision of the pseudorandom number
generator and the restriction this puts on the temperatures that
can be simulated. In the Wolff algorithm, the probability of
adding a spin to the cluster is related to K by

p = 1 − e
−2Kδσi σj .

When this probability is converted to a 32-bit unsigned number
for comparison with pseudorandom numbers generated in
the simulation it is truncated from 1 537 987 121.70821 to
1 537 987 121. If that is reconverted back into a value of K , then
the result differs from 0.221 654 in the 10th decimal place. For
the largest system sizes, this is only a factor of 20 smaller than
the statistical error. By performing simulations with a 53-bit
pseudorandom number generator we have verified that this is
not significant for the current analysis, but for future studies
of larger systems and/or higher precision, a 32-bit random
number generator would not be sufficient. For the data analysis
we used the corrected effective K0 instead of 0.221 654 and
for L = 1024 we used the multiple-histogram method [24] to
combine results for the 32- and 53-bit pseudorandom number
generators.

To determine the critical quantities (e.g., ν, and Kc) with
high resolution by using finite-size scaling analysis, it is
necessary to find the peak values of derivatives of the ther-
modynamic quantities and their corresponding locations with
very high precision. As the imprecision will accumulate during
calculation, double precision may not be enough to fulfill the
task. Therefore, quadruple precision arithmetic has been used
in the data analysis.

Additionally, we have simulated 323 systems with the Wolff
cluster flipping algorithm and the Metropolis single spin-flip
algorithm. A total of 3 × 1010 measurements were taken for
each algorithm. The Wolff cluster simulation for L = 32 was

TABLE I. Results for the critical exponent ν when only consid-
ering one correction term as a function of Lmin.

Lmin ν

16 0.629 756(32)
24 0.629 765(42)
32 0.629 749(48)
48 0.630 05(13)
64 0.629 83(13)
80 0.629 80(14)
96 0.629 72(12)
112 0.629 61(10)
128 0.629 56(11)
144 0.629 63(14)
160 0.629 554(95)

repeated using the MRG32K3A random number generator
from Pierre L’Ecuyer, Combined multiple recursive random
number generators, Oper. Res. 47, 1 (1999), 159–164. (We
used the implementation by Guskova, Barash, and Shchur in
their rngavxlib random number library [39].) The locations
and values of the maxima in all quantities were the same, to
within the error bars, as those from the Metropolis simulations
and the Wolff simulations with the Mersenne twister; and t

test comparisons yielded no p values less than 0.2. Hence the
problems found by Ferrenberg et al. [40] using other random
number generators were not noticeable here. Even though the
Mersenne twister has been tested multiple times, all computer
algorithms for generating (pseudo-) random number streams
will ultimately produce some small bias that will limit the
accuracy of a simulation. While we have not been able to detect
such effects, caveat emptor.

III. RESULTS AND DISCUSSION

A. Finite-size scaling analysis to determine ν

First, we performed an analysis with only one correction
term,

Xmax = X0L
1/ν(1 + a1L

−ω1 ), (34)

where X is the quantity we have used to estimate the crit-
ical exponent ν: the logarithmic derivatives ∂ ln 〈|m|i〉/∂K

for i = 1,2,3,4 and the magnetization cumulant derivatives
∂U2i/∂K for i = 1,2,3. Least-squares fit has been performed
for Eq. (34). χ2 per degree of freedom (dof) is used as the
goodness of the fit, and ideally it is approximately 1, with
values too small indicating that the error is too large and values
too large indicating a poor quality of fit. In our analysis, the χ2

per dof is between 0.50 to 1.73, which is a reasonable range.
By calculating the covariance matrix and doing the cross-

correlation analysis, we give estimates for ν in Table I where
the minimum lattice size included in the analysis, Lmin, is
eliminated one by one.

In Fig. 1, we see that the estimated value for the critical
exponent ν seems to be stable for small values of Lmin (Lmin =
16, 24, 32). And there is a sudden jump from Lmin = 32 to
Lmin = 48. Finally, ν value tends to be stable at the large lattices
(Lmin � 112), around 0.629 60.
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ν

Lmin

16014412811296806448322416

0.6302

0.6300

0.6298

0.6296

0.6294

FIG. 1. Results for the critical exponent ν when only considering
one correction term as a function of Lmin.

The finite-size effect is strong when lattice sizes are small.
Only considering one correction term is insufficient, and there
is a systematic decrease in the value of ν as Lmin increases.
But the first three values for ν seem to be abnormal. This
is a consequence of a single correction term attempting to
account for all finite-size effects with estimates for different
sizes having different uncertainties. Therefore, the value of the
correction exponent from such fits differs from the theoretical
prediction (0.83) [14]. Including small lattices, the estimate for
the correction exponent is larger than 0.83 and the resulting
estimate for ν is smaller than it should be. It seems to be
stable at around 0.629 75 when Lmin � 32. However, in order
to minimize the least squares, all fitting parameters would vary
altogether. As a single correction term contributes differently
for different system sizes, it would result in inconsistent
estimates for ω and ν. In consequence, more correction terms
need to be taken into account.

Because of the lack of a sufficient number of degrees of
freedom, it is difficult to include two or more correction terms
as unknown fitting parameters. However, with the help of the
conformal bootstrap [13,14], we have the theoretical prediction
for the confluent correction exponents,

ω1 = 0.8303(18), ω2 ≈ 4. (35)

Additionally, we can consider the correction term correspond-
ing to the nonlinear scaling fields [36],

ων = 1/ν. (36)

Also, a correction term due to the rotational invariance of the
lattice [37] may play a role,

ωNR = 2.0208(12). (37)

In our analysis we permitted any of the types of correction
terms in Eq. (22) and Eq. (23) to contribute an amount that
was statistically significant, but due to the finite precision of
our estimates for thermodynamic quantities and the limited
number of system sizes in the analysis, we found that including
more than three correction terms did not lead to meaningful
fits. Performing least-squares fits with seven different combi-

TABLE II. Results for the critical exponent ν when considering
one fixed correction exponent ω1 = 0.83, two fixed exponents ω1 =
0.83, ω2 = 4, and three fixed exponents ω1 = 0.83, ω2 = 4, ων = 1.6
as a function of Lmin.

Lmin ν(ω1 fixed) ν(ω1,2 fixed) ν(ω1,2,ν fixed)

16 0.631 814(18) 0.630 806(30) 0.630 072(45)
24 0.631 046(26) 0.630 513(40) 0.630 049(57)
32 0.630 722(33) 0.630 241(55) 0.629 980(77)
48 0.630 350(48) 0.630 278(78) 0.629 99(11)
64 0.630 319(62) 0.630 21(11) 0.630 06(15)
80 0.630 285(78) 0.630 10(15) 0.629 93(21)
96 0.630 25(10) 0.629 93(18) 0.629 90(29)
112 0.630 14(13) 0.630 01(17) 0.629 93(18)
128 0.630 04(15) 0.630 04(15) 0.629 84(22)
144 0.629 85(18) 0.629 85(18) 0.629 96(26)
160 0.629 95(22) 0.629 95(22)

nations of three correction terms yielded consistent estimates
for the asymptotic values of the critical exponent ν.

We have found that the best fit was obtained by using ω1 =
0.83, ω2 = 4, and ων = 1.6. We will show these results in
detail.

Thus, the fitting model is

Xmax = X0L
1/ν(1 + a1L

−ω1 + a2L
−ω2 + a3L

−ων ). (38)

We have considered one fixed correction exponent ω1 = 0.83,
two fixed exponents ω1 = 0.83, ω2 = 4, and three fixed ex-
ponents ω1 = 0.83, ω2 = 4, ων = 1.6, to the fitting model
Eq. (38). The results for ν are shown in Table II.

In Fig. 2, we see that, with only one fixed confluent
correction exponent (ω1 = 0.83), the estimated value for the
critical exponent ν decreases as Lmin increases if Lmin � 128.
The ν value seems to be stable if Lmin � 128. χ2 per dof is very
high when Lmin is small, which indicates that only considering
one correction term into the fit is inadequate, especially for the
small lattice sizes (Lmin = 16, 24, 32). When considering two

0.629 912
ω1 = 0.83, ω2 = 4, ων = 1.6

ω1 = 0.83, ω2 = 4
ω1 = 0.83

Lmin

ν

16014412811296806448322416

0.6320

0.6315

0.6310

0.6305

0.6300

0.6295

FIG. 2. Results for the critical exponent ν when considering one
fixed correction exponent ω1 = 0.83, two fixed exponents ω1 = 0.83,
ω2 = 4, and three fixed exponents ω1 = 0.83, ω2 = 4, ων = 1.6 as a
function of Lmin.
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TABLE III. Results for the critical exponent ν from jackknife
analysis on estimates for ν that are from the three correction terms
analysis for values of Lmin within the ranges shown.

Lmin ν

16–144 0.629 97(21)
24–144 0.629 96(19)
32–144 0.629 95(16)
48–144 0.629 94(16)
64–144 0.629 94(15)
80–144 0.629 912(86)
96–144 0.629 908(81)

fixed confluent correction exponents (ω1 = 0.83, ω2 = 4), ν

value decreases systematically up to Lmin = 96. After that, the
ν value appears to be statistically fluctuating. Still, χ2 per dof
is high when Lmin is small, which means that two correction
terms are not enough for small lattice sizes (Lmin = 16, 24).
Compared with the analysis with only one fixed correction
exponent, the estimates for ν are very consistent when Lmin �
128. This is because when Lmin becomes large enough, the
second confluent correction term contributes little.

When considering three correction exponents, two for
confluent corrections (ω1 = 0.83, ω2 = 4) and one for the
nonlinear scaling fields (ων = 1.6), the estimated value for
the critical exponent ν seems to be statistically fluctuating.
χ2 per dof for each quantity is between 0.53 to 1.78, which
is reasonable. But all estimates for the critical exponent ν >

0.629 97 if Lmin < 80, while ν < 0.629 97 if Lmin � 80. It
seems that there is still a systematic decrease of ν as Lmin

increases. Therefore, the value for ν is estimated by taking
the average of ν obtained from different fits for different Lmin

varying from 80 to 144, ν = 0.629 912. To estimate the error
of ν, we used the jackknife method on estimates of ν from
three correction term analysis using different ranges of Lmin:
Consider estimates for ν from Lmin = 96 to 144 and then do a
jackknife analysis to estimate the value and error of ν. Add one
ν value corresponding to Lmin = 80 and then do a jackknife
analysis from Lmin = 80 to 144. Do this one by one, up to the
analysis from Lmin = 16 to 144. Results are shown in Table III.

Based on the values of Lmin to estimate the value of ν (from
80 to 144), we find

ν = 0.629 912(86). (39)

B. Finite-size scaling analysis to determine Kc

To estimate the critical coupling Kc, we have consid-
ered the location of the peak of the logarithmic derivatives
∂ ln 〈|m|i〉/∂K for i = 1,2,3,4; the magnetization cumulant
derivatives ∂U2i/∂K for i = 1,2,3; the specific heat C; the
derivative of the modulus of the magnetization ∂〈|m|〉/∂K;
the finite-lattice susceptibility χ ′; as well as the location of
zero of the fourth-order energy cumulant Q4.

First, estimate the critical coupling Kc with one correction
term,

Kc(L) = Kc + A0L
−1/ν(1 + A1L

−ω1 ), (40)

TABLE IV. Results for the critical coupling Kc when only
considering one correction term as a function of Lmin.

Lmin Kc

16 0.221 654 621 8(13)
24 0.221 654 623 9(16)
32 0.221 654 624 9(19)
48 0.221 654 623 4(27)
64 0.221 654 625 3(45)
80 0.221 654 626 1(62)
96 0.221 654 630 0(78)
112 0.221 654 630 2(69)
128 0.221 654 630 2(63)
144 0.221 654 628(13)
160 0.221 654 630 3(85)

where the critical exponent is fixed to be ν = 0.629 912, and
the correction exponent ω1 is unfixed. Except in the situation
where Lmin = 16 for ∂〈|m|〉/∂K , the χ2 per degree of freedom
is high (2.76), in other cases, χ2 per dof is acceptable.

By calculating the covariance matrix and doing the cross-
correlation analysis, we estimated Kc as shown in Table IV.
Minimum lattice size Lmin that is taken into account is
eliminated one by one.

In Fig. 3, we can see that the estimated value for the
critical coupling Kc appears to be stable if Lmin � 96, around
0.221 654 630.

Similarly to the analysis to determine ν, we used seven
different combinations of the three correction terms and found
that the choice had negligible impact on the estimate for Kc.
The best fit was obtained by using ω1 = 0.83, ω2 = 4, and
ων = 1.6. We will show these results in detail.

With the help of the theoretical prediction, we have con-
sidered one fixed correction exponent ω1 = 0.83, two fixed
exponents ω1 = 0.83, ω2 = 4, and three fixed exponents ω1 =
0.83, ω2 = 4, ων = 1.6, to the fitting model Eq. (41),

Kc(L) = Kc + A0L
−1/ν(1 + A1L

−ω1

+A2L
−ω2 + A3L

−ων ). (41)

The results for Kc are shown in Table V.

Kc

Lmin

16014412811296806448322416

0.221654645

0.221654640

0.221654635

0.221654630

0.221654625

0.221654620

0.221654615

FIG. 3. Results for the critical coupling Kc with only one correc-
tion term included in the fitting as a function of Lmin.
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TABLE V. Results for the critical coupling Kc from fits with: (left column) a single correction term (fixed correction exponent ω1 = 0.83);
(center column) two correction terms (fixed exponents ω1 = 0.83, ω2 = 4; and (right column) three correction terms (fixed exponents ω1 = 0.83,
ω2 = 4, ων = 1.6) as a function of Lmin.

Lmin Kc(1 fixed ω) Kc(2 fixed ω) Kc(3 fixed ω)

16 0.221 654 656 2(10) 0.221 654 639 3(11) 0.221 654 625 7(21)
24 0.221 654 638 8(11) 0.221 654 630 8(12) 0.221 654 625 7(24)
32 0.221 654 634 3(11) 0.221 654 630 7(12) 0.221 654 625 3(32)
48 0.221 654 630 7(12) 0.221 654 630 5(12) 0.221 654 623 2(30)
64 0.221 654 628 4(13) 0.221 654 628 4(13) 0.221 654 623 4(60)
80 0.221 654 627 5(14) 0.221 654 627 5(15) 0.221 654 625 0(75)
96 0.221 654 626 0(17) 0.221 654 626 0(16) 0.221 654 627 9(97)
112 0.221 654 625 9(18) 0.221 654 626 0(18) 0.221 654 625 0(49)
128 0.221 654 625 8(21) 0.221 654 625 8(21) 0.221 654 626 3(48)
144 0.221 654 627 0(25) 0.221 654 627 0(25) 0.221 654 627 1(34)
160 0.221 654 626 3(23) 0.221 654 626 4(23)

In Fig. 4, we can see that, when considering only one fixed
confluent correction exponent (ω1 = 0.83), the estimated value
for the critical coupling Kc decreases as Lmin increases if
Lmin � 80. The Kc value appears to be stable if Lmin � 80.
χ2 per dof is very high when Lmin is small, which means that
the quality of the fit is not good with one correction term when
the lattice size is small (Lmin = 16, 24, 32). When considering
two fixed confluent correction exponents (ω1 = 0.83, ω2 =
4), the Kc value decreases systematically up to Lmin = 80
as well. After that, the Kc value appears to be statistically
fluctuating. Still, χ2 per dof is high when Lmin is small, which
indicates that two correction terms are not enough for small
lattice sizes (Lmin = 16, 24). Compared with the analysis with
only one fixed correction exponent, the estimates for Kc are
highly consistent when Lmin � 64. This is because when Lmin

becomes large enough, the second confluent correction term
contributes little, and these two analyses tend to generate
similar results.

When considering three correction exponents, two for con-
fluent corrections (ω1 = 0.83, ω2 = 4) and one for nonlinear

0.221 654 626
ω1 = 0.83, ω2 = 4, ων = 1.6

ω1 = 0.83, ω2 = 4
ω1 = 0.83

Lmin

Kc

16014412811296806448322416

0.22165466

0.22165465

0.22165464

0.22165463

0.22165462

0.22165461

FIG. 4. Results for the critical coupling Kc when considering one
fixed correction exponent ω1 = 0.83, two fixed exponents ω1 = 0.83,
ω2 = 4, and three fixed exponents ω1 = 0.83, ω2 = 4, ων = 1.6 as a
function of Lmin.

scaling fields (ων = 1.6), χ2 per dof for each quantity is decent
except the following cases:

χ2 per dof = 2.52, if Lmin = 144 for ∂ ln 〈|m|〉/∂K ,
χ2 per dof = 2.41, if Lmin = 144 for ∂ ln 〈|m|2〉/∂K ,
χ2 per dof = 2.34, if Lmin = 144 for χ ′,
χ2 per dof = 2.89, if Lmin = 144 for ∂U4/∂K ,
χ2 per dof = 2.84, if Lmin = 144 for ∂U6/∂K .
This is because of the lack of degrees of freedom when Lmin

is large.
The estimated value for the critical coupling Kc appears

to be statistically fluctuating. The fluctuation of Kc when
Lmin � 80 is larger than the one when Lmin � 80. Additionally,
finite-size effect reduces as larger lattice sizes are considered.
Thus, the value of Kc is estimated through the average of Kc

for Lmin = 80 to 144, which is 0.221 654 626 2. Likewise, a
jackknife analysis has been done on the estimates for Kc which
are obtained from the three correction terms analysis. Results
are shown in Table VI.

Based on the values of Lmin from 80 to 144 we esti-
mate Kc = 0.221 654 626 2(23), whereas, using Lmin = 16 to
144, the estimate for the critical coupling would be Kc =
0.221 654 625 5(42). Therefore, our final estimate from the
finite-size scaling analysis, with conservative error bars, is

Kc = 0.221 654 626(5). (42)

TABLE VI. Results for the critical coupling Kc from jackknife
analysis on estimates for Kc that are from the three correction terms
analysis.

Lmin Kc

16–144 0.221 654 625 5(42)
24–144 0.221 654 625 4(41)
32–144 0.221 654 625 4(41)
48–144 0.221 654 625 4(40)
64–144 0.221 654 625 8(33)
80–144 0.221 654 626 2(23)
96–144 0.221 654 626 6(18)
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L=1024
L=768
L=512
L=384
L=256
L=192

U4

K
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0.470
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0.468

0.467

0.466
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FIG. 5. Inverse temperature K dependence of the fourth order
magnetization cumulant U4 for L × L × L Ising lattices.

C. Crossing technique of the fourth-order magnetization
cumulant

As the lattice size L → ∞, the fourth-order magnetization
cumulant U4 → 0 for K < Kc and U4 → 2/3 for K > Kc. For
large-enough lattice sizes, curves for U4 cross as a function of
inverse temperature at a “fixed point” U ∗, and the location
of the crossing “fixed point” is Kc. Because the lattices are
not infinitely large, finite-size correction terms will prevent all
curves from crossing at a common intersection (as in Fig. 5).
However, Fig. 5 gives us a preliminary estimate for Kc.

The locations of the cumulant crossings have been fitted to
Eq. (24) with one correction term. All of the parameters are
allowed to vary independently, i.e., no fixed values for ν and
ω. Results are shown in Table VII, where Lmin is the minimum
lattice size taken into account.

Additionally, the locations of the cumulant crossings have
been fitted to Eq. (24) with two correction terms. Results are
shown in Table VIII. For Lmin > 24, the second correction term
is ill defined, and by Lmin = 80, the calculation gives identical
values for the two correction exponents. This is because we
lack precision to include two correction terms for the crossing
technique.

TABLE VII. Results for the critical coupling Kc obtained using
the cumulant crossing technique with one correction term.

Lmin Kc dof χ 2 per dof

16 0.221 654 628 72(41) 131 1.64
24 0.221 654 626 85(50) 115 1.10
32 0.221 654 626 17(58) 100 1.06
48 0.221 654 624 63(75) 86 0.88
64 0.221 654 625 44(91) 73 0.89
80 0.221 654 626 3(11) 61 0.90
96 0.221 654 627 7(12) 50 0.84
112 0.221 654 628 0(15) 40 0.93
128 0.221 654 628 4(17) 31 1.04
144 0.221 654 627 8(22) 23 1.18
160 0.221 654 629 3(24) 16 1.29
192 0.221 654 629 5(33) 10 1.70

TABLE VIII. Results for the critical coupling Kc by using
cumulant crossing technique with two correction terms.

Lmin Kc dof χ 2 per dof

16 0.221 654 624 83(95) 129 0.94
24 0.221 654 624 9(10) 113 0.96
32 0.221 654 624 50(80) 98 0.85
48 0.221 654 624 63(85) 84 0.90
64 0.221 654 625 4(10) 71 0.91

In Fig. 6, the critical coupling appears to be stable if Lmin �
96. The value of Kc can be estimated by taking the average of
Kc values for Lmin � 96, which is 0.221 654 628 4. A jackknife
analysis has been done on the estimates for Kc that are from the
one correction term analysis. Results are shown in Table IX.

Using results for Lmin (96 to 192) we estimate

Kc = 0.221 654 628(2). (43)

D. Alternative finite-size scaling analysis

In Sec. III A, a finite-size scaling analysis was performed
by looking at the magnitude of quantities at the peak loca-
tions. Alternatively, critical exponents can be estimated by
looking at quantities at our estimate for Kc (denoted Kest

c =
0.221 654 626, i.e., the estimated value for Kc for an infinite
lattice).

X
(
K = Kest

c

) = X0L
λ(1 + a1L

−ω1 + · · · ), (44)

where X is the quantity being used to determine the critical
exponent λ. For the susceptibility and the specific heat Eq. (44)
includes an analytic background term.

ν can be estimated from derivatives of magnetization
cumulants and logarithmic derivatives of the magnetization
at Kest

c . By doing the fit with three fixed correction exponents,
and by calculating the jackknife covariance matrix and doing
the cross-correlation analysis, we find ν to be

ν = 0.629 93(10). (45)

This result agrees with the value of ν estimated from Eq. (39).

Two correction terms
One correction term

24

Kc

Lmin

192160144128112968064483216

0.221654634

0.221654632

0.221654630

0.221654628

0.221654626

0.221654624

0.221654622

FIG. 6. Results for the critical coupling Kc using cumulant
crossings with one correction term and two correction terms.
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TABLE IX. Results for the critical coupling Kc by using jackknife
analysis on estimates for Kc that are from the cumulant crossing
technique with one correction term analysis.

Lmin Kc

16–144 0.221 654 627 4(49)
24–144 0.221 654 627 3(47)
32–144 0.221 654 627 3(46)
48–144 0.221 654 627 5(45)
64–144 0.221 654 627 8(34)
80–144 0.221 654 628 1(24)
96–144 0.221 654 628 4(16)
112–144 0.221 654 628 6(14)
128–144 0.221 654 628 7(12)

By examining the scaling behavior of the susceptibility
at Kest

c , we have found that γ /ν = 1.963 90(45). Combining
this value with our estimate for ν at Eq. (39), and assuming
that exponent estimates for γ and ν are independent, we
have determined the critical exponent γ of the magnetic
susceptibility to be

γ = 1.237 08(33). (46)

We also performed an analysis of the susceptibility at
constant U4 as suggested by Hasenbusch [16]. Fixing U4 =
0.4655 and including the higher-order confluent corrections to
scaling we found that γ = 1.237 01(28), a value that is almost
identical to, and with only a slightly smaller error bar than, the
value obtained from finite-size scaling of the susceptibility.

Because of the large analytic background in the specific
heat [see Eq. (17)], it was not possible to extract estimates
of the exponent α with comparable precision to the other
exponents evaluated here. For this reason, we have not quoted
an estimated value.

Similarly, by considering the critical behavior of |m| at Kest
c ,

we obtained β/ν = 0.518 01(35), or

β = 0.326 30(22). (47)

E. Self-consistency check

Inspired by a recent 3D bond and site percolation study [41],
a noticeable off-critical behavior would be observed when
Monte Carlo data are three error bars away from the critical
point.

Following is the cumulant’s ansatz [35],

U4(L) = U ∗(1 + cL−ω1 ), (48)

whereU4 is the fourth-order cumulant andU ∗ is a “fixed point.”
To justify our quoted error bars for the crossing tech-

nique, Kc = 0.221 654 628(2), we performed a plot of
fourth-order magnetization cumulant at K = 0.221 654 622,
0.221 654 628, and 0.221 654 634 in Fig. 7. The value of c was
estimated by doing a fit for the cumulant by Eq. (48). It was gen-
erated at the estimated critical inverse temperature, with a fixed
correction exponent ω1 = 0.83, over the range of L = 144 to
1024. It can be seen that the data at K = 0.221 654 622 and
K = 0.221 654 634 begin to diverge as L increases, while the
data at K = 0.221 654 628 converge to U ∗ = 0.465 48(5). Our

K = 0.221 654 634

K = 0.221 654 628

K = 0.221 654 622

L

U
4(

L
,K

)/
(1

+
cL

−ω
1
)

120010008006004002000

0.4666

0.4662

0.4658

0.4654

0.4650

FIG. 7. Plot of the fourth-order magnetization cumulant as a
function of L for fixed K values. The value of c was estimated by
doing a fit for U4 by Eq. (48). The dashed line indicates our asymptotic
value for U ∗.

estimate is consistent with 0.465 45(13) from Blöte et al. [42]
but higher than 0.465 306(34) from Deng and Blöte [43].

Similarly, a plot of the derivative of the fourth-order magne-
tization cumulant is shown in Fig. 8. Based on the FSS estimate
Kc = 0.221 654 626(5) in Sec. III B, the data away from the
estimated critical point by three error bars have a noticeable
divergence.

All in all, Figs. 7 and 8 indicate that our quoted error bars
for Kc from the crossing technique and the FSS are reliable.

F. Discussion

It is only because of the combination of an efficient, cluster-
flipping Monte Carlo algorithm, high statistics simulations,
histogram reweighting, and a cross-correlation jackknife anal-
ysis that we were able to achieve the high-resolution results
presented earlier in this section. Now, we can compare our
estimates for Kc and ν with other high-resolution result from
simulation and theory. Table X shows the comparison.

In Sec. III A, we determined the critical exponent of the
correlation length ν = 0.629 912(86). Our value is perfectly
consistent (i.e., within the error bars) with the recent conformal
bootstrap result of Kos et al. [15], as well as that from

K = 0.221 654 641

K = 0.221 654 626

K = 0.221 654 611

L

∂
U

4
(K

,L
)

∂
K

/L
1/

ν
(1

+
a

1L
−ω

1
)

120010008006004002000

0.724

0.723

0.722

0.721

0.720

FIG. 8. Plot of the derivative the fourth-order magnetization
cumulant as a function of L for fixed K values. The value of a1

was estimated by doing a fit for ∂U4/∂K by Eq. (44).
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TABLE X. Comparison of our results for the critical coupling Kc and the critical exponents ν, γ with other recently obtained values. The
number marked with * is not given by the reference directly, but is calculated by Fisher’s scaling law γ = ν(2 − η). The error is calculated
using simple error propagation, which assumes that ν and η are independent and uncorrelated.

Reference Method Kc ν γ

Butera and Comi (2002) [9] HT series 0.221 655(2) 0.629 9(2) 1.237 1(1)
Blöte et al. (1999) [42]a MC 0.221 654 59(10) 0.630 32(56) 1.237 2(13)*
Deng and Blöte (2003) [43] MC 0.221 654 55(3) 0.630 20(12) 1.237 2(4)*
Ozeki and Ito (2007) [4]b MC NL relax 0.221 654 7(5) 0.635(5) 1.255(18)*
Weigel and Janke (2010) [26] MC 0.221 657 03(85) 0.630 0(17) 1.240 9(62)*
Hasenbusch (2010) [16] MC 0.221 654 63(8) 0.630 02(10) 1.237 19(21)*
Kaupužs (2011) [17] MC 0.221 654 604(18)
Kos et al. (2016) [15] Conformal bootstrap 0.629 971(4) 1.237 075(8)*
Wang et al. (2014) [19] Tensor RG 0.221 654 555 5(5)
Rosengren (1986) [11] Conjecture 0.221 658 63 · · ·
Our results (no fit assumptions) MC 0.221 654 630(7) 0.629 60(15) 1.236 41(45)
Our results (constrained fits) MC 0.221 654 626(5) 0.629 912(86) 1.237 08(33)
Our results (cumulant crossings) MC 0.221 654 628(2)
Our results (constant U4) MC 1.237 01(28)

aSpecial purpose computer.
bMonte Carlo study of the nonlinear relaxation function.

an older work by El-Showk et al. [14]. In addition, our
result agrees with the high-temperature result of Butera and
Comi [9], Monte Carlo result of Deng and Blöte [43], and
nonequilibrium relaxation Monte Carlo result of Ozeki and
Ito [4]. Also, our result agrees well with the Monte Carlo
result of Hasenbusch [16] but is lower than that of Weigel
and Janke [26]; however, within the respective error bars there
is agreement although we have substantially higher precision
than either of these previous studies. Our system sizes and
statistics are substantially greater than those used by Weigel
and Janke, and Hasenbusch examined the behavior of the
ratio of partition functions Za/Zp, and the second moment
correlation length over the linear lattice size ξ2/L so the
methodologies are not identical. Our estimate for Kc differs
from that obtained by Kaupužs et al. [17] using a parallel Wolff
algorithm by an amount that barely agrees to within the error
bars. Somewhat perplexingly, they were able to fit their data to
two rather different values of ν, so no comparison of critical
exponents is possible.

The recent tensor renormalization group result for Kc [19]
does not agree with our result; in fact the difference is many
times the respective error bars.

To place these results in perspective, it is interesting to
note that as far back as 1982 Gaunt’s high-temperature series
expansions [44] gave the estimate Kc = 0.221 66(1) and in
1983 Adler [45] estimated 0.221 655 < Kc < 0.221 656 with
confluent corrections included in the analysis.

Neither the Rosengren’s “exact conjecture” nor Zhang’s
“exact” solution agree with our numerical values, thus adding
further evidence to the already strong arguments that neither
are, in fact, exact.

In Sec. III D, we have estimated the critical exponents
by using an alternative finite-size scaling analysis. The crit-
ical exponent of the correlation length is estimated to be
ν = 0.629 93(10), which is consistent with our estimate in
Sec. III A. While our final estimate is slightly lower than the
best alternative values, there is agreement to within the error
bars. Also, our estimate γ = 1.237 08(33) is consistent with

the conformal bootstrap estimates given by Kos et al. [15],
El-Showk et al. [14], and slightly smaller than the Monte
Carlo estimates by Deng and Blöte [43], Hasenbusch [16],
and Weigel and Janke [26]; but, once again, there is overlap
within the respective error bars.

IV. CONCLUSION

We have studied a 3D Ising model with the Wolff clus-
ter flipping algorithm, histogram reweighting, and finite-size
scaling including cross correlations using quadruple precision
arithmetic for the analysis. Using a wide range of system
sizes, with the largest containing more than 109 spins, and
including corrections to scaling, we have obtained results for
Kc, ν, and γ that are comparable in precision to those from
the latest theoretical predictions and can provide independent
verification of the predictions from those methods. Our values
provide further numerical evidence that none of the purported
“exact” values are correct. To within error bars we obtain the
same value for the critical exponent ν as that predicted by
the conformal bootstrap; however, our estimate for the critical
temperature Kc does not agree with the result from the tensor
renormalization group to within the respective error bars.

As efforts to increase Monte Carlo precision continue, new
sources of error must be taken into account. Future attempts
to substantially improve precision will need to carry out more
stringent tests of the random number generator and acquire
much greater statistics for much larger lattice sizes. Such simu-
lations and subsequent analysis would require orders of magni-
tude greater computer resources and would thus be nontrivial.

Note added. We have become aware of a new, very high-
quality Monte Carlo renormalization group (MCRG) study
[46] of the critical properties of the three-dimensional Ising
model. The new MCRG values for ν = 0.6285(4) and γ =
1.2356(8) differ from both our estimates and those from the
conformal bootstrap by amounts that are outside the respective
error bars.
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