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It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal
plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for
plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse
(electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from
the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we
have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell
simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum
for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed
when the density is increased further.
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I. INTRODUCTION

Wakefield generation is of fundamental interest in plasmas,
both from a basic science point of view and when it comes
to applications. Of particular interest is the laser wakefield
acceleration scheme, which has shown tremendous progress
since the pioneering work by Tajima and Dawson [1]. There
are many recent experimental works directed towards electron
wakefield acceleration, see, e.g., Refs. [2–4], where the particle
energies in some set-ups reach the GeV regime. Three classic
papers on wakefield acceleration played an important role
for showing the feasibility of the plasma based accelerator
concept [5–7]. Moreover, a number of different approaches
for electron acceleration have been proposed and demonstrated
experimentally by different research groups around the globe,
e.g., bubble regime [8,9], beat wave acceleration [10,11],
self-modulated laser wakefield acceleration [12], and many
more. Furthermore, the effects of external magnetic fields [13],
effects of modifying the laser chirp [14], and effects of varying
the plasma density profile [15] on wakefield generation, have
drawn considerable research interest and continue to do so.

When the electromagnetic pulses are long (as compared to
the skin depth), wakefield generation is suppressed, and in-
stead other nonlinear phenomena becomes more pronounced.
Typically in a non-magnetized plasma the nonlinearity is of
a focusing type, which can allow for envelope bright solitons
[16]. Soliton formations have different features depending on
the dimensionality, and lot of interest has been devoted to the
two-dimensional (2D) [17] and three-dimensional (3D) phe-
nomena [18]. However, when the pulses are pancake shaped,
the physical scenario can be described by a one-dimensional
(1D) model [19] to a good approximation. The formation
and the properties of the solitonic structure in laser-plasma
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interaction have been widely discussed in the past [20–29].
In particular Refs. [20,23–29] have studied propagation of 1D
electromagnetic pulses (EM-pulses) in an underdense plasma,
focusing on phenomena such as soliton formation, and in some
cases wakefield generation. While the basic equations are sim-
ilar to the ones used in our paper, they have used assumptions
involving a weak time-dependence (or no time-dependence in
some cases) in a co-moving frame, which is relevant in many
cases (e.g., for underdense plasmas; long EM-pulses and/or
weak nonlinearities) but do not apply in general our case with
a (sometimes) high plasma density, close to the critical density,
and a very short EM-pulse of relativistic amplitude. Reference
[21] has used 1D particle-in-cell (PIC) simulations, studying
soliton formation in underdense plasmas, whereas Ref. [22]
has studied a similar problem by solving the relativistic Vlasov
equation numerically.

In the present paper we will study the competing mecha-
nisms of linear dispersion, soliton formation, and wakefield
generation, and their dependence on wave amplitude and
plasma density. For this purpose we apply a 1D relativistic cold
fluid model, avoiding some of the common approximations
relevant for underdense plasmas. One of the main results in
the present paper is that the peak in wakefield energy density
occurs for densities around n ≈ 0.1nc, where n is the plasma
density and nc is the critical density, but this is followed by a
very sharp decrease in the wakefield energy for densities n �
0.2nc. Furthermore, the effect of varying the laser amplitude
is studied. The results from the cold relativistic fluid model
are compared with particle-in-cell (PIC) simulations, and the
agreement is found to be excellent.

The organization of our paper is as follows. In Sec. II
the governing equations for 1D wave propagation are derived
(based on a cold relativistic fluid model). Next in Sec. III the
basic equations are solved numerically, and our main results are
presented. In Sec. IV we make a comparison with a simplified
theory and with 1D PIC simulations. Finally in Sec. V we make
a summary and present the final conclusions.
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II. THE COLD RELATIVISTIC FLUID MODEL

The main purpose of the present article is to study the
propagation of a 1D electromagnetic pulse based on the cold
relativistic fluid equations for electrons. Apart from treating
the ions as immobile, no further approximations are made,
and the equations will be solved numerically. The numerical
results will be described in the next section. We assume all
fields to depend on (z,t) and use the Coulomb gauge, i.e.,
the parallel (to z) electric field is Ez = −∂φ/∂z and the
perpendicular electric field is given by E⊥ = −∂A/∂t. As
has been demonstrated by, e.g., Refs. [20,25,27], the cold
relativistic electron 1D equation can under these circumstances
be reduced to the following form:

∂2φ

∂z2
= e(ne − n0)

ε0
, (1)

∂ne

∂t
+ ∂

∂z
(neυz) = 0, (2)

d

dt
(γmeυz) = e

∂φ

∂z
− e2

2γme

∂A2

∂z
, (3)

and

∂2A
∂z2

− 1

c2

∂2A
∂t2

= μ0eneA
γme

, (4)

where e and me is the electron charge, ne is the electron number
density, n0 represents the (constant) neutralizing background,
υz is the parallel component of the velocity d/dt ≡ ∂/∂t +
υz∂/∂z, the relativistic γ factor can be written as

γ =
√

1 + a2

1 − υ2
z /c

2
(5)

and we have introduced the normalized vector potential
a2 = (eA/mec)2. While Eqs. (1)–(5) constitute a closed set,
they are nontrivial to use as they stand, as the longitudinal
momentum equation (3) contains a temporal derivative both on
υz and on γ (and thereby indirectly on a2). This has typically
been dealt with by introducing various approximations
(usually involving a slow evolution of the electromagnetic
fields in a co-moving frame). However, here we do not limit
ourselves to plasmas that are undercritical by a large margin
and hence we have no small parameter that justifies ansatzes
for the vector or scalar potential involving slowly varying
fields. Instead we rewrite Eq. (3) as

dυz

dt
= e

γme

∂φ

∂z
− e2

2γ 2m2
e

∂A2

∂z
− υz

γ

dγ

dt
. (6)

Noting that the rate of change of the energy is given by
dE/dt = −ev · E, where E = γmec

2, we find

dγ

dt
= e

mec2

(
υz

∂φ

∂z
+ e

2γme

∂A2

∂t

)
. (7)

Combining Eqs. (6) and (7) the evolution equation for υz

becomes

dυz

dt
= e

γme

(
1 − υ2

z

c2

)
∂φ

∂z
− e2

2γ 2m2
e

(
∂A2

∂z
+ υz

c2

∂A2

∂t

)
.

(8)
In principle Eq. (8) together with Eqs. (1), (2), (4), and (5)
already form a closed set. However, for convenience we

chose to work with evolution equations for all our dynamical
variables, and hence we let the z-component of Ampere’s law

1

c2

∂2φ

∂t∂z
= −μ0eneυz (9)

replace Poisson’s equation.
Next we introduce the normalizations a = eA/mec and

ϕ = eφ/mec
2 for the vector and scalar potential, respectively.

Furthermore, time and space are normalized against the laser
frequency and wave number (ωt → t and kx → x), respec-
tively. The parallel velocity is normalized against the speed of
light, β = υz/c, and finally the electron density is normalized
against the critical density nc = ε0ω

2me/e
2 (from now on ne

represents ne/nc). By using these normalizations our basic
equations are written as

∂2a
∂z2

− ∂2a
∂t2

= ne

a
γ

, (10)

dβ

dt
= (1 − β2)

γ

∂ϕ

∂z
− 1

2γ 2

(
∂a2

∂z
+ β

∂a2

∂t

)
, (11)

∂ne

∂t
+ ∂

∂z
(neβ) = 0, (12)

γ =
√

1 + a2

1 − β2
, (13)

∂2ϕ

∂t∂z
= −neβ. (14)

Equations (10)–(14) constitute the basis for the result presented
below.

III. RESULTS

We have solved Eqs. (10)–(14) numerically in the same
sequence for the case of a localized EM-pulse entering the
simulation box from the left side. The simulation box has
been varied in size from 275–750λ in the various simulations,
with a constant unperturbed plasma density n0 throughout the
box length. The linearly polarized Gaussian laser pulse of
wavelength 800 nm has a full width at half-maximum (FWHM)
duration of 5 cycles (τFWHM = 5×2π ). The normalized ampli-
tude a0 is varied in the different simulations, and the pulse is
launched from the left boundary of the simulation box. The
boundary conditions on the left boundary read as

a(0,t) = a0 exp

(
− 4 log(2)t2

τ 2
FWHM

)
cos(t) x̂, (15)

ne(0,t) = n0, (16)

β(0,t) = ϕ′(0,t) = 0 (ϕ′ ≡ ∂ϕ/∂z). (17)

In the following we present the results by solving the fluid
equations. The results are categorized in different subsections
for pedagogical reasons.

A. The transition from dispersive to non-dispersive pulses

In Fig. 1, we have presented the wakefield generation
for a low amplitude laser pulse. The interaction of 5 cycle
Gaussian laser pulses with peak amplitude a0 = 0.01 with an
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FIG. 1. The spatial profiles of longitudinal field are plotted at
t = 159 for the case when a 5 cycle laser pulse with a0 = 0.01
interacts with a plasma having density 0.001nc (a) and 0.1nc (b).
The corresponding spatial profiles of the transverse field (EM driver)
are also presented in (c) [profile on right (left) is for 0.001nc (0.1nc)].

unperturbed plasma with a density of 0.001nc and 0.1nc is con-
sidered, and the spatial profiles of longitudinal [Figs. 1(a),1(b)]
and transverse [Fig. 1(c)] fields as evaluated at t = 159 are
shown.

For the lower density we see that the longitudinal field
has a pure wakefield nature, i.e., harmonic oscillations are
induced after the peak of the EM-pulse. Moreover, since
dispersive effects are very small for such a low density, the
wakefield generation continues more or less unchanged for a
long time. By contrast, for a density of 0.1nc the longitudinal
fields still have a pronounced wakefield, but there is also a
strong peak where the EM-pulse is localized. Furthermore,
for the low amplitude a0 = 0.01 the wakefield amplitude
is largest directly after the pulse entrance, and then the
wakefield amplitude is gradually decreasing. The reason
for the diminishing wakefield amplitude is the EM-wave
dispersion, which becomes significant for densities of order
0.1nc and higher. This can be verified by studying Fig. 2.
In Fig. 2(d) we see the EM-wave profile for a0 = 0.01 at
t = 109, 409, 749 (note the pulse broadening). As a result of
the pulse broadening, the wakefield generation is decreasing,
as can be seen from the longitudinal field displayed in Fig. 2(a).

When the amplitude is increased, the nonlinearity begins to
counteract dispersion, which means that wakefield generation
can be sustained. We compare the EM-wave profile for a0 =
0.01, a0 = 0.1, and a0 = 0.3 at t = 109, 409, 749 in the right
panel of Fig. 2. While there is some tendency to decreased
dispersion for a0 = 0.1, the main suppression of dispersion
occurs when increasing the amplitude up to a0 = 0.3. The
result for the longitudinal fields is quite dramatic, as seen when
comparing the corresponding profiles in the left panel of Fig. 2.
Note that wakefield generation is completely suppressed due to
pulse broadening both for a0 = 0.01 and a0 = 0.1, although
the suppression takes somewhat longer in the latter case.
By contrast, the prevention of pulse broadening for a0 = 0.3
means that wakefield generation can be sustained for a long
time. Naturally, the energy loss due to wakefield generation
will eventually decrease the EM wave amplitude, such that the
degree of nonlinearity is reduced and dispersion sets in, but
that will take much longer time.

FIG. 2. The spatial profiles of the longitudinal field (left panel) are
plotted at t = 749 for the cases when a 5 cycle laser pulse with a0 =
0.01 (a), 0.1 (b), and 0.3 (c) interacts with a plasma having density
0.1nc. The spatial profiles of the transverse field with a0 = 0.01 (d),
0.1 (e), and 0.3 (f) are also presented in right panel for t = 109 (left),
409 (center), and 749 (right).

B. The transition from wakefield generation to soliton formation

In Fig. 3, the spatial profile of longitudinal field Ez =−ϕ′ for
different plasma densities calculated at t =263 (∼42 cycles)
is presented by solving Eqs. (10)–(14) numerically for a0 =0.3.
Varying the density from n = 0.001nc up to n = 0.6nc we
note that the longitudinal field is a pronounced wakefield for
the lower densities, but gradually turns into a driven field that
is localized to the same region as the EM field that drives
the perturbation. As we increase the initial plasma density, the
wakefield amplitude decreases and eventually a soliton like
structure propagates in the plasma.

The time evolution of the transverse pulse profile for
a0 = 0.3 and ne = 0.6nc is presented in Fig. 4(b), along with
the corresponding longitudinal field Fig. 4(a). As we can see,
the nonlinearity prevents dispersion for most of the energy
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FIG. 3. Fluid simulation: The wakefield for different plasma
densities 0.001 nc (a), 0.04nc (b), 0.4nc (c), and 0.6nc (d) are presented
as calculated at t = 263. The laser parameters are a0 = 0.3, 5 cycle
(FWHM) Gaussian linearly polarized laser pulse, incident on the
plasma slab of 275λ.
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FIG. 4. Spatiotemporal evolution of electrostatic (a), electromag-
netic (b) fields with 5 cycle laser with amplitude a0 = 0.3 and ne =
0.6nc. Enlarged version of the solitonic structures is also presented
separately (c). In all panels, field profiles are illustrated from left to
right with ascending temporal order.

contained in the pulse, and the central part of the pulse tends
to shorten over time. As a result the longitudinal field driven
by the transverse part tend to increase somewhat over time.
However, we also see that the high- and low-frequency parts of
the pulse spectrum tend to irradiate forwards and backwards,
respectively. Apart from this irradiation, which represents a
relatively minor energy loss of the central part of the EM-pulse,
the pulse profile approaches a more or less fixed shape. We will
refer to these structures as “quasi-solitons”. We cannot exclude
that true soliton-formation eventually occurs, but for the rather
long time-span that we follow, we see a process where parts of
the frequency spectrum are irradiated backwards and forwards.
To give a more clear view of the longitudinal pulse profile, we
present a zoom of the longitudinal fields for three different
times in Fig. 4(c).

C. Energy loss as a function of density

For a density much less than the critical density, wakefield
generation is the dominant process, as seen, e.g., in Fig. 3(a).
However, due to the limited number of particles, the lon-
gitudinal field cannot store a very high energy density, and
thus the energy loss for the transverse degrees of freedom
(=the electromagnetic pulse) is limited. For a high plasma
density (i.e., not much smaller than the critical density),
wakefield generation is almost completely suppressed, and
there is negligible energy loss to the longitudinal degrees of
freedom, see Fig. 3(d). These simple observations imply that
there is an intermediate plasma density where the energy loss
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FIG. 5. The wakefield energy is calculated as
∫ z1

z0
|Ez|2dz. Here,

z0 and z1 are 20λ and 10λ behind the peak of the laser at t = 263 for
different plasma densities.

due to wakefield generation has its maximum. The purpose of
this subsection is to determine this characteristic value.

As we have seen in [Figs. 2(a), 2(b)], for the higher
plasma densities wakefield generation will be suppressed due
to dispersion, unless the amplitude is strong enough to keep
the pulse short enough, as in Fig. 2(c). To avoid dispersive
suppression we will consider pulse amplitudes firmly in the
nonlinear (=non-dispersive) regime and pick a0 = 0.3. We
are interested in the dependence of the wakefield energy as
a function of density (rather than the absolute value), and
therefore we have used the integral

∫ z1

z0
|Ez|2dz as a measure.

Here, z0 and z1 are 20λ and 10λ behind the peak of the laser
computed at t = 263 for a given plasma density. Note that
the wakefield will divide its energy equally between kinetic
energy and electrostatic field energy, unless we are in an
extremely nonlinear regime. The generated wakefield energy as
a function of the plasma density is presented in Fig. 5. Initially
the wakefield energy increases with density, as expected from
standard theory of wakefield generation. The maximum peak
of the wakefield energy is reached for a density of the order
0.1nc. However, if we further increase the plasmas density
beyond approximately ne ∼ 0.2nc, there is rapid drop in the
wakefield energy. The drop in wakefield energy coincides with
the formation of solitary pulses which we label quasi-solitons,
as discussed in the previous subsection.

IV. COMPARISON WITH THEORY
AND PIC-SIMULATIONS

A first theoretical estimate of the propagation velocity for
the EM-pulses can be found by computing the group velocity
including a nonlinear correction for the relativistic factor
induced by the EM field. In linearized theory the group velocity
can be calculated as

υg = c

√
1 − ω2

p/ω2 = c
√

ε. (18)

To get a first estimate of the amplitude dependence, we can
replace the unperturbed plasma frequency with the value
corrected by the γ factor due the transverse motion in the
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FIG. 6. A comparison of the group velocity υg , the line fitted by
Eq. (19), and the propagation velocity υp , the dots computed from
the position of the central peak of the EM field, as a function of
plasma density. Here, the case of a 5 cycle EM pulse with a0 = 0.3 is
considered.

EM-field. This suggests that the expression from linearized
theory can be substituted as ne2/ε0me → ne2/ε0γme, where

we let γ =
√

1 + a2
0, where we use the normalized peak vector

potential. Using the peak potential overestimates the average
γ factor, but ignoring the contribution from the longitudinal
motion underestimates it. Hence this may serve as a rough
estimate for the propagation velocity. The expression which
we will compare with the results from the numerical code is
now given by

υg = c

√√√√1 − ne

nc

√
1 + a2

0

. (19)

In spite of the rather crude estimates involved, we see that the
propagation velocity computed by the fluid code (simply based
on the position of the central peak of the EM-field) agrees very
well with the expression (19), as we can see in Fig. 6. Here,
the propagation velocity is plotted as a function of density for
the case of a0 = 0.3.

Next we turn to a comparison of the fluid code with
PIC simulations. The 1D particle-in-cell simulation (LPIC++)
[30] is carried out to study the effect of plasma densities
on the wakefield generation. This is freely available 1D-3V
open-source PIC simulation package, developed mainly to
study the laser-plasma interaction. For the results presented
here the EM field amplitude of the driver is considered to
be a0 = 0.3 (in dimensionless unit a0 = eE/meωc, with ω

being the frequency), space and time are taken in units of
laser wavelength (λ) and one laser cycle τ = λ/c, respectively,
mass and charge are normalized with electron mass and charge,
respectively. We have used 50 cells per laser wavelength with
each cell having 50 electron and ion macroparticles. The
spatial grid size and temporal time step for the simulation is
considered to be 0.02λ and 0.02τ , respectively. Though in PIC
simulation we have considered the ion mass mi ∼ 1836me, but
on the timescale of interests ions can be treated as immobile,
consistent with the fluid model. The 800 nm laser with FWHM
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FIG. 7. PIC simulation: The wakefields for different plasma
densities 0.001nc (a), 0.04nc (b), 0.4nc (c), and 0.6nc (d) are presented
as calculated at t = 265. The laser parameters are a0 = 0.3, 5 cycle
(FWHM) Gaussian linearly polarized laser pulse, incident on the
plasma slab of 275λ.

duration of 5τ and an initially Gaussian shape propagates
through the plasma along the z-direction with electric field
along x-direction. The plasma of length 275 λ is considered
having uniform density n0 (in units of nc). The laser parameters
used (a0 = 0.3 with FWHM of 5τ ) would translate to the
∼10 fs (intensity FWHM) laser pulse having peak intensity
∼2×1017 W/cm2.

In Fig. 7, the spatial profile of longitudinal field Ez for
different plasma densities calculated at t = 265 is presented.
It can be seen that for low plasma densities we have wakefield
generation behind the laser pulse for low density plasmas
(0.001 � ne � 0.04nc). However, as the plasma density in-
creases the wakefield amplitude decreases and eventually we
have only a soliton-like structure propagating in the plasma
for say ne = 0.6nc. These results are in good agreement
with the fluid results, as can be seen by comparing with the
corresponding results from the fluid code shown in Fig. 3.

V. SUMMARY AND DISCUSSION

Starting from equations presented in previous works (e.g.,
Refs. [20,25,27]), we have derived a cold, fully relativistic
1D model, that we have solved numerically. The purpose
has been to study the competition between linear dispersion,
nonlinear self-modulation, and wakefield generation for a
localized electromagnetic pulse propagating in a homogeneous
non-magnetized plasma. First we have deduced that wakefield
generation for initially short pulses is suppressed by linear
dispersion after a relatively short time, if the plasma density
is modest or high (i.e., of the order 0.1nc or higher) unless
the normalized amplitude is of the order a0 	 0.3. In case
we are firmly in the nonlinear regime, the nonlinear self-
modulation keep the pulse short enough to sustain wakefield
generation for a long time—until depletion due to the wakefield
generation becomes significant. When the plasma density
is increased further, wakefield generation is replaced by a
formation of quasi-solitons. The central part of the pulse
propagates with very little changes of the pulse shape, but a
small irradiation backward and forward of the low-frequency
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and high-frequency part of the spectrum still occurs. A key part
of the present study is the scaling with the plasma density of
the energy loss of the EM-pulse due to wakefield generation.
For pulses in the nonlinear regime (not suffering dispersive
broadening), we find that the energy loss has a maximum when
the plasma density is of the order n 	 0.1nc. When the plasma
density is increased beyond n 	 0.2nc there is a rapid decrease
of the wakefield energy with the plasma density, signaling the
onset of (quasi)soliton formation. The results produced by the
fluid code have been checked against 1D PIC simulations, and
the agreement has been found to be excellent.

Many of the conclusions in the present paper have a
rather general nature, as the competition between dispersion,
wakefield generation and self-modulation may take place in
a magnetized plasma, and also for different types of wave
modes. Qualitatively many of the features of the present study
can be assumed to hold in a more general context, as long as
the nonlinear self-modulation is of focusing type. In particular
wakefield generation is more prominent for short wave packets

(which may be of electromagnetic or electrostatic nature), and
are likely to be suppressed by dispersive broadening, unless
the nonlinear self-modulation prevents this from happening.
Moreover, the energy loss due to wakefield generation is likely
to be suppressed for low and high plasma densities (for a
given wave frequency). Thus the existence of a plasma density
that optimizes wakefield generation is likely a generic feature.
To what extent the conclusions reported here hold also for
electromagnetic waves propagating in a magnetized plasma
remains an issue for further research.

ACKNOWLEDGMENTS

A.H. acknowledges the Department of Physics, Umeå Uni-
versity, Sweden for the local hospitality and the travel support.
A.H. also acknowledges the Max Planck Institute for the
Physics of Complex Systems, Dresden, Germany for the finan-
cial support. G.B. would like to acknowledge financial support
by the Swedish Research Council, Grant No. 2016-03806.

[1] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
[2] S. Kneip, S. R. Nagel, S. F. Martins, S. P. D. Mangles, C. Bellei,

O. Chekhlov, R. J. Clarke, N. Delerue, E. J. Divall, G. Doucas, K.
Ertel, F. Fiuza, R. Fonseca, P. Foster, S. J. Hawkes, C. J. Hooker,
K. Krushelnick, W. B. Mori, C. A. J. Palmer, K. Ta Phuoc, P. P.
Rajeev, J. Schreiber, M. J. V. Streeter, D. Urner, J. Vieira, L. O.
Silva, and Z. Najmudin, Phys. Rev. Lett. 103, 035002 (2009).

[3] H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung,
S. K. Lee, T. M. Jeong, and J. Lee, Phys. Rev. Lett. 111, 165002
(2013).

[4] W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura,
C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E.
Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and
E. Esarey, Phys. Rev. Lett. 113, 245002 (2014).

[5] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas,
J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G.
Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B.
Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and
K. Krushelnick, Nature 431, 535 (2004).

[6] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E.
Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, Nature 431,
541 (2004).

[7] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B.
Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans,
Nature 431, 538 (2004).

[8] B. Shen, Y. Li, M. Y. Yu, and J. Cary, Phys. Rev. E 76, 055402
(2007).

[9] B. Hidding, T. Königstein, J. Osterholz, S. Karsch, O. Willi, and
G. Pretzler, Phys. Rev. Lett. 104, 195002 (2010).

[10] C. V. Filip, R. Narang, S. Ya. Tochitsky, C. E. Clayton, P.
Musumeci, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C.
Pellegrini, and C. Joshi, Phys. Rev. E 69, 026404 (2004).

[11] R. M. G. M. Trines, Phys. Rev. E 79, 056406 (2009).
[12] N. Hafz, M. S. Hur, G. H. Kim, C. Kim, I. S. Ko, and H. Suk,

Phys. Rev. E 73, 016405 (2006).

[13] A. Holkundkar, G. Brodin, and M. Marklund, Phys. Rev. E 84,
036409 (2011).

[14] V. B. Pathak, J. Vieira, R. A. Fonseca, and L. O. Silva, New J.
Phys. 14, 023057 (2012).

[15] A. Pukhov and I. Kostyukov, Phys. Rev. E 77, 025401
(2008).

[16] M. Y. Yu, P. K. Shukla, and N. L. Tsintsadze, Phys. Fluids 25,
1049 (1982).

[17] N. M. Naumova, S. V. Bulanov, T. Z. Esirkepov, D. Farina, K.
Nishihara, F. Pegoraro, H. Ruhl, and A. S. Sakharov, Phys. Rev.
Lett. 87, 185004 (2001).

[18] T. Esirkepov, K. Nishihara, S. V. Bulanov, and F. Pegoraro,
Phys. Rev. Lett. 89, 275002 (2002).

[19] D. Jovanović, R. Fedele, M. Belić, and S. D. Nicola,
Phys. Plasmas 22, 043110 (2015).

[20] P. K. Kaw, A. Sen, and T. Katsouleas, Phys. Rev. Lett. 68, 3172
(1992).

[21] S. V. Bulanov, T. Z. Esirkepov, N. M. Naumova, F. Pegoraro,
and V. A. Vshivkov, Phys. Rev. Lett. 82, 3440 (1999).

[22] P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 94, 065002
(2005).

[23] G. Sánchez-Arriaga, E. Siminos, V. Saxena, and I. Kourakis,
Phys. Rev. E 91, 033102 (2015).

[24] E. Siminos, G. Sánchez-Arriaga, V. Saxena, and I. Kourakis,
Phys. Rev. E 90, 063104 (2014).

[25] V. Saxena, I. Kourakis, G. Sanchez-Arriaga, and E. Siminos,
Phys. Lett. A 377, 473 (2013).

[26] V. Saxena and I. Kourakis, Europhys. Lett. 100, 15002 (2012).
[27] V. Saxena, A. Sen, and P. Kaw, Phys. Rev. E 80, 016406 (2009).
[28] G. Sánchez-Arriaga, E. Siminos, and E. Lefebvre, Plasma Phys.

Controlled Fusion 53, 045011 (2011).
[29] L. Hadžievski, M. S. Jovanović, M. M. Škorić, and K. Mima,

Phys. Plasmas 9, 2569 (2002).
[30] R. Lichters, R. E. W. Pfund, and J. Meyer-Ter-Vehn, Max-Planck

Institute for Quantum Optics, Report No: MPQ-225 (1997).

043204-6

https://doi.org/10.1103/PhysRevLett.43.267
https://doi.org/10.1103/PhysRevLett.43.267
https://doi.org/10.1103/PhysRevLett.43.267
https://doi.org/10.1103/PhysRevLett.43.267
https://doi.org/10.1103/PhysRevLett.103.035002
https://doi.org/10.1103/PhysRevLett.103.035002
https://doi.org/10.1103/PhysRevLett.103.035002
https://doi.org/10.1103/PhysRevLett.103.035002
https://doi.org/10.1103/PhysRevLett.111.165002
https://doi.org/10.1103/PhysRevLett.111.165002
https://doi.org/10.1103/PhysRevLett.111.165002
https://doi.org/10.1103/PhysRevLett.111.165002
https://doi.org/10.1103/PhysRevLett.113.245002
https://doi.org/10.1103/PhysRevLett.113.245002
https://doi.org/10.1103/PhysRevLett.113.245002
https://doi.org/10.1103/PhysRevLett.113.245002
https://doi.org/10.1038/nature02939
https://doi.org/10.1038/nature02939
https://doi.org/10.1038/nature02939
https://doi.org/10.1038/nature02939
https://doi.org/10.1038/nature02963
https://doi.org/10.1038/nature02963
https://doi.org/10.1038/nature02963
https://doi.org/10.1038/nature02963
https://doi.org/10.1038/nature02900
https://doi.org/10.1038/nature02900
https://doi.org/10.1038/nature02900
https://doi.org/10.1038/nature02900
https://doi.org/10.1103/PhysRevE.76.055402
https://doi.org/10.1103/PhysRevE.76.055402
https://doi.org/10.1103/PhysRevE.76.055402
https://doi.org/10.1103/PhysRevE.76.055402
https://doi.org/10.1103/PhysRevLett.104.195002
https://doi.org/10.1103/PhysRevLett.104.195002
https://doi.org/10.1103/PhysRevLett.104.195002
https://doi.org/10.1103/PhysRevLett.104.195002
https://doi.org/10.1103/PhysRevE.69.026404
https://doi.org/10.1103/PhysRevE.69.026404
https://doi.org/10.1103/PhysRevE.69.026404
https://doi.org/10.1103/PhysRevE.69.026404
https://doi.org/10.1103/PhysRevE.79.056406
https://doi.org/10.1103/PhysRevE.79.056406
https://doi.org/10.1103/PhysRevE.79.056406
https://doi.org/10.1103/PhysRevE.79.056406
https://doi.org/10.1103/PhysRevE.73.016405
https://doi.org/10.1103/PhysRevE.73.016405
https://doi.org/10.1103/PhysRevE.73.016405
https://doi.org/10.1103/PhysRevE.73.016405
https://doi.org/10.1103/PhysRevE.84.036409
https://doi.org/10.1103/PhysRevE.84.036409
https://doi.org/10.1103/PhysRevE.84.036409
https://doi.org/10.1103/PhysRevE.84.036409
https://doi.org/10.1088/1367-2630/14/2/023057
https://doi.org/10.1088/1367-2630/14/2/023057
https://doi.org/10.1088/1367-2630/14/2/023057
https://doi.org/10.1088/1367-2630/14/2/023057
https://doi.org/10.1103/PhysRevE.77.025401
https://doi.org/10.1103/PhysRevE.77.025401
https://doi.org/10.1103/PhysRevE.77.025401
https://doi.org/10.1103/PhysRevE.77.025401
https://doi.org/10.1063/1.863836
https://doi.org/10.1063/1.863836
https://doi.org/10.1063/1.863836
https://doi.org/10.1063/1.863836
https://doi.org/10.1103/PhysRevLett.87.185004
https://doi.org/10.1103/PhysRevLett.87.185004
https://doi.org/10.1103/PhysRevLett.87.185004
https://doi.org/10.1103/PhysRevLett.87.185004
https://doi.org/10.1103/PhysRevLett.89.275002
https://doi.org/10.1103/PhysRevLett.89.275002
https://doi.org/10.1103/PhysRevLett.89.275002
https://doi.org/10.1103/PhysRevLett.89.275002
https://doi.org/10.1063/1.4916909
https://doi.org/10.1063/1.4916909
https://doi.org/10.1063/1.4916909
https://doi.org/10.1063/1.4916909
https://doi.org/10.1103/PhysRevLett.68.3172
https://doi.org/10.1103/PhysRevLett.68.3172
https://doi.org/10.1103/PhysRevLett.68.3172
https://doi.org/10.1103/PhysRevLett.68.3172
https://doi.org/10.1103/PhysRevLett.82.3440
https://doi.org/10.1103/PhysRevLett.82.3440
https://doi.org/10.1103/PhysRevLett.82.3440
https://doi.org/10.1103/PhysRevLett.82.3440
https://doi.org/10.1103/PhysRevLett.94.065002
https://doi.org/10.1103/PhysRevLett.94.065002
https://doi.org/10.1103/PhysRevLett.94.065002
https://doi.org/10.1103/PhysRevLett.94.065002
https://doi.org/10.1103/PhysRevE.91.033102
https://doi.org/10.1103/PhysRevE.91.033102
https://doi.org/10.1103/PhysRevE.91.033102
https://doi.org/10.1103/PhysRevE.91.033102
https://doi.org/10.1103/PhysRevE.90.063104
https://doi.org/10.1103/PhysRevE.90.063104
https://doi.org/10.1103/PhysRevE.90.063104
https://doi.org/10.1103/PhysRevE.90.063104
https://doi.org/10.1016/j.physleta.2012.12.010
https://doi.org/10.1016/j.physleta.2012.12.010
https://doi.org/10.1016/j.physleta.2012.12.010
https://doi.org/10.1016/j.physleta.2012.12.010
https://doi.org/10.1209/0295-5075/100/15002
https://doi.org/10.1209/0295-5075/100/15002
https://doi.org/10.1209/0295-5075/100/15002
https://doi.org/10.1209/0295-5075/100/15002
https://doi.org/10.1103/PhysRevE.80.016406
https://doi.org/10.1103/PhysRevE.80.016406
https://doi.org/10.1103/PhysRevE.80.016406
https://doi.org/10.1103/PhysRevE.80.016406
https://doi.org/10.1088/0741-3335/53/4/045011
https://doi.org/10.1088/0741-3335/53/4/045011
https://doi.org/10.1088/0741-3335/53/4/045011
https://doi.org/10.1088/0741-3335/53/4/045011
https://doi.org/10.1063/1.1476665
https://doi.org/10.1063/1.1476665
https://doi.org/10.1063/1.1476665
https://doi.org/10.1063/1.1476665



