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Dynamic conductivity and partial ionization in dense fluid hydrogen
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A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different
quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen’s high-
temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described
by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the
Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of
partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen’s
fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first
theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.
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I. INTRODUCTION

Despite its apparent simplicity and the tremendous progress
in studying this archetypal system over the past century, the
properties of dense hydrogen continue to pose outstanding
challenges for most of the high-pressure and astrophysical
sciences. For as long as quantum mechanics has been known,
the first element was expected to undergo a transition into a
degenerate free-electron-like state [1,2]. Because as a metal,
hydrogen is exceptional in possessing no bound electrons, the
electron-ion, and ion-ion interactions are both due to the bare
Coulomb attraction. The light mass of its ionic system gives
rise to substantial zero-point motion, which persists up to
increased compressions, implying that the ions dynamics may
depart from classical behavior. Remarkably even at higher
temperatures, typical of the metallic plasma state, these quan-
tum characteristics are persistent [3–5]. The thermodynamic
and transport properties of this conducting state are also
fundamental to understanding the complex physics of warm
dense matter. In this regime, the ions are strongly coupled
with a Coulomb coupling parameter � = e2/(rSKb T ) � 1,
with rS being the ion-sphere radius, T the temperature, Kb

the Boltzmann constant, and e the electronic charge, while the
electronic system is highly degenerate [6]. Equally important,
this state constitutes 60%−70% of Jupiter and Saturn planetary
mass, and therefore dictates all heat transport, magnetic
dynamo action, and zonal flow models of these giants [7,8].

Recent high-pressure experiments have generated consider-
able interest in the behavior of hydrogen and its heavier isotope,
deuterium, at high densities and moderate temperatures [9–13].
The reflectance data reported for the conduction properties of
statically compressed hydrogen and dynamically-compressed
deuterium seemingly conflict both in their energy dependence
and the reported P-T conditions. Earlier reverberating shock-
wave experiments reported a rapid rise in the dc electrical
conductivity in the region of 80−180 GPa and calculated
temperatures of 2500−3000 K [14]. At 140 GPa, the observed
plateauing of conductivity, in shocked hydrogen, evinced,

decisively, a transformation to the metallic state. Similar results
were later reported for quasi-isentropic shocked deuterium at
identical pressures, albeit at some estimated higher temper-
atures of 3800−4100 K [15,16]. Static experiments probing
optical reflectance at similar conditions, 140−170 GPa and
1800−2500 K, observed a distinct free-electron energy depen-
dence, the hallmark of the metallic character [9,10]. Extensive
theoretical studies, with varying degrees of sophistication,
have confirmed the highly conducting nature of the liquid
at these P-T conditions [17–23]. Nonetheless, the theoretical
results differ substantially, based on the employed method,
in the exact thermodynamic nature of the conducting fluid:
its degree of dissociation, and its transport coefficients. The
variance in the density functional theory (DFT)-based methods
is considerable insomuch as it does render these ab initio
predictions qualitative at best.

It is evident that the high dc and optical conduction observed
in dynamic, and more recently static experiments, still lacks
a conclusive electronic interpretation. Such an interpretation
should provide a mechanism that would account for the mag-
nitude of optical and dc conduction and the thermodynamic P-T
conditions where these changes occur, as well their eventual
behavior at increasing densities and temperatures. Indeed,
several mechanisms have been proposed: thermal excitation of
carriers across a reduced Mott-Hubbard mobility gap [14,24],
a band overlap in the molecular phase where molecular ioniza-
tion contributes carriers to conduction [25], electron hopping
among donor atoms [26], and free-electron conduction as a
result of substantial dissociation of the molecules into an
atomic conducting fluid [20–22,27,28]. To date, several DFT
molecular dynamics (MD) simulations have studied the optical
reflectance of deuterium along the principal hugoniont, close
to the maximum compression density, and obtained good
qualitative agreement with shock-wave optical data at a single
frequency [21,28].

The recently obtained spectrally resolved optical data for
hydrogen reflectance as a function of increasing temperatures
and fixed volume present an invaluable probe to test these
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mechanisms of conduction in such a unique system. Thus
far, a common feature of most of the experimental studies
is the use of the semiclassical Drude free-electron model to
analyze the optical data [10,24,29,30]. Although this model
is well substantiated, some of its underpinnings, and thus its
applicability at the different P-T regimes of hydrogen remain
largely untested. In this paper, we present a quantum statistical
model for electronic conduction in dense fluid hydrogen. We
focus on the region of 140−170 GPa and 2000−2500 K where
there is little doubt that hydrogen attains metallic character.
Two important regimes are closely examined: The first is
the regime of high degeneracy, where the static and dynamic
experiments both report saturation of conductivity. We show
that partial ionization within the Ziman weak scattering model
can account for the observed optical conduction as well as the
recently revised magnitude of dc conductivity [10]. The sec-
ond regime defines the metallization transition region, where
experiments show an abrupt increase of optical reflectance,
with an energy dependence that is characteristic of non-free-
electron-like density of states. We show that the collapse of
the insulating gap could be described by enhanced atomic
polarization effects, attributed to a concomitant change in the
fluid pairing structure.

Our paper is organized as follows. In Sec. I, we outline a
quantum statistical model within the Ziman weak perturbation
theory to describe the optical and conducting properties of
highly degenerate liquid hydrogen. In Sec. II, we discuss the
importance of partial ionization, particularly at the degenerate
limit, and examine the resultant additional scattering mecha-
nisms due to neutral and ionized species. In Sec. III, we focus
on the regime close to the onset of the metallization transition
and show that increase of polarizability as a result of pressure
ionization well describes the observed wavelength dependence
of optical conduction. Conclusions are drawn in Sec. IV.

II. DYNAMIC CONDUCTIVITY AND
DIELECTRIC FUNCTION

A detailed account of optical conduction experiments de-
mands a consistent theoretical description for the frequency-
dependent dielectric function, which is related to the density-
density correlation function. The dielectric function ε(ω,κ) de-
scribes the dense liquid reaction to an external perturbing field
with wave number k and frequencyω. In the insulating state, the
dielectric response is dominated by local field effects, which
arise from the bound state contribution to the polarization.
These effects could be adequately described by the general
Clausius-Mossotti relation [31]. At increasing densities, the
bound states are screened by the existence of free carriers and
the static dielectric function is concurrently enhanced [32,33].

The experimental geometry for almost all of the high-
pressure optical experiments is similar. A cell [either a dia-
mond anvil cell (DAC) chamber for static and precompressed
targets or cryogenic cell for dynamic] confines the hydrogen
sample at some known P-T conditions. In static laser-heating
experiments, the heated layer of hydrogen is pressed against
a metallic absorber. Once hydrogen is sufficiently dense and
warm, it assumes metalliclike properties and reflects probe
light. Due to the high thermal conductivity of the metallic layer,
an interface separates the molecular and the metallic layers. In

shock-wave experiments, the shock front defines this interface
between the warm compressed and the unperturbed hydrogen.
Assuming a steplike profile of the metallic and the molecular
and diamond layer, the Fresnel reflection coefficients of the
probe laser beam can be expressed in terms of the dielectric
function as

R(ω) =
∣∣∣∣
√

ε(κ,ω) − N√
ε(κ,ω) + N

∣∣∣∣
2

, (1)

where N is the index of refraction of the unperturbed molecular
hydrogen. Since the skin depth could be assumed to be much
larger than the mean free path, nonlocal effects can be safely
ignored and the dielectric function is, thereafter, expressed in
its long wavelength limit, ε(κ,ω) = ε(ω).

The complex frequency-dependent dielectric function is
related to the dynamical conductivity σ (ω) and the collisional
frequency ν(ω) via the generalized Drude formula as

ε(ω) = 1 + i

ωε0
σ (ω) = 1 − ω2

p

ω[ω + iν(ω)]
. (2)

Reflectance could therefore be calculated once the complex
dielectric function is known. To do so, we evaluate the dynamic
collisional frequency in the framework of the Kubo-Peierls-
Greenwood quantum linear response theory. This approach has
been extensively employed for several other systems [34–37],
where effects such as strong coupling, nonideality, or partial
ionization are also relevant.

III. CONDUCTIVITY IN THE NEARLY FREE ZIMAN
MODEL IN THE DEGENERATE AND

NONDEGENERATE LIMITS

In this section, we will calculate the expected reflectance of
metallic hydrogen in the high-degenerate limit where several
experiments have shown saturation of optical reflectance to
∼50%. In considering equilibrium properties of liquid metals
and dense degenerate plasmas, a foundational role belongs to
the Ziman-Faber theory [38,39], which has been remarkably
successful at predicting the conductivity of liquid metals to
within a factor of 2 [40,41]. The theory allows for the treatment
of the effective electron-ion scattering as a weak perturbation
provided the validity of the Born approximation. The scattering
cross section is dependent on the dynamic structure factor, Sp

(k,ω), which is the spectral function of the density-density
correlation fluctuations.

In its first order, the collisional frequency of this scattering
can be expressed as

νZiman
dc degenerate = npme

4 π h̄3κ3
F

∫ 1

0
dyy3W 2(y)

×
∫ ∞

−∞

dω

2π
Sp(y,ω)

βh̄ω

eβh̄ω − 1
. (3)

If the energy scale of excitations in the system is sufficiently
low compared to the temperatures of interest, βh̄ω � 1,
the dynamic structure factor reduces to its static limit, Sp
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(k,ω → 0) [42],∫ ∞

−∞

dω

2π
Sp(y,ω)

βh̄ω

eβh̄ω − 1
= Sp(y), (4)

and thus

νZiman dc
ei = npme

4 π h̄3κ3
F

∫ 2κF

0
dy ′y ′3 Sp(y ′)W 2(y ′). (5)

We employed the exact solution of the Percus-Yevick hard-
sphere model [43] to describe the pairwise ion-ion interaction.
Such model has been extensively utilized in liquid metal studies
[40,44–46]. It permits a description of the structure factor
of the proton subsystem in a closed form that is dependent
only on the effective packing density of the liquid. This model
has been previously used to constrain dense fluid hydrogen’s
thermodynamic and electron transport properties [25,47,48].

In this model, the expression for the microscopic static
structure factor Sp(q) is

Sp(q) = 1

1 − nC(q)
, (6)

where C(q) is the Fourier transform of the direct correlation
function:

C(q) = −4πσ 3
∫ 1

0
(α + βx + γ x3)

sin(qax)

qσx
x2dx, (7a)

α = (2η + 1)2

(1 − η)4 , (7b)

β = −6η
(1 + 0.5η)2

(1 − η)4 , (7c)

γ = 1

2
ηα. (7d)

Here, n is the number density of ions, a is the diameter of
hard spheres, and η is the packing fraction. Figure 1 shows the
calculated structure factors for the range of packing fractions
considered here. In the top panel of Fig. 1, we compare
the correlation function determined from the Percus-Yevick
model to those calculated from DFT and coupled electron-ion
Monte Carlo simulation (CEIMC) for comparable densities
and temperatures.

The quantity W(x) describes the electron-proton pseudopo-
tential, which in liquid metallic hydrogen (LMH) corresponds
to the screened Coulomb interaction.

W (q) = −V (q)/ε(q).

Here V (q) = 4πe2/q2 is the Fourier transform of
the Coulomb interaction, q is the scattering vector between the
plane wave levels at the Fermi surface, and ε(q) is the
dielectric permittivity of the degenerate electron gas in the long
wavelength limit. In the random phase approximation, ε(q) =
1 + [V (q) + U (q)]ϕ(q), where U (q) = −2πe2/q2 + λk2

F is
the energy of exchange correlation of the electron subsystem
with λ = 2 [49], while ϕ(q) is the polarization function of the
free-electron gas expressed as [50]

ϕ(q) = meκF

π2h̄2

(
1

2
+ 4k2

F − q2

8kF q
ln

∣∣∣∣2kF + q

2kF − q

∣∣∣∣
)

. (8)
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FIG. 1. Bottom panel: static structure factors calculated within
the Percus Yevick (P-Y) model for the range of packing fractions
explored in the Ziman calculations. They correspond to densities of
1.64 < rS < 1.5. Top panel: the pair-correlation function determined
from the P-Y model at rS = 1.5 in comparison with those calculated
using ab initio methods at comparable temperatures. The dashed line
is from CEIMC simulations at 1500 K [55], whereas the dotted line
is from a DFT-based calculation [58]. It is worth noting that the P-Y
model presented here does not capture the physics of proton pairing at
lower densities, since the employed screened Coulomb potential does
not account for Friedel oscillations, which dominate the pair potential
at higher rS .

The formalism of the collisional frequency [Eq. (5)] is now
dependent on three parameters: the hard-sphere radius σ , the
packing fraction η, and the Fermi wave vector kF . However,
these parameters are all a function of the density of the system
and can be related via two simple relations:

k3
F = 3π2n, η = πa3n

6
. (9)

We can now take the hard-sphere radius to be the only
independent unknown in Eq. (5). Table I outlines the results for
the Ziman collisional frequency, conductivity, for an electron
density rS of 1.55, or 140 GPa and 2000 K. The corresponding
dynamical conductivity at this P-T condition is plotted in
Fig. 2.

TABLE I. Input parameters and results for the Ziman Collisional
frequency, electrical conductivity, ion-ion coupling and electron
degeneracy parameters.

η σ vei Ziman
dc σ Ziman

dc (S/cm) � θ

0.38 2.245 5.87 × 1015 1.9 × 104 90 0.01
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FIG. 2. Reflectance of bulk liquid metallic hydrogen versus en-
ergy shown for different models. Experimental data points are shown
at 140 GPa and 2500 K for three different wavelengths from Ref. [10].
The dashed line is the calculated reflectance in the weak scattering
model using the Ziman formalism and full ionization. The solid line
shows a fit for a collisional frequency that is 40% higher than that
determined from the Ziman model, accounting for the effects of partial
ionization. The dotted line represents the reflectance in the strong
scattering Mott-Ioffe-Regel limit.

IV. CONTRIBUTION OF NEUTRAL
OR CHARGED SPECIES

The results derived within the Ziman-Faber formalism as-
sume full ionization, mainly that the only scattering mechanism
is made of the elementary collisions between the electrons and
ions. Such assumption yields reflection coefficients that are
in good agreement, within 60%, to the experimental values.
Nonetheless, there is merit in extending the analysis to examine
the role of partial ionization (i.e., the presence of other neutral
or charged ionic species) on the scattering mechanism. In this
effort, an empirical fitting factor χ was used to relate the
collisional frequency due to those other scattering species to
that arising from the electron-ion interaction, νei .

νC(nC,T ) = χνei(ni,T ). (10)

Here νC(nC,T ) describes the scattering of neutral or
charged species. The total collision frequency can now be
expressed via the Matthiessen rule as

ν tot = νei + νC = (1 + χ)νei . (11)

In other words, χ is basically the ionization fraction or
(ne/ni). The new collisional frequency can be now be fitted,
using Eq. (1), to the experimental reflectance data in order
to extract χ . The results are shown below in Fig. 2. Our
fit (solid line) with the factor χ = 0.4 (or 60% ionization
fraction) represents a significant contribution of additional
scattering species in the metallic, plasmalike fluid. We note
that the results are strikingly similar to those obtained within
the semiclassical Drude free-electron model, which found an
ionized or conducting faction of 65% [10]. Although different
ab initio simulations have hinted at the presence of highly
ionized species [51], our current results provide one of the
first examples of indirect evidence for partial ionization in the
metallic hydrogen state at the examined P-T conditions. An

immediate question arises as to the nature of these species as
well as their role in the scattering cross section at the Fermi
level. Below, we theoretically examine whether neutral atoms
are the major constituents of those additional species.

A. Contribution of neutral atoms

In the partially ionized framework, the plasma is considered
a multicomponent system where neutral atoms constitute
chemically distinct species [33]. To calculate the scattering
of the conduction carriers off these neutral bound states,
an effective interaction potential has to be introduced. A
widely used potential for dense plasmas is the Buckingham
polarization potential [36,52]:

Up(r) = e2

4 πε0

αp

2
(
r2 + r2

0

)2 e
−2 r

rD

(
1 + r

rD

)2

. (12)

r0 is a cutoff radius, which ensures the nondivergence of
the potential in the limit of r → 0. At large distances, the
polarization interaction is screened exponentially by the usual
Debye radius rD =

√
KBT/4πe2n. For hydrogen plasma, we

use αp = 4.5 a3
B and r0 = 1.45 aB , [36] where aB is the Bohr

radius.
In the static Born approximation, the collisional frequency

due to the electron-atom interaction can be expressed as

νBorn
ea = nae

4β3/2

6
√

2 π3/2ε2
0
√

me

(
meπαp

β h̄2r0

)2

×
∫ ∞

0
dy

y5

[ 2h̄2nee2

8ε0meβ2 + y
]2 e

(−y−2r0

√
y

β h̄2/8me
)
. (13)

νBorn
ea is a few orders of magnitude smaller than the de-

termined νC or the calculated νei . This result may suggest
that the majority of the scattering species are highly ionized
particles, since atoms, in light of their electrical neutrality, are
expected to scatter far fewer conduction electrons than their
charged counterparts. Another possibility is the inadequacies
of the employed polarization potential in capturing the relevant
scattering processes of electrons off neutral atoms at these
conditions [53].

V. CLOSURE OF THE GAP IN THE TRANSITION REGION

We now turn our attention to the second experimental
regime close to the onset of the insulator-metal transition
where the optical data exhibit a rapid increase in reflectance.
This region is mostly important to elucidate the mechanism of
band-gap closure, especially that the transition appears abrupt
enough that, within ∼200 K, reflectance saturates around their
typical metallic values. The central question is the driving
force behind this abrupt transition: whether a structural change
of a dissociative character in the liquid is implicated [54] as
opposed to a vanishing gap in a primarily molecular system.
Two key observations from the data [10] could shed more
light onto this question. First, there is the abrupt drop of
transmission in the dense fluid only to be followed by the
rise of reflectance a few hundred kelvins later. Second, there
is the non-free-electron nature of the conducting fluid at the
vicinity of the transition region, suggesting large fluctuations
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FIG. 3. Reflectance signal of liquid metallic hydrogen in the
vicinity of the metallization boundary compared to different conduc-
tion models. The experimental data from Ref. [10] are shown for
two different temperatures, 1780 and 1920 K, exhibiting a non-free-
electron-like energy dependence. The dotted lines represent fits using
dielectric functions that include enhanced polarizibility. The solid
line is the calculated reflectance within a degenerate semiconducting
model assuming a band gap of 0.2 eV.

in the system’s structure factor, likely affecting the density of
states near the Fermi level. Such effects could be understood
considering that the energies of the vibrational stretching
modes ∼0.3 eV, characteristic of the molecular liquid before
the transition, are representative of the temperature scale of the
system. If so, then the justification for the high-temperature
degenerate limit introduced in Eq. (4) would be suspect, and
the static limit assumed for the structural factor may be no
longer valid. Correspondingly, a dramatic enhancement in the
polarizability of the warm dense liquid is thus expected as the
system pressure ionizes [27]. Below, we examine the effects of
the core states’ polarizability on the optical properties of the
fluid.

We followed the variational cluster expansion of the
screened polarization function discussed in Ref. [33] to approx-
imate the core dielectric function due to the atomic component.
The main contributions arise from core to free transitions and
can be expressed by

εc = 4πnaαp

1 − (h̄ω/E0)2 ,

where E0 denotes the lowest excited bound state for the neutral
atoms; na is the density of atoms.

εtot(ω) = 1 − ω2
p

ω[ω + iν(ω)]
+ εc. (14)

If the ionization potential of atomic hydrogen is assumed
to be unaltered, then εc is reduced to 4πnaαp for the relevant
frequencies of interest.

The low-reflectance data could now be fit to the new dielec-
tric function, with na , ν being free parameters to determine
the ionization fraction close to the metallization transition.
In Fig. 3, we show that the non-free-electron nature of the
fluid could be explained by an increasing atomic polarizability
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FIG. 4. The ionization degree plotted as a function of temperature
across the transition region from this work (squares) in comparison
to the reported dissociation degree from different ab initio DFT-MD
calculations. We note the definition of molecular stability and hence
dissociation varies in different calculations, whereas the ionization
degree is more experimentally grounded.

in the liquid. The observed optical conduction is thus a
result of a concomitant process of ionization, which delocal-
izes conduction electrons. At ever increasing temperatures,
ionization fraction is enhanced, and the conducting liquid
soon assumes a free-electron-like character, where the energy
dependence of optical conduction becomes well described by
the Ziman-Faber model. We further contrasted our results
to the previously held experimental model of conduction:
thermal activation of localized carriers across a reduced Mott-
Hubbard mobility gap. The expected reflectance for degenerate
semiconductor liquid hydrogen is calculated using the general
Fermi integral for the occupation probability of the conduction
states. The results shown in Fig. 3 allow us to rule out the
semiconductor model even for the low-reflectance data. The
ionization fraction determined from the present analysis is
shown in Fig. 4. The results are plotted against the dissociation
fraction reported in different ab initio theoretical studies. We
note that the difference between the two processes (ionization
and dissociation) is more pronounced in the low-density state,
where a dilute atomic gas is different from an ionized one.
However, at sufficiently high densities, the distinction between
the two concepts is often nebulous since the notion of molecular
pairing and delocalization becomes more probabilistic. Future
ab initio calculations studying ionization fractions or plasma
frequencies are valuable since they would be more amenable
to comparison with the experimental data. In Fig. 5, we show
the evolution of the real part of the dielectric function as a
function of temperature across the metallization transition.
The effects of enhanced polarizability are visible in the two
dielectric functions shown at 1920 and 1780 K, which eventu-
ally give away to the familiar Drude-like dielectric function at
2400 K.

It is instructive to compare our results to those recently
reported in the extensive CEIMC studies [54,55]. The onset of
the metallic transition as well as the magnitude of electronic
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FIG. 5. The evolution of the real part of the dielectric function
across the insulator-metal transition boundary in liquid metallic
hydrogen. In the highly degenerate limit (the solid line), the dielectric
function was determined for the partially ionized system and is
characteristic of that of the free-electron metal. Close to the onset of
the transition boundary, the dielectric function (the dotted and dashed
lines) does include effects of increased polarizability due to pressure
ionization.

conduction found in those calculations are in very good
agreement with both the experimental data and the results
reported here. However, the change in the optical properties
close to the transition boundaries, in particular the loss of
transparency and the non-free-electron nature of the fluid, are
perhaps not adequately captured in those simulations. Here,
we have shown that an increase in the atomic polarizability
could account for these effects. A detailed CEIMC-based
investigation of the optical properties in the fluid is thus highly
valuable, especially since some finite delocalization of the
electrons was suggested in these calculations, even in the
insulating molecular fluid before metallization [55].

A. Discussion

The results presented within the Ziman-Faber weak scatter-
ing model confirm the free-electron character of the LMH state
observed in static and shock-wave experiments (see Fig. 2).
This should come as no surprise since most theoretical models
assume the validity of the Ziman formalism for the highly
degenerate regime. This is because the collision parameter
is small enough, e2/hνF � 1, and the electron-ion coupling
effects on the electron dynamics can be ignored. However, it is
still noteworthy given that most shock-wave experiments still
invoke the strong scattering Mott-Ioffe-Regel limit to explain
the anomalously low reported conductivity of LMH. We show
that such limit is inadequate to produce the magnitude of the
measured reflectance.

One of the more striking features of the present analysis
is the importance of partial ionization in the liquid conducting
state at the conditions probed by many experiments. Hydrogen
is shown to be a partially ionized free-electron metal. The

inclusion of the effect of additional scattering species on the
collisional frequency yields excellent agreement with the semi-
classical Drude-Boltzmann model. This is understood since the
Drude model assumes no prior knowledge of the identity of the
scattering centers. Understanding the scattering cross sections
between these neutral or ionized species and conduction elec-
trons should be of prominent value to constraint transport and
thermodynamic properties of dense liquid metals or nonideal
plasmas. Future experiments studying the molecular stretching
vibrational mode, QJ (1−0), in the liquid phase could then ex-
pect a reduced intensity, even in the metallic regime, rather than
complete disappearance. The packing fraction, which provides
the best agreement to the experimental results, is comparable to
that in the majority of other liquid metals close to their freezing
points. More notably, the hard-sphere diameter is as large as
three atomic diameters. The conductivity of metallic hydrogen,
with the inclusion of additional scattering, is 1.2 × 104 S/cm,
which is comparable to that of liquid mercury at ambient
conditions.

Close to the transition region, the Ziman formalism breaks
down even though the liquid is still degenerate, perhaps
signaling some strong electron-ion coupling, clustering effects,
or the importance of Friedel oscillations. Some of these effects
could be handled using more sophisticated quantum statistical
models, like the ion-sphere framework, which predicts incip-
ient Rydberg-like states close to the insulator-metal boundary
[56]. A recent DFT calculation suggests the formation of
highly ionized molecular species at the transition boundary
rather than free-electronic carriers [57]. A more detailed study
for conductive properties of this molecular ionized fluid is
still needed. Our results provide some experimentally guided
benchmarks for the thermophysical and conductive properties
of the hydrogen metallic state. We show that the dissociation or
ionization degree, and thus the stability of the molecular bond,
remain hard to describe in the majority of DFT calculations,
especially in the regime of partial ionization. Such regimes,
lying between the fully molecular and fully ionized, present
the most significant theoretical challenge. It is unclear which
of those regimes were probed by the shock-wave experiments
studying the metallic transition in deuterium at ∼350 GPa,
and perhaps low temperatures. In this regard, the ongoing
impetus from static and dynamic experiments, particularly
probing optical conditions at fixed densities and increasing
temperatures and vice versa, remain essential to understanding
the physics of dense hydrogen as the benchmark system for
warm dense matter.
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