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Ion-ion dynamic structure factor, acoustic modes, and equation of state
of two-temperature warm dense aluminum
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The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature
quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using
molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model.
Such pair potentials based on density functional theory are parameter-free and depend directly on the electron
temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties.
Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows
good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that
ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical
properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is
predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is
increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also
presented.
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I. INTRODUCTION

The challenge of modeling warm dense matter (WDM)—a
system of strongly coupled classical ions and partially degen-
erate electrons at high temperature and high density—is central
to understanding many physical systems such as the interior
of giant planets [1], laser machining and ablation [2], and
inertial-confinement fusion [3]. In WDM, neither the kinetic
energy nor the potential energy can be treated as a perturbation.
Hence the usual theoretical techniques of classical plasma
physics or solid-state physics become inapplicable. In the
laboratory, WDM can be created through the interaction of
high-energy short-pulse lasers with simple metals such as
aluminum [4,5] and beryllium [6], with densities ρ several
times the room density ρ0 and temperatures of the order of 1 eV.
The importance of treating these systems as two-temperature
WDM systems rather than equilibrium systems has not always
been appreciated in analyzing the experimental results [7,8].

The ion-ion dynamic structure factor (DSF) S(k,ω) is a key
quantity for understanding the WDM regime. For instance, it
contains information on the longitudinal waves propagating in
the system. The DSF can be measured by neutron scattering
and indirectly via x-ray Thomson scattering (XRTS) [9]. The
Chihara decomposition [10] has been applied to describe the
XRTS signal by partitioning the total electron-electron DSF
See(k,ω) in the following form:

See(k,ω) = S0
ee(k,ω) + N (k)Sii(k,ω) + Sf b

ee (k,ω). (1)
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Here S0
ee is the free electron-electron DSF, S

f b
ee is the con-

tribution from transitions between bound and free electrons,
N (k) = nb(k) + nf (k) is the total electron form factor split
into a bound part nb and a free part nf , and Sii is the ion-ion
DSF. Using this decomposition, simulations combining stan-
dard density functional theory (DFT) with molecular-dynamics
(MD) simulations have been used [4,5,11,12] to extract prop-
erties of WDM systems such as the free-electron density per
ion ne (i.e., Z̄), the ion density ρ, the electron temperature
Te, and the ion temperature Ti . Since these simulations are
computationally expensive, the use of a simpler approach such
as the neutral pseudoatom (NPA) model is appropriate. The
NPA is well adapted to extract the ion part of the XRTS signals
[8] and will be the principal method used in this work, where
we show that the NPA also has the needed accuracy. The XRTS
spectrum can be computed in the NPA, and also by other
means without using the Chihara decomposition [13,14], but
its discussion is not needed for this work.

However, the separation between ion acoustic modes �ω =
2h̄ωp, with ωp the ion-plasma frequency, is of the order of 1
meV, significantly lower than the bandwidth of any x-ray probe
laser used experimentally at the moment. Thus, the ion-ion
DSF is usually approximated by its static form S(k,ω) =
S(k)δ(ω) in describing the XRTS signal. Nevertheless, the
ion-ion DSF contains important information about the ion
transport properties linked to electron-ion equilibration, the
formation of coupled modes, interaction with projectiles, etc.,
which makes it a key quantity for fully understanding the
WDM regime. With x-ray laser sources being improved, the
ion-ion DSF should become available from future experiments,
motivating its calculation for both equilibrium and quasiequi-
librium situations.
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Furthermore, in the limit of small wave vectors, k → 0, the
ion-ion DSF can be described in a hydrodynamic framework
[15] (see below), providing important physical quantities such
as the adiabatic velocity of sound, the ion acoustic dispersion
relation, the thermal diffusivity, and the sound attenuation
coefficient. In addition, in the case of simple metals commonly
probed in most XRTS experiments, the laser interacts mainly
with the free-electron subsystem, creating a nonequilibrium
system in which the electron temperature Te is higher than
the initially cold ions at temperature Ti . It has been shown
that, when the shock wave resulting from the laser pulse
has propagated through the sample and reaches the probing
location, the system might still be in a two-temperature (2T )
state [7,8]. Since the ion-ion interactions in simple metals are
related to the screening of the free-electron subsystem, the
quasiequilibrium properties of the total system with Te �= Ti

differ significantly from the equilibrium ones. The hardening
of the phonon spectra in ultrafast matter [16–18], where Te is
about 1 eV while Ti remains at room temperature Tr , is an
example of how the ion dynamics can be affected drastically
in such conditions. Transport properties of Al in the two-
temperature regime, such as self-diffusion and shear viscosity,
are also significantly modified [19].

The ion-ion DSFs for WDM have been calculated mainly
using DFT coupled to classical molecular-dynamics (MD) [11]
simulations. Since DSF calculations require a large number
of particles and long simulation times, DFT-MD calculations
are computationally very intensive. In addition, the finite-T
treatment of the electronic subsystem in DFT requires the
solution of the Kohn-Sham equations for many electronic
bands to take thermal excitations according to the Fermi-Dirac
distribution into account. Orbital-free (OF) DFT simulations
do not require electronic wave functions, but they do require a
Hohenberg-Kohn kinetic-energy functional as well as a finite-
T generalization thereof. Such procedures are less accurate
than the Kohn-Sham method, but they make the simulations
practical [20]. The full DFT-MD simulations when feasible
can be used to benchmark simpler methods such as the NPA
or OF approaches, which are easily applied over a wider range
of temperatures and densities.

In the present work, we compute the ion-ion DSF using
classical MD simulations based on pair potentials (PP) con-
structed from the NPA model, which is fully based on DFT.
The NPA approach has already been used to predict the DSF
of strongly coupled hydrogen plasmas [21] and provides the
sound velocity, the thermal diffusivity, the specific-heat ratio,
and the viscosity. The NPA-PPs are free of ad hoc parameters
and are accurate to within a few meV as established by the
prediction of accurate experimental phonon spectra for simple
WDM solids [16,17]. The NPA-PP predictions for static struc-
ture factors (SSFs) obtained using the modified-hypernetted-
chain (MHNC) approximation are in agreement with DFT-MD
simulations for WDM systems (typical examples are Be and
Al [8]; for a review of the NPA, see Ref. [22]).

Furthermore, in the quasiequilibrium case, i.e., when Te

is different from Ti , the extension of the NPA approach to
two-temperature (2T ) situations has enabled the construc-
tion of 2T -PPs, which reproduce ab initio calculations of
quasiequilibrium phonon spectra [17], quasiequilibrium XRTS
signals [8], and frequency-dependent 2T plasmon profiles [7]

and conductivities of ultrafast matter [23]. The objective of
the present study is to determine the DSF S(k,ω,Te,Ti) in the
2T regime. In addition, we evaluate the 2T equation of state
(EOS). All calculations are carried out for aluminum at the
“room-temperature” density of ρ0 = 2.7 g/cm3 with the ion
temperature fixed at Ti = 1 eV while the electron temperature
Te is varied between 1 and 10 eV.

II. METHODS

A. Neutral-pseudoatom model

The NPA model [24–26] is a rigorous all-electron DFT
average-atom approach in which the ion distribution is also
treated in DFT [27]. Given the mean free-electron density n

and electron temperature Te, it determines the total electron
density around a single Kohn-Sham ion constructed from a
nucleus of charge Zn embedded in the plasma environment
of mean density ρ. A classical Kohn-Sham equation for the
ions determines the one-body ion distribution ρ(r) = ρgii(r),
where gii(r) is the ion pair distribution function (PDF),
abbreviated to g(r). The classical Kohn-Sham equation for
the ions is identified as a type of hypernetted chain (HNC)
integral equation bringing in ion-ion correlations beyond the
mean-field approximation. The Kohn-Sham-Mermin solutions
are obtained in the local-density approximation using a finite-
Te free-energy exchange-correlation (XC) functional Fxc[n,Te]
[28]. The available finite-T XC functionals, fitted to quantum
Monte Carlo results or to the classical-map HNC results
(used here), yield numerically equivalent results in WDM
applications [29].

To simulate the effect of the ion-density ρ(r) on the
electronic states, a uniform positive neutralizing background
with a spherical cavity of radius rws, with the nucleus at the
origin, is used. Here, rws = [3/(4πρ)]1/3 is the Wigner-Seitz
radius of the ion. This lowest-order model for ρ(r) = ρg(r)
is sufficient for calculating the Kohn-Sham energy levels of
“simple metal” ions immersed in a warm dense electron fluid,
as has been discussed in a recent review [22]. The adjustment of
the ion distribution to the electron distribution is accomplished
by the optimization of a single parameter, viz. rws, subject to
the finite-T Friedel sum rule [27]. Although, strictly speaking,
an electron-ion exchange-correlation functional is also needed
[30], it is neglected here.

An advantage of the NPA model is that it directly provides
single-ion properties such as the mean ionization Z̄ and the
electron density around the nucleusn(r) = nb(r) + nf (r), with
nb and nf the bound- and free-electron densities, respectively.
In simple metals, nb is found to be localized within a radius
much smaller than rws, such that nb(r → rws) = 0, which
enables a clear definition of the mean ionization Z̄ = n − nb.
Note, however, that the free-electron distribution is not re-
stricted to the WS sphere, as is done in many average-atom
(AA) models, as reviewed by, e.g., Murillo et al. [31].

The free electrons occupy the whole space, modeled by a
large correlation sphere of radius Rc of about 10 WS radii,
usually sufficient to include all particle correlations associated
with the central nucleus. Unlike in AA models, the mean
number of free electrons per ion, viz. Z̄, is an unambigu-
ously defined quantity subject to the Friedel sum rule, and
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experimentally measurable using XRTS [9], static conductiv-
ities, Langmuir probes, etc. The interaction among ions of
charge Z̄ is screened by the free-electron subsystem, which is
assumed to respond linearly to the electron-ion pseudopotential

Uei(k,Te) = nf (k)/χ (k,Te). (2)

Since nf (k) is determined by the Kohn-Sham calculation,
which goes beyond the linear response to Z̄/r , the above
pseudopotential actually includes all the nonlinear DFT effects
within a linearized setting. The limits of validity of this
procedure are discussed in Ref. [32].

With nf (k) at hand, Uei is constructed using the finite-T
interacting electron response function

χ (k,Te) = χ0(k,Te)

1 − V (k)[1 − G(k,Te)]χ0(k,Te)
(3)

with χ0 the finite-T noninteracting Lindhard function, V (k) =
4π/k2 the bare Coulomb interaction, and G a finite-T local-
field correction [16], which depends directly on Fxc. Finally,
the screened ion-ion pair interaction is given by

Vii(k,Te) = Z̄2V (k) + |Uei(k,Te)|2χ (k,Te). (4)

This pair potential is the NPA input to the classical MD
calculations.

It should be noted that the NPA uses a pair potential for
the ions and does not attempt to include multi-ion potentials,
as is customary in effective-medium (EM) approaches that
have been successfully used for metals and semiconductors,
especially at ambient temperature and compression. The EM
method is at best a non-self-consistent DFT approach [33] that
includes two-body, three-body, and other multi-ion effects. It is
often further extended by fitting to empirical and calculational
databases. However, recent attempts to use such models for,
e.g., WDM carbon, have not been very successful [34]. The
NPA approach exploits the fact that the grand potential �[n,ρ]
is a functional of both the one-electron distribution n(r) and
the one-ion distribution ρ(r). Hence a single-ion description
(which allows a pair potential) is the only rigorously neces-
sary information for a full DFT description of the system.
In practice, pair potentials are sufficient if linear-response
pseudopotentials could be constructed, as in Eq. (2). However,
this approach now needs not only an XC functional for the
electrons but also a correlation functional for the classical
ions. These are constructed via classical integral equations,
or automatically via MD simulations. Detailed discussions of
these issues and the NPA method may be found in Refs. [22,35].
In this context, we remark that standard implementations of
DFT-MD in codes like ABINIT and VASP [36,37] use only the
one-electron density-functional property, and not the one-ion
density functional, as it chooses to implement a full N -ion
Kohn-Sham simulation with N typically of the order of 100 or
more.

Furthermore, the multicenter nature of the simulations
implies a highly nonuniform electron density requiring sophis-
ticated gradient-corrected XC functionals. In contrast, the NPA
uses a relatively smooth single-center electron distribution
for which the local-density approximation (LDA) is found
to work very well, even for sensitive properties such as the
electrical conductivity [23] and plasmon spectral line shapes

[7]. The LDA form of the finite-T XC functional of Perrot and
Dharma-wardana [28] is used in this study.

B. Dynamic structure factor

The ion-ion spatial and temporal correlations are deter-
mined from the van Hove function

G(r,t) = 〈ρ(r,t)ρ(0,0)〉
ρ

= 1

N

〈
N∑

i=1

N∑
j=1

δ[r−rj (0) − ri(t)]

〉

(5)

with 〈· · ·〉 the ensemble and time average (over many different
time origins) calculated from classical MD simulations of
an N -particle system, ρ the mean ion density, and ri(t) the
position of the ith ion at time t . The ion-ion DSF

S(k,ω) = 1

2π

∫ ∞

−∞
F (k,t) eiωtdt (6)

is the time Fourier transform of the intermediate scattering
function F (k,t), which is itself the spatial Fourier transform
of the Van Hove function

F (k,t) =
∫

G(r,t)e−ik·rdr. (7)

While G(r,t) contains much information relevant to 2T situa-
tions, F (k,t) is also directly accessible in MD simulations via
the relation

F (k,t) = 1

N
〈ρk(t)ρ−k(0)〉, (8)

where

ρk(t) =
N∑
i

eik·ri (t), (9)

thus avoiding the calculation of the spatial Fourier transform,
which can add spurious high-frequency oscillations to F (k,t)
due to the finite size of the MD simulation cell. Under
WDM conditions, the averaged system properties are those
of an isotropic fluid; thus important structural quantities are
spherically symmetric in real space, |r| = r , and in reciprocal
space, |k| = k.

In the hydrodynamic limit, k → 0, the DSF takes the so-
called “three-peak” form

S(k,ω) =S(k)

2π

[(
γ − 1

γ

)
2DT k2

ω2 + (DT k2)2

+ 1

γ

(

k2

(ω − csk)2 + (
k2)2

+ 
k2

(ω + csk)2 + (
k2)2

)]
(10)

with DT the thermal diffusivity, 
 the sound attenuation
coefficient, γ = cP /cV the ratio of the constant pressure to
the constant volume specific heats (cp and cV ), and cs the
adiabatic speed of sound. The second and third terms of
Eq. (10) are the Brillouin peaks whose positions provide the
acoustic dispersion relation ωs(k), which is linear at small
k, ωs(k → 0) = csk, and is measurable experimentally. In
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addition, it is also possible to compute cs from the SSF S(k)
using the compressibility κ sum rule S(0) = ρκTi , which leads
to cs = √

Ti/S(0). Once the PP is constructed, the SSF can be
easily calculated via the MHNC procedure, independent of MD
simulations.

C. Equation of state

The total free energy per atom in the NPA model is given
by

F = F 0
e (Te) + Femb(Te) + Fii(Ti,Te) + F 0

i (Ti), (11)

with contributions F 0
e from the interacting homogeneous

electron gas, Femb from the embedding of the pseudoatom into
the uniform system, Fii from the interacting ion-ion system,
and F 0

i from the ideal ion gas. A more detailed description of
each term of the NPA free energy is given in Refs. [26,38].
For the equilibrium system, the pressure is obtained via the
density derivative of the free energy while the internal energy
is obtained by taking the temperature derivative:

P = n2 ∂F

∂n
, E = ∂(βF )

∂β
(12)

with β = 1/T . For quasiequilibrium systems, the internal
energy must be computed taking into account the temperature
derivative of each contribution in Eq. (11). Note that the term
Fii depends on both Ti and Te. Thus, the total derivative of the
2T internal energy reads

E(Te,Ti) ≡ ∂(βF )

∂β
= F + F

∂βe

∣∣∣∣
Ti

+ ∂F

∂βi

∣∣∣∣
Te

, (13)

which recovers the correct equilibrium internal energy when
Ti = Te.

III. RESULTS

All DSF have been calculated from MD simulations us-
ing the NPA pair potentials. The initial configuration was a
face-centered-cubic crystal containing 5324 particles arranged
in a cubic simulation cell. This corresponds approximately
to a linear dimension of 17 to 18 Wigner-Seitz radii, i.e.,
significantly larger than typical ion-ion correlations seen in
the ion-ion pair distribution of aluminum even at its melting
point. Simulations were carried out over 0.5 ns with a time
step of 0.5 fs. The first 50 000 steps have not been used as they
pertain to the initial equilibration period. From the remaining
simulation, configurations have been extracted every 1 fs
for the calculation of G(r,t) and F (k,t), which have been
calculated up to 3000 fs. The ion temperature was kept constant
throughout the simulation using a Nosé-Hoover thermostat.
The electron temperature no longer appears in the dynamics,
so no electron thermostat is needed; Te only intervenes in the
construction of the NPA pair potential, which is the essential
“quantum input” to the classical MD simulation.

In the range of Te studied in this work, i.e., from 1 to 10 eV,
the mean ionization calculated from the NPA model remained
essentially unchanged from the room-temperature value of
Z̄ = 3.0000–3.0163 for the normal density of 2.7 g/cm3.
Given a Fermi energy (i.e., approximately the chemical
potential) of ∼12 eV, no significant change in Z̄ is in fact

3 4 5
r [Å]

0.0

0.1

0.2

 V
ii (r

)[
eV

]

Te = 1 eV
Te = 5 eV
Te = 10 eV

2 3 4
r/rws

-0.02

0

0.02

V
ii(r

) /
 T

T=1.0 eV, 2.7g/cm3

T=3.5 eV, 5.2g/cm3

T=3.5 eV, T=0 XC

Al, 2.7 g/cm3

(b)(a)

Ti = 1 eV

T=Ti=Te

T=0 XC

FIG. 1. (a) Ion-ion pair potentials constructed from the NPA
model at electron temperatures of Te = 1, 5, and 10 eV, while the ion
temperature is held at Ti = 1 eV. (b) The Ti = Te = 1 eV potential
for the “room-temperature” Al density 2.7 g/cm3, as well the pair
potential at 5.2 g/cm3 and T = 3.5 eV relevant to the work of Rüter
and Redmer [11]. Note that in panel (b) we have plotted the potentials
in terms of physically relevant variables r/rws and Vii(r)/T , where
the nominal WS radii rws are 2.991 and 2.404 a.u., respectively.

expected. There is even less of a change at the higher density
of 5.2 g/cm3 used by Rüter et al. [11], as the Fermi energy
is correspondingly higher. The value of Z̄ for Al begins to
increase only from about 20 eV, and the consistency of the
NPA-evaluated Z̄ even at higher temperatures is shown from its
successful prediction of electrical conductivities of aluminum
under a variety of WDM conditions [23,39].

A. Static properties

We first review the results for several key static properties,
viz. pair potentials, PDFs, and structure factors.

1. Pair potentials

The easily computed NPA ion-ion pair potentials described
by Eq. (4) are the starting point of our study of the aluminum
DSF, using classical molecular dynamics with the NPA-PPs as
the input. Hence, in Fig. 1we show typical Al-Al pair potentials
that are relevant to our study. These pair potentials are the
simplest that can be constructed from the NPA density, while
the NPA calculation provides enough data to construct more
complex nonlocal pseudopotentials, or potentials designed to
recover phase shifts, etc. However, such elaborations need to
be invoked only if such potentials are really required. We have
found that this elementary approach works well for simple
metallic fluids in regimes of compressions of 0.5 to about
2.5, and from low temperatures (e.g., melting point) to higher
temperatures (where the model works better). In the present
study (aluminum at 2.7, and 5.2 g/cm3, at T = 1 and 3.5 eV,
respectively), the model is eminently applicable, as we show
by comparisons with more microscopic simulations for the
PDFs and other properties given below. Panels (a) and (b)
show the crucial role played by the Friedel oscillations in the
potentials. These are evident in the potential at Te = 1 eV
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and more weakly in the 3.5 eV potential. At high Te, they
are damped out and the potentials become more Yukawa-
like. The NPA model faithfully reproduces these potentials to
good accuracy, whereas many commonly used average-atom
models do not. The location of these oscillations, as well
as packing effects in the fluid, are controlled by rws. Hence
the plot using r/rws as the x coordinate brings potentials at
different densities to a comparable footing. We also show the
pair potential at 5.2 g/cm3 and T = 3.5 eV calculated using
the T = 0 XC functional that is customarily implemented in
DFT-MD simulations, showing a small and probably negligible
difference. However, it should always be remembered that
standard DFT-MD simulations can be used to benchmark other
calculations only when the T = 0 XC approximation holds.

2. Pair-distribution function

The NPA-PPs are known to closely reproduce the ion-ion
PDF g(r) and the corresponding static structure factor S(k) for
most systems studied so far, for compressions of 0.5 to about
2.5. Some examples are as follows:

(i) Al (a) at normal density ρ = 2.7 g/cm3 and at the melting
point, and (b) at an expanded density ρ = 2.0 g/cm3 with
T = 1000 and 5000 K [40].

(ii) Li at T = 2000 K and ρ = 0.85 g/cm3 [17].
(iii) Be at densities of ρ = 1.85 and 5.53 g/cm3 for various

two-temperature situations [8].
(iv) C, Si, and Ge in the WDM state [41,42]. Here, because

of the high electron density (Z̄ = 4), the NPA model works
even at 12 g/cm3, i.e., close to six times the graphite density.

While liquid metal PDFs can be obtained from MD simula-
tions using multicenter potentials such as those available from
EM theory [33], embedded-atom model (EAM) approaches
[43], or bond-order potentials [44], they have not been applied
in an intensive way to the WDM regime. The effect of Te on
the ion-ion interaction is not included except in limited cases
[45]. Kraus et al. [34] examined the use of multi-ion bond-order
potentials for WDM carbon but found them to be unsuitable and
extremely difficult to formulate for finite-T usage. In contrast,
the NPA-PPs are simple to compute and are at finite-T from
the outset. Here we show that the PDFs obtained from them
agree closely with those from DFT-MD for the systems studied
here.

In Fig. 2, NPA PDFs for aluminum at the “normal” density
ρ0 are compared with DFT-MD simulations from Recoules
et al. at 10 000 and 30 000 K [46]. The agreement is relatively
good. The slight disagreement (∼4%) noted near the main peak
is a common feature in this type of comparison, arising from
statistical noise in MD simulations with, say, N ∼ 100 atoms.
Here one may expect fluctuations of ∼1/

√
N . In reality, the

need to take an ensemble average of every quantity in DFT-MD
simulations adds to the labor and cost. In Fig. 3, we compare
the PDF for Al obtained from the NPA pair potentials with
that from Kohn-Sham DFT-MD simulations for two cases. The
first case [panel (a) in Fig. 3] is for the room-temperature
density ρ = 2.7 g/cm3 at a temperature T = 1 eV, which
gives one of the equilibrium WDMs used in this study. The
second case [panel (b) in Fig. 3] is for the compressed density
ρ = 5.4 g/cm3 at a temperature T = 3 eV, which is close
to the conditions used by Rüter and Redmer [11] in their

2 4 6 8 10
r [a.u.]

0.0

0.5

1.0

1.5

g(
r)

DFT-MD,  T = 0.86 eV (10,000 K)
NPA-MHNC, T = 0.86 eV 
DFT-MD,  T = 2.58 eV (30,000 K)
NPA-HNC, T = 2.58 eV

DFT-MD by Recoules et al.

Al, 2.7 g/cm3

FIG. 2. A comparison of the g(r) from the NPA-MD and from
DFT-MD simulations (Recoules et al. [46] for Al at the normal density
ρ0 and at 10 000 and 30 000 K. No bridge terms are needed at the
higher T case, where HNC and MHNC become equivalent).

DFT-MD calculation of the aluminum DSF. The latter is used in
Sec. III B to compare with our NPA-MD DSF. Our DFT-MD
simulations were done with the ABINIT package using a cell
of 108 atoms with a norm-conserving pseudopotential and
the T = 0 Perdew-Burke-Ernzerhof exchange and correlation
functional within the generalized gradient approximation. In
this case, the positions of the first maxima in g(r) are within
1% of each other for the first case (a) and within 2% for
the second case (b). The height of the first peak differs by
about 3% in both cases, showing the good agreement between
DFT-MD and NPA-MD simulations. The use of pair potentials
to perform classical MD simulations requires a considerably
shorter amount of time, illustrating the advantage of employing
the NPA model.
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DFT-MD

5 10
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_
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Al ρ = 2.7 g/cm3    T = 1 eV
_
Z = 3 

FIG. 3. Comparison of the g(r) from the NPA-MD and from
DFT-MD simulations for two Al WDM states: (a) ρ at the room-
temperature density of 2.7 g/cm3, T = 1 eV and (b) ρ = 5.4 g/cm3,
T = 3 eV.
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FIG. 4. S(k) computed from MHNC (continuous line), HNC (red
dashed line), and MD (blue circles and blue line) simulations at
Ti = 1 eV and Te = 10 eV.

3. Static structure factor

As indicated in Sec. II B, cs can also be calculated from
the SSF using the compressibility sum rule. In Fig. 4, we
compare the S(k) computed from HNC, MHNC, and MD
simulations all using the same pair potential. We note that
the MHNC SSF and the MD SSF agree very well, while the
HNC predicts a slightly lower maximum and a slightly different
k = 0 limit. This suggests that the differences may be due to the
use of a hard-sphere model within the Lado-Foiles-Ashcroft
criterion for modeling the bridge function [47]. In principle,
more accurate bridge functions can be extracted from MD
simulations.

B. Dynamical properties

1. Dynamical structure factor: Equilibrium system

In this section, the DSF for equilibrium Al, Ti = Te,
obtained from the NPA-PP, is compared with other DSF
calculations. First we consider the results of Rüter and Redmer
[11], who used Kohn-Sham DFT-MD to study Al at a density
of ρ = 5.2 g/cm3 (compression ∼2) and T = 3.5 eV, i.e.,
T/Ef 
 0.19. In Fig. 5, the NPA-MD DSF is compared with

the DFT-MD DSF for k = 0.42 and 0.69 Å
−1

. The position and
profile of the Brillouin peak obtained from the NPA-MD agree
closely with results from DFT-MD. Furthermore, the speed of
sound obtained by Rüter and Redmer, cs = 10.38 km/s, and
the NPA value of cs = 10.62 km/s are within 2.3% of each
other. In this case, the NPA calculation satisfies the f -sum
rule to within 96% over the range of k studied.

Since a full Kohn-Sham DFT-MD calculation as given by
Rüter et al. [11] for the DSF is extremely costly, simpler
approaches based on average-atom models as well as orbital-
free methods have been used to compute the ion-ion DSF. Here
we compare the results from the NPA-MD with corresponding
results from the pseudoatom model of Starrett and Saumon
[48] (PA-SS), and with OF-DFT-MD simulations, for Al at
the density ρ0 and T = 5 eV. A comparison of our NPA-MD
calculations with the OF-DFT-MD simulations of White et al.
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) [
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]
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k,

ω
) [
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]

NPA
Rüter et al 

(a)

(b)

  k = 0.42 Å-1

Al ρ = 5.2 g/cm3    T = 3.5 eV

  k = 0.69 Å-1

FIG. 5. A comparison of the dynamic structure factors obtained
from NPA-MD (this work) and DFT-MD [11] at two different wave
vectors. In NPA-MD, the pair potential [Eq. (4)] is the input to
simulation.

[20] and those of Gill et al. [49], using the PA-SS and MD, is

presented in Fig. 6 for wave vectors k = 0.45 and 0.96 Å
−1

.
White et al. used 108 ions in a cubic supercell in an OF-DFT
approach. Gill et al. presented an OF model calculation with a
classical simulation with 10 000 ions, and also a Kohn-Sham
(KS) approach within their PA-SS model. Since our NPA
model uses the KS procedure, only the KS-PA-SS results are
compared in Fig. 6.

The positions of the Brillouin peak for k = 0.45 Å
−1

coincide for OF-DFT-MD and NPA-MD, and the peak heights
differ by ∼4%. The adiabatic speed of sound cs = ωs/k was
obtained by a linear fit to the dispersion relation ωs(k) for
a small value of k. The OF-DFT-MD predicts an adiabatic
speed of sound of 10.4 km/s, very close to the NPA-MD
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Al : ρ = 2.7 g/cm3    T = 5.0 eV
ωp = 125 meV    Z = 3

FIG. 6. The equilibrium DSF of Al at density ρ = ρ0 and

T = 5 eV, for wave vector k = 0.45 Å
−1

(upper panel) and 0.96 Å
−1

(lower panel): NPA (black continuous line), PA-SS [49] (red dot-
dashed line), and OF-DFT-MD [20] (blue dashed line).
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Al ρ = 2.7 g/cm3     T =5 eV       Z = 3

FIG. 7. A comparison of the equilibrium acoustic dispersion
relation of Al for (a) density ρ = ρ0 and T = 5 eV as in the OF-DFT-
MD calculations of White et al. [20] and as in the PA-SS calculations
of Gill et al. [49], and (b) ρ = 5.2 g/cm3 and T = 3.5 eV as in Rüter
et al. [11].

value of 10.2 km/s, whereas the PA-SS-MD predicts a higher
value of 12.7 km/s (see Fig. 7). Once again, we ensured that
the NPA calculation satisfies the f -sum rule to within 97%
over the range of k studied. The good agreement between
the equilibrium DSF calculated via the NPA-MD and OF-
DFT-MD mutually confirms the extent of validity of these
methods and of the NPA-MD approach. We already noted
the good agreement with the fully microscopic calculations of
Rüter et al. [11]. All these encourage us to apply 2T -NPA-PP
to investigate the dynamical properties of quasiequilibrium
systems where Te �= Ti .

2. Dynamical structure factor: Quasiequilibrium system

To study the ion dynamics in the quasiequilibrium system
with Te > Ti = 1 eV, we employ the ion-ion pair potential
Vii(r,Te) constructed from the NPA calculation, which explic-
itly depends directly on Te. The dependence on Ti comes in
via the ion density and the ionization state Z̄ of the ions, and
hence is implicitly included in the NPA calculation. In Fig. 1(a)
we present the potentials for the cases Te = 1, 5, and 10 eV.
At Te = 1 eV, the potential exhibits Friedel oscillations with
several minima, whereas it becomes purely repulsive at higher
temperatures since the Fermi energy at 2.7 g/cm3 is 11.65 eV.

To ensure that the two-temperature DSF of the quasiequi-
librium system is physically relevant, we must verify that all
spatial correlations vanish in a time τc smaller than the ion-
electron relaxation time τei , which is of the order of hundreds of
picoseconds [50]. The Van Hove function has been calculated
for the specific case Ti = 1 eV and Te = 10 eV, and its time
evolution is presented in Fig. 8. We find that at τc = 125 ps, all
spatial correlations have vanished, such that τc < τei , implying
that dynamical properties can be meaningfully calculated for
the quasiequilibrium system.

The 2T -DSF at ρ = ρ0, computed with the NPA-based PP,
is presented in Fig. 9 for Ti = 1 eV and Te = 1, 5, and 10 eV,

2 4 6 8
r [Å]

0

0.04

0.08

0.12

G
(r

,t)

Al ρ = 2.7 g/cm3

Ti = 1 eV     Te = 10 eV

25 fs

50 fs

100 fs

75 fs

125 fs

FIG. 8. The Van Hove function for different times for the case
Ti = 1 eV and Te = 10 eV. For clarity, each curve is shifted vertically
by 0.015 from the previous one while the curve for t = 25 fs is
unshifted.

and wave vector k = 0.45 Å
−1

. The position of the Brillouin
peak shifts to higher ω as Te increases while the value at ω = 0
is drastically lowered. Furthermore, the shape of the peak is
narrower for higher Te.

The dispersion relation ωs(k) for Te = 1, 5, and 10 eV can be
deduced from the position of the Brillouin peak. It is displayed
in Fig. 10.

The dispersion relation begins to be noisy and unphysical
at different values of wave vector k as Te is increased. Thus the
position of the Brillouin peak could be confidently determined

only up to k = 0.8, 1.2, and 1.5 Å
−1

for Te = 1, 5, and 10 eV,
respectively. Establishing that collective excitations still exist
for higher values of k becomes more difficult as the Brillouin
peak merges back with the Rayleigh peak at k = 0. This
makes it hard to evaluate the full width at half-maximum of
the Brillouin peak, ideally needed to establish the survival
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FIG. 9. The quasiequilibrium DSF of Al at density ρ0, Ti = 1 eV

and Te = 1,5, T = 10 eV for wave vector k = 0.45 Å
−1

.
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FIG. 10. The two-temperature dispersion relation ωs(k) calcu-
lated from the position of the Brillouin peak for Ti = 1 eV and Te = 1,
5, and 10 eV.

of longitudinal modes at higher k and higher Te. Instead, we
decided to include the position of the peak as long as its height
is at least 20% higher than the value at k = 0. Using the same
procedure for each combination of Ti and Te enables us to
treat them in a comparable manner. Longer MD simulations
would yield better results for ωs(k); however, the current results
are sufficiently precise to conclude that there exist more ion
longitudinal modes at Te = 10 eV than at lower Te; this may
be due to the lower compressibility of the electron subsystem as
well as the ion subsystem with a more repulsive pair potential,
as shown in Fig. 1, the ion temperature being identical. These
dispersion relations will be used to determine the speed of
sound cs as a function of Te. Predictions of the speed of sound
computed from the DSF, the MHNC-SSF, and the HNC-SSF
are compared in Fig. 11.

The speed of sound calculated from the DSF is slightly and
systematically higher than the MHNC-SSF value through the
entire range of Te, with a maximum difference of 4.6% occur-
ring at Te = 7 eV; both methods predict a 43% increase from
Te = 1 to 10 eV. These results also confirm the phenomenon of
phonon hardening [18]. It should be noted that the HNC-SSF
value is considerably lower than the value from other methods,
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FIG. 11. Comparison of the speed of sound in the 2T system
calculated from the SSF and from the DSF with Ti = 1 eV.
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FIG. 12. Comparison between the equilibrium and quasiequilib-
rium free energy (a), internal energy (b), and pressure (c) of Al at
density ρ0. As Ti is held fixed at 1 eV for quasiequilibrium time
scales (or longer via a thermostat coupled only to the ions), the ionic
lattice does not expand and the density remains fixed.

illustrating the importance of using a bridge term in the integral
equation for the ion distribution at these coupling strengths.

C. Quasiequation of state

The NPA model allows a rapid calculation of the EOS of Al
in equilibrium conditions, which was intensively investigated
by Sjostrom et al. [51], but also for 2T situations. In Fig. 12
we present a comparison between the equilibrium and the
quasiequilibrium Helmholtz free energy F , internal energy E,
and total pressure P . At the highest electronic temperature
(Te = 10 eV) that we have studied, the equilibrium F is lower
than that of the quasiequilibrium system by 2.3% while the
internal energy is higher by 0.25%. The internal energy in
both cases has a maximum in the range of Te = 6–7 eV and
has a similar shape. While F and E are only slightly modified
in the 2T regime, the equilibrium pressure is higher than that
obtained at quasiequilibrium by as much as 56% at Te = 10 eV.
Even though the changes in the free energy and internal energy
are small, such variations could considerably affect EOS-
dependent properties such as specific heats, conductivities,
energy relaxation rates, and other coupling coefficients that
enter into more macroscopic WDM simulations. The efficiency
and rapidity of computing such 2T -EOS via the NPA model
allows us to obtain them on the fly for simulations of shocked or
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laser-driven systems, for most combinations of Ti and Te where
a significant density of free electrons is available to make the
NPA approach valid, and where no persistent chemical bonds
are formed.

IV. CONCLUSION

Taking aluminum as an example, we demonstrated that the
NPA pair potentials can be used to compute efficiently and
accurately the equilibrium dynamic structure factor via MD
simulations, and we established that it is in close agreement
with DFT-MD results. We explored the two-temperature sys-
tem and showed that all ion-ion correlations vanish in a time
shorter than typical electron-ion relaxation times, validating
the concept of a 2T -dynamic structure factor in this context.

We presented the 2T -DSF and showed that the Brillouin
peak shifts to higher energies as the electron temperature is
increased. As a result, the ion acoustic mode dispersion relation
is modified and the adiabatic speed of sound cs is increased, in
good agreement with its determination via the compressibility
sum rule in the small-k limit of the static structure factor. The
latter is independently obtained via the modified hypernetted-
chain method and using the pair potentials generated via

the neutral-pseudoatom method. The increase in the acoustic
velocity is also consistent with the phenomenon of “phonon
hardening.”

The comparison between the equilibrium and quasiequilib-
rium EOS shows that the free energy and the internal energy are
only weakly modified in the two-temperature system, while the
pressure is significantly affected. The efficient calculation of
the quasiequilibrium EOS via the neutral pseudoatom method
constitutes a powerful tool for exploring out-of-equilibrium
systems via MD simulations.
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