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Andrey Rasskazov,1 Roman Chertovskih,2,3,* and Vladislav Zheligovsky1

1Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, 84/32 Profsoyuznaya Street,
117997 Moscow, Russian Federation

2Research Center for Systems and Technologies (SYSTEC), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n,
4200-465 Porto, Portugal

3Samara National Research University, 34 Moskovskoye Avenue, 443086 Samara, Russian Federation

(Received 27 October 2017; revised manuscript received 26 February 2018; published 4 April 2018)

We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity
density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity
spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic
helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most
prominent dynamo mechanisms: the magnetic α-effect and negative eddy diffusivity. Our computations also
attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These
findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties
of a flow regardless of whether scale separation is present or not.
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I. INTRODUCTION

Consider a volume� transported by an ideal incompressible
fluid flow v, such that initially the vorticity ∇ × v is tangent
to the boundary ∂�. Since the vorticity lines are frozen in the
fluid, the vorticity remains tangent to ∂� at all times, and the
value ∫

�

v · (∇ × v) dx,

called kinetic helicity, does not change in time. This was shown
for barotropic gas in [1] and independently (see Ref. [2]1) in
[3] (see also [4–6]). In space-periodic flows, the total kinetic
helicity in a periodicity cell is also conserved. Recent measure-
ments of the total helicity of vortex tubes in water demonstrated
that even in viscous fluid the total helicity can remain constant
or saturate to a constant (or almost constant) value [7].

In a general setup, helicity H of a solenoidal vector field
transported by a flow as a frozen field (e.g., a magnetic field
or the flow vorticity) is defined as the volume-integrated scalar
product of the field and its vector potential (by this definition,
the kinetic helicity is the vorticity helicity). Following [8],
consider a tube carrying flux � and consisting of closed field
lines that have no inflexion points (i.e., whose curvature does
not vanish at any point). It can be proven that for such a tube

H = n�2, (1)

where n is a conserved quantity. This invariant quantifies a
fundamental topological property of the field, the knottedness
of its field lines. If the tube under consideration is unknotted,

*roman@fe.up.pt
1Also https://sites.google.com/site/hkeithmoffatt/selected-

publications-1960s

but any pair of field lines in it is linked, the linking number,
N , being the same for each pair, then n = N . In general,
n = W + T + N , where the writhe, W , and the normalized
total torsion of a center field line, T , characterize how the tube
itself is knotted (see an intuitive illustration of these concepts
in Figs. 7 and 12 of [8]).

Containing important information about the topological
structure of the flow, helicity plays a significant role in physics
(see the references in [9]). In geophysical or astrophysical
contexts, as well as in laboratory experiments, flows are often
accompanied by rotation and consequently they are usually he-
lical. Helicity arises in convection [10,11] and turbulence [12].
Participation of helicity in generation of a dipolar magnetic
field in a geodynamo model involving convection in a rapidly
rotating spherical shell was explored in [13]. Generation of
cosmic magnetic fields of the intensity and spatial scale that
is observed in astrophysics is believed to be possible due to
the chirality of the background turbulence characterized by a
nonzero kinetic helicity [2]. Moreover, apparently the dynamo
action of a flow is guaranteed if the mean helicity is of constant
sign over a sufficiently large extent of fluid [2].

Investigating the electromotive force (emf) due to the
interaction of small-scale fluctuations of the flow and magnetic
field is a pillar of the magnetic dynamo theory. The small-
scale emf may have a nonzero mean component parallel
to the mean magnetic field, and this is often beneficial for
magnetic field generation. This seminal idea goes back to
Parker [14], who called such fluctuations of the flow “cyclonic
events” emphasizing their helical structure. The part of the
mean emf linear in the mean field gives rise to the so-called
magnetic α-effect. A systematic treatment of this idea under
various simplifying assumptions is the topic of mean-field
electrodynamics [15,16].

Clearly, an intricate spatial structure of the small-scale
fluctuating component of a flow (and hence, by virtue of the
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induction equation, of the magnetic field) is expected to corre-
late with a high degree of the vorticity knottedness and—since
this hydrodynamic invariant constrains the topology of vortic-
ity lines—with a nonzero kinetic helicity. Thus, kinetic helicity
may be intimately related with magnetic field generation, for
instance, it may control the strength of the magnetic α-effect.
Some observations confirm this conjecture: On the one hand,
the α-effect coefficient was calculated in the second-order
correlation approximation and high-conductivity limit for the
isotropic turbulence (see, e.g., [17]), and it turned out to be
proportional to the mean kinetic helicity. This result was also
derived in [18] in the limit of ideal magnetohydrodynamics for
rotationally symmetric turbulence with the use of Lagrangian
coordinates for description of the evolution of the field. On
the other, by the Zeldovich [19] antidynamo theorem, a two-
dimensional flow of incompressible fluid cannot generate
magnetic field, and its mean kinetic helicity is zero if the
flow is space-periodic or satisfies some other suitable boundary
conditions; moreover, it is pointwise nonhelical,

v · (∇ × v) = 0, (2)

when it does not depend on the coordinate in the direction
perpendicular to the parallel planes, to which the fluid motion
is confined.

However, it became clear decades ago that the mean helicity
is unnecessary for the dynamo action of smooth (laminar) flows
(see, e.g., [20,21]). More specifically, a nonzero kinetic helicity
is required neither for generation of small-scale (i.e., having the
same spatial periods as the flow velocity) magnetic field, nor for
creating the α-effect for generation of the large-scale magnetic
field. Not much helicity is needed to drive large-scale nonlinear
dynamos [22]. Nevertheless, parallels between the generation
in various magnetohydrodynamic (MHD) setups and a nonzero
kinetic helicity of the generating flow are often drawn in
the literature. The following argument is often encountered:
the α-effect requires the lack of reflectional symmetry in the
flow, and for physicist kinetic helicity is the simplest measure
of this (since the helicity vanishes for parity-invariant and
mirror-symmetric flows). This point of view is amenable to the
following criticism: first, many other functionals, such as the
flow helicity (or the helicity of any real power of the Laplacian
of the flow or vorticity) have the same property; and, second,
the total kinetic helicity also vanishes for flows that are parity-
anti-invariant or have reflectional antisymmetry. Similarly, the
helicity spectrum vanishes not only for parity-invariant flows
but also for parity-anti-invariant ones (see Sec. III F).

The discussion above implies that exploring the dynamics
of ideal fluid flow or evolution of magnetic field (note that
formally vorticity satisfies the same equation as the magnetic
field) transported by flows of complex topology may require
constructing flows with a desirable knot structure of field lines.
A systematic procedure for constructing solenoidal vector
fields with tunable helicity, whose closed field lines involve
knots of many types, was presented in [9]. It relies on a method
for calculating vector potentials of the fields that employs
complex scalar functions. Examples of knotted fields were
presented, whose mean helicity is zero.

We focus on the study of the kinematic dynamo action of
steady three-dimensional flows of incompressible fluid and
demand that the flow ultimately lacks kinetic helicity, the flow

and vorticity being orthogonal at each point (2); we will call
such flows nonhelical. In Sec. III we present six families of
steady solenoidal pointwise nonhelical flows. By necessity,
our approach is constructive: flows from four families are
analytically defined, from another one can be obtained by
semianalytical procedures. Sample flows belonging to each
of the five families are used to study kinematic dynamos. Four
families out of the five are composed of flows, whose helicity
spectrum is zero; we therefore simultaneously verify that a
nonzero helicity spectrum is unnecessary for generation of
large- or small-scale flows.

Let us mention the small-scale kinematic dynamo [23]
powered by the Christopherson flow [24]:

v =
(

L2

4π

∂g

∂x1
cos πx3,

L2

4π

∂g

∂x2
cos πx3,

g

3
sin πx3

)
, (3)

where

g(x1,x2) = cos
2πx1√

3L
+ 2 cos

πx1√
3L

cos
πx2

L
.

It satisfies (2) and nevertheless generates magnetic field when
the magnetic Reynolds number exceeds the critical value
Rm ≈ 515.63 [23]. Matthews [25] questioned whether the
resolution in computations [23] was sufficient. We have now
repeated the computations with the double resolution of 1283

poloidal and 1283 toroidal modes, and recovered the magnetic
field growth rates of [23], increasing from −0.000377 for
Rm = 500 to 0.006786 for Rm = 1000, with an accuracy better
than 10−6, this confirming the results of [23]. The energy spec-
trum of the dominant magnetic eigenmodes falls off by at least
11 orders of magnitude indicating that the resolution that we
have now used is exceedingly high. The estimate Rm = 515.63
for the critical value was obtained in [23] by linear interpolation
of growth rates between the two neighbor integer magnetic
Reynolds numbers; the present double resolution computations
yield for this Rm the growth rate 1.2 × 10−5.

Many examples of dynamos can be found in the literature,
in which the total kinetic helicity vanishes. However, to the
best of our knowledge, the Christopherson flow is the only
documented example of a three-dimensional steady flow of
incompressible fluid, whose helicity density is zero at each
point in space (2), and which is capable of dynamo action.
This example is unsatisfactory in that it is a dynamo only
for specific boundary conditions (see [25]). We consider only
space-periodic flows and magnetic fields in order to exclude the
influence of boundaries, the flow periodicity cell being a cube
T3 = [0,2π ]3. Our goal is to demonstrate that it is typical for a
pointwise nonhelical steady flow to generate magnetic field for
a sufficiently small magnetic molecular diffusivity, regardless
of whether scale separation is present or not. In particular, we
will show that such flows typically can power the two most
prominent mechanisms for generation of large-scale fields:
the magnetic α-effect when the flow lacks parity invariance,
or negative magnetic eddy diffusivity otherwise. It turns out
that many of these flows can also act as small-scale kinematic
dynamos.

The paper is organized as follows. We present large-scale
kinematic dynamos based on the magnetic α-effect in Sec. IV,
and negative magnetic eddy diffusivity in Sec. V. We need a
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sufficient stock of nonhelical flows for numerical experimen-
tation, and in Sec. III we discuss semianalytical techniques for
constructing them, as well as present analytical examples of
such flows. In a multiscale setup, the magnetic α-effect and
eddy diffusivity tensors have been calculated by asymptotic
methods (see, e.g., Chap. 3 of [26]). Our approach relies on
this analysis and, for the reader’s convenience, in the next
section we summarize and enhance it tailoring to the needs of
the present investigation. The notion of the helicity spectrum
arises naturally in the theory of the magnetic α-effect in
MHD turbulence [27,28]; we briefly discuss in Sec. II C its
relevance when the local magnetic Reynolds number is small
and evaluate in Sec. III F the helicity spectrum of the flows that
we use in computations.

II. THE MAGNETIC α-EFFECT AND EDDY DIFFUSIVITY

We review here the multiscale formalism arising in the study
of the kinematic generation of large-scale magnetic field by a
small-scale zero-mean steady flow v of conducting fluid (see
[26] for a more detailed discussion and a comprehensive list
of references). In this section no assumptions about the kinetic
helicity are made.

In mathematical terms, we consider the eigenvalue problem
for the magnetic induction operator

Lb ≡ η∇2b + ∇ × (v × b) = λb. (4)

Here η is the magnetic molecular diffusivity, b a magnetic
mode, and Re λ its growth rate (a negative growth rate actually
indicates that a mode is decaying). The mode is solenoidal,

∇ · b = 0, (5)

and the fluid is supposed to be incompressible, ∇ · v = 0.
The two-scale nature of the magnetic mode b is reflected

by its dependence on the so-called fast, x, and slow, X = εx,
spatial variables; by contrast, the small-scale flow v depends
only on x. The scale ratio ε is assumed to be small, which
enables us to apply asymptotic methods. [The difference in
approaches is notable: while we consider the limit ε → 0 only,
the theory of mean-field electrodynamics strives to estimate the
impact of all small and intermediate scales on the large-scale
magnetic field, somewhat in the spirit of the LES closures (see
[29]).] One proceeds by substituting power series expansions

b =
∞∑

n=0

bn(X,x) εn, (6.1)

λ =
∞∑

n=0

λnε
n (6.2)

into (4) and (5), and deriving a hierarchy of equations emerging
at successive orders εn.

A. Magnetic α-effect

The relevant solution to the first (order ε0) equation in the
hierarchy is

b0 =
3∑

k=1

〈b0〉k(ek + Sk), λ0 = 0,

where

〈f〉 = (2π )−3
∫
T3

f(X,x) dx =
3∑

k=1

〈f〉kek

denotes the mean over the periodicity cell T3 in the fast
variables (i.e., over small scales; note that no other means are
appropriate), ek are unit vectors of the Cartesian coordinate
system, and Sk(x) are zero-mean small-scale solenoidal solu-
tions to 3 auxiliary problems of type I:

LSk = − ∂v
∂xk

⇔ L(Sk + ek) = 0 (7)

(the magnetic induction operator L is henceforth assumed
to involve differentiation in fast variables x only; we will
call it the large-scale magnetic induction operator when full
differentiation in space is performed). It is easy to show that
such solutions exist (see, e.g., Sec. 3.2 of [26]).

The solvability condition for the second (order ε1) equation
in the hierarchy is an eigenvalue problem,

∇X × (A〈b0〉) = λ1〈b0〉, ∇X · 〈b0〉 = 0 (8)

(the subscript X marks differential operators in slow variables),
from which we determine λ1 and, generically, 〈b0〉. Here A is
the so-called tensor of the magnetic α-effect, a 3 × 3 matrix,
whose kth column is

Ak = 〈v × Sk〉. (9)

This expression is consistent with the original Parker’s idea
that the interaction of fine structures of a flow (in our case, v)
and magnetic field (

∑3
k=1 〈b0〉kSk) gives rise to a mean emf

(A〈b0〉) that may have a component, parallel to the large-scale
magnetic field (〈b0〉, respectively).

To solve the eigenvalue problem (8), we assume that the
mean field is a Fourier harmonics,

〈b0〉 = Beiq·X. (10)

Here q and B are constant vectors; |q| = 1. It is convenient
to express the wave vector in spherical coordinates, whose
axis is aligned with the Cartesian axis x3 (the assumed vertical
direction):

q1 = sin θ cos ϕ, q2 = sin θ sin ϕ, q3 = cos θ. (11.1)

Since the solenoidality of 〈b0〉 translates into the orthogonality
B · q = 0, we can expand

B = Btqt + Bpqp, (11.2)

where unit vectors

qp = (cos θ cos ϕ, cos θ sin ϕ, − sin θ ),
(11.3)

qt = (− sin ϕ, cos ϕ,0)

constitute, together with q, an orthonormal basis of positive
orientation in R3. This reduces (8) to an eigenvalue problem
for a 2 × 2 matrix:

i

[
qp · Aqt qp · Aqp

−qt · Aqt −qt · Aqp

][
Bt

Bp

]
= λ1(q)

[
Bt

Bp

]
. (12)

The eigenvalues are now obtained by straightforward algebra
(the identity q

p
nq

t
n′ − q t

nq
p
n′ = εjnn′qj is useful, where εjln
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is the unit antisymmetric tensor). In terms of wave vector
components they are

λ1±(q) = i

2

[(
A2

3 − A3
2

)
q1 + (

A3
1 − A1

3

)
q2

+ (
A1

2 − A2
1

)
q3

] ± √
a, (13.1)

a = [
A2

2A
3
3 − (

sA
2
3

)2]
q2

1 + [
A1

1A
3
3 − (

sA
1
3

)2]
q2

2

+ [
A1

1A
2
2 − (sA

1
2

)2]
q2

3 + 2
[(sA

1
2

sA
1
3 − sA

2
3A

1
1

)
q2q3

+ (
sA

1
2

sA
2
3−sA

1
3A

2
2

)
q1q3 + (

sA
1
3

sA
2
3−sA

1
2A

3
3

)
q1q2

]
,

(13.2)

where sA
j

i = (Aj

i + Ai
j )/2 are entries of the symmetrized

α-tensor sA = (A + A∗)/2. Comparison of (13.2) with the
formula for sA−1 (provided sA is invertible) in terms of
cofactors (see, e.g., [30]) reveals a compact expression

a = q · (det sA) sA
−1q.

For a � 0, the α-effect just sustains constant-amplitude os-
cillations of a mean magnetic mode (10) in the slow time
T1 = εt . Consider now wave vectors q for which a > 0. By
virtue of (13.1), the slow-time growth rate Re λ1+(q) = √

a

of the large-scale magnetic field depends only on the entries
of the symmetric matrix sA. This helps to determine the
maximum growth rate Re λ1(q) over unit wave vectors: Eigen-
values αi of sA are real and the associated eigenvectors are
mutually orthogonal. The relation (13.2) remains applicable
in the Cartesian coordinate system, whose axes coincide with
eigendirections of sA; thus

a = α1α2(q ′
3)2 + α2α3(q ′

1)2 + α1α3(q ′
2)2,

where q ′
i are components of q in the basis of the eigenvectors

of sA (cf. Sec. 9.3 of [31]). Denoting the maximum slow-time
growth rate due to the action of the α-effect by γα , we find

γα ≡ max
|q|=1

Re λ1±(q) =
√

max(α1α2,α2α3,α1α3). (14)

A few comments stemming from (13) are in order.
(i) The spectrum of the α-effect operator,

b(X) → ∇X × (Ab),

is symmetric about the real and imaginary axes. Generically,
A is a nonsymmetric matrix; thus, the temporal growth or
decay of a mean magnetic mode is accompanied by oscillations
in the slow time T1, whose frequency is controlled by the
antisymmetric part, A − sA, of the α-tensor.

(ii) The maximum slow-time growth rate (14) is strictly
positive unless an eigenvalue of sA is zero, another one is
non-negative, and the third one is non-positive. If all three αi

have the same signs, then for each q there exist a growing and
decaying mean magnetic mode. If two eigenvalues have the
same sign and the third one has the opposite sign, then for some
q both modes experience constant-amplitude oscillations in the
slow time T1. The wave vectors for which the modes exhibit
such a purely oscillatory behavior form a cone, whose cross
section is elliptic and whose axis is aligned with the eigenvector
associated with the third eigenvalue.

(iii) When A is the identity matrix, λ1± (q) = ±1 for all unit
wave vectors. In particular, the proper subspace associated with

the eigenvalue 1 for q = ±ei is sixfold. ABC flows [32] and
their spatial derivatives constitute a basis in it.

Provided the eigenvalues (13) are distinct (i.e., a �= 0) and
the magnetic induction operator L does not have zero-mean
neutral modes (generically the two conditions hold true), all
terms in the series (6) can be determined from the hierarchy
of equations obtained by substituting the series into (4) and
(5). It was proven in [33] that if the symmetrized tensor sA is
positively or negatively defined (and if the spatial periodicity
of the eigenfunction is compatible with that of the flow), then
the series (6), constructed for any solution (10), (13) to the
eigenvalue problem (8) for the α-effect operator, converge for
sufficiently small ε in suitable Sobolev spaces; the sums are
analytical in ε functions that solve the eigenvalue problem for
the large-scale magnetic induction operator. In other words, a
unique ε-parametrized branch of the eigenvalues (6.2) of the
large-scale magnetic induction operator originates from any
simple eigenvalue λ1 of the α-effect operator.

“Uncurling” (7), we find

−η ∇ × Sk + v × (Sk + ek) = 〈v × Sk〉 + ∇pk, (15)

where pk(x) are space-periodic functions. This identity was
used in [26] (see p. 34) to demonstrate that the α-effect is
linked with the helicity of the current density ∇ × Sk: scalar
multiplying (15) by Sl + el and averaging the result over the
periodicity cell yields

−η 〈Sl · ∇ × Sk〉 + 〈(Sl + el) · [v × (Sk + ek)]〉 = Al
k,

whereby

−2η 〈Sl · ∇ × Sk〉 = Al
k + Ak

l ; (16.1)

for k = l this relation reduces to

−η 〈Sk · ∇ × Sk〉 = Ak
k. (16.2)

The identity (15) also implies a relation between the tensors
A and A− of the magnetic α-effect for a flow v and the reverse
flow −v, respectively. Let us denote by L− the magnetic
induction operator for the reverse flow −v,

L−b = η∇2b − ∇ × (v × b) (17)

(involving differentiation in the fast variables x only), whose
kernel is spanned by the neutral modes S−

l + el :

L−(S−
l + el) = 0, 〈S−

l 〉 = 0. (18)

This equation is equivalent to

−η ∇ × S−
l − v × (S−

l + el) = 〈−v × S−
l 〉 + ∇p−

l . (19)

Scalar multiplying (15) by S−
l + el and averaging the result

over the periodicity cell yields

−η〈S−
l · ∇ × Sk〉 + 〈(S−

l + el) · [v × (Sk + ek)]〉 = Al
k.

Similarly, from (19)

−η〈Sk · ∇ × S−
l 〉 − 〈(Sk + ek) · [v × (S−

l + el)]〉 = (A−)kl .

By comparison of the above relations, (A−)kl = Al
k; i.e., the

α-effect tensorA− for the reverse flow −v is obtained from the
tensor A for v by transposition. Consequently, the maximum
slow-time growth rates due to the action of the α-effect in the
direct and reverse flows coincide.
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B. Magnetic eddy diffusivity

An important nongeneric case is that of the absence of the
α-effect, i.e., when A = 0, whereby (8) yields λ1 = 0, but
〈b0〉 remains undetermined. This occurs, e.g., if the flow v
is parity-invariant [a vector field f is parity-invariant as long
as f(−x) = −f(x) and anti-invariant when f(−x) = f(x)]. For
such flows, parity-invariant and anti-invariant fields constitute
invariant subspaces of the magnetic induction operator (4).
Consequently, Sk(x) are anti-invariant implying A = 0.

From the second equation in the hierarchy we then find

b1 =
3∑

k=1

3∑
m=1

∂〈b0〉k
∂Xm

Gmk,

where an appropriate normalization of the magnetic mode
b (6.1) is assumed, and the small-scale zero-mean (NB:
not necessarily solenoidal) fields Gmk(x) are solutions to 9
auxiliary problems of type II:

LGmk = −2η
∂Sk

∂xm

− em × [v × (Sk + ek)]. (20)

When v is parity-invariant, Gmk(x) are parity-invariant as well.
[Actually, for such v no odd powers of ε enter the series (6.2)
for the eigenvalue λ, and in the expansion (6.1) of the mode,
bn are anti-invariant for all even indices and parity-invariant
for odd n (see Sec. 3.5 of [26]).]

The mean magnetic mode 〈b0〉 is a solution to the eigenvalue
problem for the operator of magnetic eddy diffusivity:

η∇2
X〈b0〉 + ∇X ×

3∑
k=1

3∑
m=1

Dmk

∂〈b0〉k
∂Xm

= λ2〈b0〉, (21)

which is the solvability condition for the third (order ε2)
equation in the hierarchy. Here

Dmk = 〈v × Gmk〉 (22)

is the so-called tensor of magnetic eddy diffusivity correction.
The expression (22) conveys the physically important idea that,
like the α-effect, eddy diffusivity is a manifestation of the
interaction of fine structures of the flow and magnetic field,
but due to the parity it is order ε weaker than the α-effect that
is generically present in the absence of symmetries.

We solve (21) for the mean mode (10), following essentially
the same approach (see [29]) as is used in Sec. II A for the
problem (8). Using the relations (11), we recast (21) into an
eigenvalue problem for a 2 × 2 matrix:

−
∑
m,l,n

Dl
mnq

p
l

(
Btq

t
n + Bpqp

n

)
qm = (η + λ2)Bt,

∑
m,l,n

Dl
mnq

t
l

(
Btq

t
n + Bpqp

n

)
qm = (η + λ2)Bp.

Clearly, it transforms into (12) upon changing

η + λ2 → λ1,
∑
m

Dl
mnqm → −iAl

n.

We use this analogy to write down the solution

λ2±(q) = −η − 1

2

∑
j,l,n

(
Dl

n − Dn
l

)
qj ±

√
d, (23.1)

d =
∑
j,l,n

{[(
sDl

n

)2 − sDl
l

sDn
n

]
q2

j

− 2qjqn

(
sDl

n
sDl

j − sDl
l

sDn
j

)}
, (23.2)

where both sums are over even permutations of indices 1, 2,
and 3 (i.e., εjln = 1) and it is denoted

Dl
n =

∑
m

Dl
mnqm, sDl

n = (
Dl

n + Dn
l

)
/2. (23.3)

As for the α-effect operator, a compact expression

d = −q · (det sD) sD−1q

follows from (23.2) if the matrix sD is invertible; however, this
expression does not help any more to determine the minimum

ηeddy ≡ min
|q|=1

[−Re λ2±(q)] (24)

called the minimum magnetic eddy diffusivity, since by (23.3)
sD depends on q. If d < 0, the magnetic mode experiences
oscillations in the slow time T2 = ε2t ; then, in view of (23),
the frequency of oscillations is controlled by the symmetric
part, sD, of the eddy diffusivity tensor, whose entries are
(Dl

mn + Dn
ml)/2, and the slow-time growth or decay rate of

the mode is controlled by the antisymmetric part, D − sD.
Computing the eddy diffusivity correction tensor applying

(22) requires solving 12 auxiliary problems (3 of type I and
9 of type II), which is numerically inefficient. A preferable
alternative is to rely on the identity

Dl
mk =

〈
Zl ·

(
2η

∂Sk

∂xm

+ em × [v × (Sk + ek)]

)〉
(25)

expressing the entries of the tensor in terms of the solutions Sk

to the 3 auxiliary problems of type I and zero-mean solutions
Zl to 3 auxiliary problems for the adjoint operator:

L∗Zl = v × el ⇔ L−(∇ × Zl + el) = 0, (26)

where

L∗ z = η∇2z − v × (∇ × z)

is the operator adjoint to L, and L− is the magnetic induction
operator (17) for the reverse flow −v. Unlike (22), (25) does
not offer any evident physical interpretation. By comparison
of (7) and (26),

∇ × Zl = S−
l ⇒ Zl = η−1∇−2[v × (S−

l + el)]. (27)

Here ∇−2 denotes the inverse Laplacian in the fast variables
and S−

l + el is a neutral mode of L− [see (18)]. When the
small-scale dynamo does not operate (i.e., all eigenvalues of L
have nonpositive real parts), the six fields Sk + ek and S−

l + el

can be computed as the small-scale dominant eigenmodes
of the magnetic induction operators L and L−, respectively;
the same small-scale eigenvalue code (e.g., [34]) solves all
6 eigenproblems (with the flow reversed, v → −v, when
computing S−

l ).
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C. Dynamo powered by “weak turbulence”

The two-scale dynamos considered in this section thus far
are characterized by order 1 local magnetic Reynolds numbers
Rloc

m = �〈|v|2〉1/2
/η, given that the small-scale flow v, the size

of its periodicity box � = 2π , and the molecular diffusivity
η are all assumed to be nondimensional and independent
of the scale ratio ε (in computations reported in Secs. IV
and V, the flow has been normalized and its rms velocity is
1). The α-effect tensor for dynamos driven by turbulence was
expressed in terms of the helicity spectrum [27,28]. We will
now reproduce this result for small Rloc

m (this modeling mag-
netic field generation by “weak turbulence”) by the multiscale
asymptotic techniques. Rloc

m becomes small when either the
molecular eddy diffusivity is large, or when the amplitude of
the flow is small. Let us inquire into the two cases.

In the former case we consider the repeated limit ε → 0 and
η → ∞. The first limit, in ε, yields the asymptotic expansions
(6); we just need to calculate the second one, in η. From (7),
the neutral modes have the asymptotics

Sk = −η−1∇−2 ∂v
∂xk

+ O(η−2),

and hence the α-effect tensor is composed of the columns (9)

Ak = −η−1

〈
v × ∇−2 ∂v

∂xk

〉
+ O(η−2). (28)

In the latter case a time-periodic velocity ε1/N v(x,t) is
assumed; we thereby relax till the end of the section the
condition of steadiness of the flow, in order to obtain the
expression for the α-effect tensor derived in [28] by the test
field method. [Note that the multiscale formalism discussed in
the previous subsections has been generalized to encompass
dynamos, periodic in the fast time (see Chap. 4 in [26]); the
present work is concerned with steady flows only, because
they give rise to significantly computationally less demanding
auxiliary problems than in the time-periodic setup.] Here
N > 1 is an integer. Following [35] (see also [20]), we solve the
Floquet problem (−∂/∂t + L)b = λb for large-scale magnetic
modes b of the same period 2π/ω in the fast time t as that of
the flow. The modified expansions (6) now take the form

b(X,x,t) =
∞∑

n=0

bn(X,x,t) εn/N , (29.1)

λ =
∞∑

n=0

λnε
n/N . (29.2)

Substituting them into the eigenvalue equation yields a
hierarchy of equations

−∂bn

∂t
+ η∇2bn + ∇ × (v × bn−1) + 2η(∇ · ∇X)bn−N

+∇X × (v × bn−N−1) + η∇2
Xbn−2N =

n∑
m=0

λn−mbm

(30)

from which we can successively find all terms in the series (29).
For a steady flow v and N = 2, the sums (29) determined by
this procedure were proven [35] to be asymptotic series for a

multiscale solution to the eigenvalue problem for the magnetic
induction operator [provided the eigenvalue λ4 of the limit
operator on the left-hand side of (32.1) has multiplicity 1, and
the spatial periodicity of the eigenfunction is compatible with
that of the flow]; the proof can be recast for time-periodic flows.

Averaging over the space-time periodicity cell (we will
denote this average by double angle brackets, 〈〈 〉〉) order
εn/N equations for n � N + 1, we find λn = 0 for all such
n, provided 〈〈b0〉〉 does not vanish identically. The order ε0

equation yields b0 = b0(X). The order ε1/N equation is then
equivalent to

b1 = (∂/∂t − η∇2)−1(b0 · ∇)v, (31)

where the inverse operator is calculated in the space of vector
fields, 2π -periodic in space and 2π/ω-periodic in the fast
time, whose spatiotemporal mean vanishes. Consequently, the
order ε(N+2)/N equation becomes, upon averaging, a closed
eigenvalue equation in b0,

η∇2
Xb0 + ∇X × (Ab0) = λ4b0 for N = 2, (32.1)

∇X × (Ab0) = λN+2b0 for N > 2, (32.2)

where the α-effect tensor consists of columns

Ak =
〈〈

v ×
(

∂

∂t
− η∇2

)−1
∂v
∂xk

〉〉
. (33)

In the two cases under consideration, the limit Rloc
m → 0

is approached along different paths in the parameter space;
thus, it is no wonder that the equation (32.1) for determining
the leading terms in the series (29) differs from (8) and
(32.2). Nevertheless, surprisingly, the α-effect tensors are the
same. [For steady flow, (33) clearly reduces to (28); in fact,
calculations for a time-periodic flow in the first case yield an
expression identical to (33), up to an O(η−2) discrepancy.]

Following [27,28], we expand the velocity in a Fourier
series,

v(x,t) =
∑
p,p′

v̂p,p′ ei(p′ωt+p·x)

and transform (33):

Ak =
∑
p,p′

ipk

ip′ω + η|p|2 (v̂p,p′ × v̂p,p′ ).

Here summation is over all integer-component four-
dimensional vectors (p,p′) �= 0 and the bar denotes complex
conjugation. The contribution of two terms with opposite
indices, p,p′ and −p,−p′, is real. Since both factors in the
vector product on the right-hand side are normal to p, the
product is parallel to p, and hence finally

Ak = −
∑
p,p′

ηpkp
p′2ω2 + η2|p|4 Hp,p′ .

Here

Hp,p′ = v̂p,p′ · (ip × v̂p,p′ ), (34)

called the helicity spectrum of the flow v, is the set of Fourier
coefficients of the convolution integral

C(r,τ ) = 〈〈v(x,t) · [∇ × v(x + r,t + τ )]〉〉.
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Evidently, C(0,0) is the mean kinetic helicity. This only link
between kinetic helicity and the helicity spectrum is loose: in
general, pointwise vanishing of the kinetic helicity density (2)
neither requires nor implies vanishing of the helicity spectrum.
We observe that for Rloc

m → 0 no α-effect is present if Hp = 0
for all p.

Suppose now the flow is parity-invariant and thus A = 0.
As above for the α-effect tensor, we first consider the limit of
small local magnetic Reynolds numbers realized as a repeated
limit ε → 0 and η → ∞. The evolutionary versions of (7) and
(20) imply

Sk = ∂u
∂xk

+ O(η−2),

Gmk = 2η

(
∂

∂t
−η∇2

)−1
∂2u

∂xk∂xm

+em × (u × ek) + O(η−2),

where

u = (∂/∂t − η∇2)−1v. (35)

By (22), where spatiotemporal averaging is assumed as re-
quired for time-periodic fields,

Dl
mk = εnlk

∑
(p,p′)�=0

v̂n
p,p′ v̂

m
p,p′

ip′ω + η|p|2 + O(η−2),

where n = 6 − l − k for l �= k. This eddy diffusivity tensor
corresponds to the “symmetric part of βiml” in [28]. Since sD
vanishes in the leading order, λ2±(q) (23.1) coincide up to an
O(η−2) discrepancy:

λ2±(q) = −η − η
∑

(p,p′)�=0

|p|2|q · v̂p,p′ |2
p′2ω2 + η2|p|4 + O(η−2).

Hence, in this case eddy correction of magnetic diffusivity is
predominantly positively defined and only enhances molecular
diffusivity. (This is reminiscent of passive scalar transport
[36].) The “antisymmetric part of βiml” of [28] linked with
the helicity spectrum does not show up in the leading terms of
the asymptotic expansion.

In the second case, the flow ε1/N v(x) again forces expanding
large-scale magnetic modes and associated eigenvalues in the
power series (29) in ε1/N . All terms can be determined from the
hierarchy (30). As in the presence of the α-effect, b0 = b0(X)
and b1 satisfies (31). For a parity-invariant flow, bn are anti-
invariant for n � N , but gain parity-invariant parts for larger n.
Averaging yields λn = 0 for all n < 2N . The parity-invariant
part of bN+1,

−2η(∇ · ∇X)(b0 · ∇)(∂/∂t − η∇2)−1u − (u · ∇X)b0,

where u is defined by (35), does give rise to a mean emf,
but only at the order ε(2N+2)/N equation. However, a closed
equation for determining b0 and λ2N emerges at an earlier stage
as a solvability condition for the order ε2 equation; it is just an
eigenvalue problem for the Laplace operator in slow variables.
Consequently, in the second case no correction of magnetic
diffusivity due to small-scale fields arises in the leading order.

We conclude that the multiscale asymptotic analysis does
not confirm that magnetic eddy diffusivity is linked with the
helicity spectrum of the flow.

III. CONSTRUCTION OF ZERO-HELICITY FLOWS

In this section we present some approaches for construc-
tion of three-dimensional pointwise nonhelical flows. For
convenience of reference, we will categorize such flows by
the techniques applied for constructing them; flows that are
obtained by a specific technique will be said to constitute a
family. We consider six different families. The classification is
imprecise in that the families may have nontrivial intersections.

A. Poloidal flows: Family P

We discuss here the semianalytical construction of poloidal
nonhelical flows, which will be called family P. The poloidal
flow for the potential P (x) is

v =
(

∂2P

∂x1∂x3
,

∂2P

∂x2∂x3
, − ∇2

x1x2
P

)
, (36)

where

∇2
x1x2

= ∂2

∂x2
1

+ ∂2

∂x2
2

is the Laplacian in the horizontal coordinatesx1, x2. The kinetic
helicity density of the flow (36) vanishes as long as

∂∇2P

∂x2

∂2P

∂x1∂x3
− ∂∇2P

∂x1

∂2P

∂x2∂x3
= 0. (37)

We regard (37) as a first-order equation in ∇2P and
tackle it by the method of characteristics. Characteristics
(x1(τ ),x2(τ ),x3(τ )) satisfy the ODEs

ẋ1 = −∂2P/∂x2∂x3, ẋ2 = ∂2P/∂x1∂x3, ẋ3 = 0,

which is equivalent to

∂P/∂x3 = constant and x3 = constant;

i.e., the characteristics are categorized by the common, along
a characteristic, marker values of ∂P/∂x3 and vertical coordi-
nate x3. Then (37) states that along a characteristic ∇2P does
not vary. Therefore, ∇2P depends only on the marker values:

∇2P = F (∂P/∂x3,x3), (38)

where F is an arbitrary function of two scalar arguments.
In principle, we can select a smooth function F and attempt

to solve (38) numerically for the potential P inT3. A particular
case where the dependence of P on x3 is restricted to a
multiplicative one,

P (x) = g(x1,x2) g̃(x3), (39)

is significantly simpler than the general problem (38). Now g

must satisfy an equation

∇2
x1x2

g = f (g) (40)

in a planar cell of periodicity T2, so that (39) satisfies (38)
for F (D,x3) = g̃f (D/g̃ ′) + D g̃ ′′/g̃ ′, where the prime mark
′ denotes a derivative in x3. In the problem (40), we may set

f (g) =
J∑

j=1

νj (fj (g) − 〈fj (g(x1,x2))〉). (41)
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Here g̃(x3) and fj (g) are arbitrary smooth functions. The mean
of the right-hand side is removed, because the left-hand side
of (40) is zero mean; as a result, when projected onto a finite-
dimensional Fourier subspace, (40) yields one equation less
than the number of harmonics involved in the approximate
solution. This can be used to enforce the condition that the
unknown function g(x1,x2) is zero mean, which helps to bypass
the emergence of constant-value solutions. “Eigenvalues” νj in
(41) can be calculated as constants minimizing the discrepancy.

We solve the problem (40)–(41) numerically by a quasi-
Newtonian procedure (see [37]); at each iteration, the re-
spective linear problem is solved by an optimized version of
the BiCGstab method [38–41]. [We apply BiCGstab(�) for
2 � � � 7 to generate a sequence of “raw” approximations to
the solution. The best approximation known so far is stored, and
each time BiCGstab has computed new K raw approximations,
their optimal linear combination is used to improve the best
approximation.]

For J = 1, substituting (41) transforms (40) into a kind of
nonlinear eigenvalue problem (see, e.g., [42]). For f1(g) = g

it reduces to the standard eigenvalue problem for the Laplace
operator; this yields analytical examples of nonhelical poloidal
flows. The Christopherson flow (3) falls into this category
[albeit the periodicity box of (3) is a parallelepiped distinct
from a cube]: its poloidal potential

P (x) = L2

4π2
g(x1,x2) sin πx3

satisfies (39)–(40) for f (g) = −4π2(3L2)−1g.

B. Application of the Monge decomposition: Family L

Note that

∇A × ∇B = ∇ × (A∇B) = 1
2 ∇ × (A∇B − B∇A) (42)

is a solenoidal field. Conversely, any solenoidal vector field can
be locally expressed as (42) (called the Monge decomposition)
in terms of two scalar functions A(x) and B(x) [43] known as
Clebsch variables [44] or Monge potentials [45].

A vector field

v(x) = A∇B − ∇p (43.1)

= (A∇B − B∇A)/2 − ∇p� (43.2)

is solenoidal as long as

∇2p = ∇A · ∇B + A∇2B, (44)

∇2p� = (A∇2B − B∇2A)/2 (45)

(whereby p − p� = AB/2). We seek nonhelical solenoidal
vector fields (43), whose Monge potentials A(x) and B(x) are
defined in the entire torus T3. By virtue of (42), a field (43) is
pointwise nonhelical provided

∇p · (∇A × ∇B) = ∇p� · (∇A × ∇B) = 0 (46)

globally (see the discussion of the so-called “complex-lamellar
flows” in [45]).

Actually, the condition (46) is equivalent to demand-
ing that, at least locally, p(x) = p̃(A(x),B(x)) as well as

p�(x) = p̃�(A(x),B(x)). By the chain rule, for such a p (46)
holds true. To show the converse, note that a field (43) vanishes
identically unless A and B are functionally independent (since
otherwise A∇B is a gradient). Thus, we can express p in some
local coordinates (A(x),B(x),C(x)) so that

∇p̃ · (∇A × ∇B) = ∇C · (∇A × ∇B) ∂p̃/∂C,

and therefore ∂p̃/∂C = 0, which implies the statement.
By virtue of (45), a flow (43.2) is solenoidal and nonhelical

for p� = 0 when A and B are eigenfunctions of the Laplace
operator, ∇2 [or, moreover, of the operator ρ∇2, where ρ(x)
is an arbitrary function], that are associated with the same
eigenvalue. (Since the multiplicity of most eigenvalues of the
Laplacian in T3 exceeds 1, such independent functions A and
B do exist.) Such flows constitute family L. Further examples
of nonhelical flows that will be presented in this section also
rely on the Monge decomposition.

C. Cosine flows: Family C

We call family C or the cosine flows the solenoidal nonheli-
cal flows defined as

v1 = n[b1 sin(a · x) + a1 sin(b · x)] cos nx3,

v2 = n[b2 sin(a · x) + a2 sin(b · x)] cos nx3, (47)

v3 = −(a · b)[cos(a · x) + cos(b · x)] sin nx3,

where a = (a1,a2,0) and b = (b1,b2,0) are constant horizontal
vectors.

The field (47) is obtained from (43.2) for

A = | cos[(b + a) · x/2]|α| cos[(b − a) · x/2]|β | cos nx3|χ ,

B = 4n cos[(b + a) · x/2] cos[(b − a) · x/2] cos nx3

A(α − β)

(hence the name of the flows), where α, β are arbitrary
constants and

χ = [(a · b)(β − α) + n2(β + α)]/(2n2). (48)

In particular, for

α = 1

2

(
1 + n2(1 − 2χ )

a · b

)
, β = 1

2

(
1 − n2(1 − 2χ )

a · b

)
,

which implies (48), (43.2) is solenoidal for p� = 0 and hence
nonhelical. [As a side remark, note that this example demon-
strates non-uniqueness of the fields A(x), B(x), p�(x) realizing
a flow (43.2).]

The cosine flows (47) have nonzero toroidal, T , and
poloidal, P , potentials

T (x) = n(a1b2 − a2b1)[|a|−2 cos(a · x)

− |b|−2 cos(b · x)] cos nx3,

P (x) = − (a · b)[|a|−2 cos(a · x) + |b|−2 cos(b · x)] sin nx3.

Consequently, the Christopherson flow (3) does not belong to
this family.

D. An eigenfunction approach: Family I

Constructing a nonhelical flow (43.1) for a prescribed
smooth Monge potential B(x) requires finding such an A(x)
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that the space-periodic p, uniquely determined from (44),
satisfies (46). In the Lebesgue space of scalar functions in T3,
which have a zero spatial mean, we define a pseudodifferential
operator

MA = ∇−2(∇A · ∇B + A∇2B), (49)

where ∇−2 denotes the inverse Laplace operator [it is applied
on the left-hand side of this relation to a zero-mean field
∇ · (A∇B); the result has a zero mean by the definition of
the inverse Laplacian].

By standard arguments, M is a compact operator, whose
eigenfunctions not belonging to the kernel are smooth. Any
eigenfunction of M associated with a real eigenvalue is a
solution to our problem: by comparison of the eigenvalue
equation

MA = μA (50)

with (44), p = μA, which clearly satisfies (46). We must
show that the eigenfunction of M is functionally independent
of B(x). Suppose the converse is true, i.e., A(x) = Ã(B(x)).
Substituting such an A into (50) yields∫ B

B0

Ã(b)db = μ[Ã(B) − Ã(B0)],

where B0 is a constant from the image of B(x). Differentiating
this equation in B and solving the resultant ODE, for μ �= 0
we find Ã(B) = Ã0e

B/μ, which has a zero spatial mean only
for Ã0 = 0; if μ = 0, then again Ã = 0. This completes the
demonstration.

The adjoint operator for M is

M∗A∗ = −∇(∇−2A∗) · ∇B − 〈A∗B 〉.
Suppose the ODE ẋ = ∇B has a global space-periodic first in-
tegral I (x). Then, clearly, field A∗ = ∇2I belongs to the kernel
of M∗ and hence the kernel of M is also nonempty. Therefore
for such a Monge potential B there exists a solenoidal non-
helical flow (43.1) for p = 0. Flows (43.1) whose existence is
established by this argument are designated family I.

Unfortunately, as it is shown in the next subsection, all
eigenfunctions of M that do not belong to its kernel are
complex-valued and thus are unsuitable for our purposes.

E. Variable-separated flows: Families V1 and V2

Consider an equation

∇ · (A∇B) = μ∇2(AB), (51)

whose solutions are Monge potentials of solenoidal nonhelical
flows (43.1) for

p = μAB. (52)

Unlike (50), (51) is homogeneous in both A and B. Let us
derive its variable-separated solutions. For

A(x) =
3∏

i=1

Ai(xi), B(x) =
3∏

i=1

Bi(xi),

(51) transforms to

d

dxi

(
μ

Ȧi

Ai

+ (μ − 1)
Ḃi

Bi

)
+

(
μ

Ȧi

Ai

+ (μ − 1)
Ḃi

Bi

)(
Ȧi

Ai

+ Ḃi

Bi

)
= Ci, (53)

where the dot denotes differentiation in xi and Ci are constants
such that

3∑
i=1

Ci = 0. (54)

Regarded as a first-order linear ODE, (53) has a solution

μ
Ȧi

Ai

+ (μ − 1)
Ḃi

Bi

= 1

AiBi

(
C2i+Ci

∫ xi

0
Ai(ξ )Bi(ξ ) dξ

)
,

(55)

where C2i is a constant. It is natural to solve (55) for a
prescribed product

Fi(xi) = AiBi,

since then the constants Ci and C2i are the only unspecified
data on the right-hand side of (55). Integration of (55) yields

Bi = C3i F
μ

i (xi) exp

(
−

∫ xi

0

C2i + Ci

∫ ζ

0 Fi(ξ ) dξ

Fi(ζ )
dζ

)
,

Ai = Fi/Bi, (56)

where C3i is a constant that is irrelevant and will be set to unity.
If the constants Ci and C2i are scaled by μ �= 0, the flow

(43.1), (56) turns out to be proportional to this parameter
and not to involve it otherwise. Thus, the value of μ �= 0 is
irrelevant for our constructions. By virtue of (52), the flow
(43.1) for μ = 1 takes the form

v(x) = −B∇A, (57)

whereby the case μ = 0 is also reduced to the generic case
μ = 1 essentially by swapping the Monge potentials A and
B. Substituting (56) into (57), we find the general form of
solenoidal nonhelical flows constituting family V1 that are
obtained by separation of variables in the Monge potentials
satisfying (51):

v(x) = (C1U1U̇2U̇3, C2U̇1U2U̇3, C3U̇1U̇2U3). (58)

Here Ui = −C2i/Ci − ∫ xi

0 Fi(ξ ) dξ are arbitrary 2π -periodic
smooth functions of xi and Ci are arbitrary constants satisfying
(54). When some Ci = 0, (58) is a planar flow that, by the
Zeldovich [19] antidynamo theorem, cannot generate magnetic
field and hence it is not of our interest.

Constructing more general solutions to (51) is difficult. Let
now B(x) be specified. For B > 0, (51) can be regarded as an
eigenvalue problem for the compact operator

A → (1/B)∇−2(∇A · ∇B + A∇2B). (59)

However, for such a B either an eigenvalue μ �= 0 is complex,
resulting in a physically irrelevant complex field (43.1), (52),
or the associated eigenfunction A yields a zero flow. To show
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this, we substitute A = ÂBχ−1, B = eB̂ , where χ = 1/(2μ),
thereby reducing (51) to

∇2Â = (χ∇2B̂ + χ2|∇B̂|2)Â.

Multiplying this equation by Â and integrating over the
periodicity cell we obtain∫

T3
(|∇Â|2 + χ2|∇B̂|2|Â|2) dx = 2χ

∫
T3

Â ∇Â · ∇B̂ dx.

For real Â, B̂, and χ , the right-hand side of this relation does not
exceed in absolute value the left-hand side, the equality takes
place only for ∇Â = χÂ∇B̂, and thus Â = CeχB̂ , where C

is a constant. Consequently, A = CB2χ−1, and the respective
flow (43.1), (52) is zero.

We should therefore focus on solving (51) for B that change
sign in the periodicity cell. For such a B, the operator (59) is
singular, which renders the problem (51) difficult for numerical
treatment.

The eigenvalue problem (50) for the operator M (49),
which lacks the problematic factor 1/B, has the same terminal
drawback as (51): Letting B = ln B̂ and Â = A/B̂, where
B̂ > 0, transforms (50) into a problem whose structure is
identical to (51), making the above arguments applicable to the
problem (50), (49). Thus, flows with the desirable properties
can involve as a Monge potential A only those eigenfunctions
of M that belong to its kernel.

If we drop the condition that the flow complies with (43.1),
but still demand that each of its components is variable-
separated, we encounter family V2 of variable-separated
solenoidal nonhelical flows:

v(x) = (C1U2U3, C2U1U3, C3U1U2). (60)

Here Ci are arbitrary constants and Ui arbitrary 2π -periodic
smooth functions of xi (some of which should be zero mean to
ensure that the mean velocity is zero).

When any Ci vanishes, the flow (60) is planar; since by the
Zeldovich [19] theorem such flows cannot be dynamos, we
do not consider them. Examination of the product of the three
scalar relations vi(−x) = −vi(x) defining parity invariance of
(60) reveals that no family V2 flow with all Ci �= 0 is parity-
invariant.

F. Helicity spectrum of the nonhelical flows

We show here that the helicity spectrum of flows comprising
families P, C, V1, and V2 is identically zero; for family L flows
this does not, in general, hold true.

Vorticity of a poloidal flow (36) is

∇ × v =
(

−∂∇2P

∂x2
,
∂∇2P

∂x1
,0

)
.

Thus, integration by parts establishes C(r) = 0. This proves
the claim for any poloidal flow, including family P flows.

It is straightforward to transform (34) using the reality of
the flow v:

Hm = 2m · (Re vm × Im vm)

(we have dropped the second index p′ not needed for
steady flows). Hence, all Hm = 0 when v is parity-invariant

(Re vm = 0) or anti-invariant (Im vm = 0). In particular, family
C flows have zero helicity spectrum, as well as all flows, for
which the magnetic eddy diffusivity tensor is computed in
Sec. V.

To consider flows from families V1 and V2, we expand the
constitutive functions in the Fourier series,

Un(xn) =
∑
mn

Ûn,mn
eimnxn ,

whereby a family V1 flow has Fourier coefficients

v̂m = −Û1,m1Û2,m2Û3,m3 (C1m2m3,C2m1m3,C3m1m2).

Thus, Hm = 0 since v̂m and v̂−m are parallel.
A family V2 flow has Fourier coefficients

v̂m = (
C1δ

0
m1

Û2,m2Û3,m3 ,C2δ
0
m2

Û1,m1Û3,m3 ,C3δ
0
m3

Û1,m1Û2,m2

)
,

where δ
j

i denotes the Kronecker symbol, and by straightfor-
ward calculation of the determinant (34),

Hm = i
∑

1�l,j,k�3

εljkClδ
0
ml

Û j,mj
Û k,mk

mjCkδ
0
mk

Ûl,ml
Ûj,mj

.

(61)
Flows that we consider are zero mean, implying that
δ0
mn

Ûn,mn
= 0 for at least two distinct indices n. Hence at

least one such product vanishes in each of the six terms in
(61). Therefore for any zero-mean family V2 flow the helicity
spectrum also vanishes.

Let us finally compute the helicity spectrum of a family L
flow (43.2) for

A =
∑

n

Âne
in·x, B =

∑
n

B̂ne
in·x.

This implies

v̂m = i

2

∑
n

Âm−nB̂n(2n − m),

whereby

Hm = i
∑
n,j

Âm−nB̂nÂm−jB̂j[n · (m × j)].

Generically, these quantities do not vanish.

IV. MAGNETIC α-EFFECT IN NONHELICAL FLOWS:
NUMERICAL RESULTS

We explore here the α-effect featured by some non-parity-
invariant sample flows belonging to families P, V1, V2, and
L (see Secs. III A, III E, and III B). The cosine flows are not
considered in this section, since the α-effect tensor vanishes
for a parity-invariant flow, and they have this symmetry.

We focus on the maximum real part γα (14) of eigenvalues
of the α-effect operators, and in Sec. V on the minimum
magnetic eddy diffusivity ηeddy (24). For each pair (a flow
/ molecular magnetic diffusivity value) employed, we have
also computed the fast-time growth rates γsm of dominant
small-scale magnetic modes. (A small-scale magnetic mode
is an eigenfunction of the magnetic induction operator L,
that has the same periodicity as the flow, i.e., in our work,
modes whose periodicity cell is T3. A mode is dominant,
when it has the maximum growth rate, i.e., the maximum real
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FIG. 1. Maximum slow-time growth rates (14) of large-scale modes due to the action of the α-effect (vertical axis) versus dominant
fast-time growth rates of small-scale modes (horizontal axis) for η = 0.05 in the collection of 23 family P flows (a). The topography of the
vertical component for three poloidal flows (36) is shown in (a) by gray filled circles marked P1 (b), P2 (c), and P3 (d). Isolines show the values
step 2 of the rms-normalized factor ∇2p(x1,x2) in the vertical component of sample flows. Dotted, dashed, and solid lines indicate negative,
zero, and positive values, respectively; small ticks point in the direction of decreasing values.

part of the associated eigenvalue, over all modes residing in
the same periodicity box, for the same flow and molecular
diffusivity.) We are especially interested in eigenvalues of the
α-effect operator with strictly positive real parts and in negative
eddy diffusivity (both imply generation of large-scale magnetic
field) for pairs (a flow / molecular diffusivity) such that no
generation of small-scale modes occurs: While the fast-time
growth rates of magnetic fields generated by the α-effect are
order ε and by the action of negative eddy diffusivity order
ε2, growth rates of small-scale modes are order ε0. Thus, the
α-effect and negative eddy diffusivity are significantly weaker
mechanisms for generation of large-scale magnetic field than
small-scale dynamo, and they gain importance only in the
absence of small-scale generation.

Numerical work reported in this and the next sections
has much in common. Computation of dominant small-scale
magnetic modes and their fast-time growth rates, as well
as of solutions to auxiliary problems of type I and for
the adjoint operator (when needed for computing the eddy
diffusivity tensor), has been performed using the code [34].
Pseudospectral methods have been applied, typically, with the

resolution of 1283 Fourier harmonics. For validation of results,
computations have been repeated with the double resolution of
2563 harmonics for the smallest magnetic molecular diffusivity
used to analyze dependencies of various quantities on the
molecular diffusivity, or for several “typical” flows if the
molecular diffusivity was not varied in a series of runs. In these
test runs, the results of 1283 harmonics computations have
always been confirmed to at least 10−7; thus even the smallest,
order 10−5 values reported here have at least 2 significant digits.

Upon construction each flow, for which results are reported
in the present or next section, has been normalized before
proceeding with the dynamo computations, so that its rms
velocity is 1.

A. Family P

We have computed solutions to the “nonlinear eigenvalue
problem” (40), where the right-hand side (41) involves three
unknown parameters νj :

f (g) = ν1e
g + ν2e

−g + ν3g
3.
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TABLE I. Dynamo properties of the three family P flows (36)
shown in Fig. 1(a) by gray filled circles for η = 0.05.

Flow γsm γα ν1 ν2 ν3

P1 −0.05066 0.3448 × 10−4 1.597967 7.905751 8.551576
P2 −0.04314 2.083 × 10−4 −1.708137 3.269258 4.412460
P3 −0.03965 4.746 × 10−4 −1.619310 1.531359 2.172698

For the employed resolution of 1282 Fourier harmonics, the
energy spectrum decay of the solutions g(x1,x2) is in the range
17–21 orders of magnitude. The same vertical profile

g̃(x3) = 1 + cos x3 + sin 2x3

of the flow potential (39) has been employed to construct a
collection of 23 sample flows. Small-scale dynamo fast-time
growth rates and the maximum slow-time growth rates of large-
scale modes generated by the α-effect have been computed
for η = 0.05, for which none of the 23 poloidal flows (36)
generates small-scale magnetic field [see Fig. 1(a)]. For three
flows, Figs. 1(b)–1(d) show isolines of the fields ∇2 g(x1,x2)
normalized so that their rms value is 1; by (36), they reflect
the topography of vertical components of the flows. The three
flows [marked by gray filled circles in Fig. 1(a); see Table I]
are well separated in the plane (maximum growth rate of
large-scale modes due to the α-effect, dominant growth rate of
small-scale modes). The flow represented by the left circle P1

features the highest contrast in the component structure, but the
part of the fluid volume, occupied by vigorous vertical jets, is
small [see Fig. 1(b)]; apparently, this is responsible for the min-

imum (over the set) ability of this flow to sustain small-scale
magnetic field and to generate large-scale field by means of the
α-effect. The intermediate circle P2 represents a flow featuring
a comparable contrast, but there is a significant increase in the
part of the volume where vertical motion is relatively fast [see
Fig. 1(c)]. Consequently, for this flow we observe a decrease in
the fast-time decay rate of small-scale field and an increase in
the slow-time growth rate of the generated large-scale field.
Finally, the right circle P3 represents the flow of the least
contrast (among the three flows under discussion), but the
part of the volume of relatively fast vertical motion has again
increased [see Fig. 1(d)], accompanied by a further decrease in
the decay rate of small-scale field and an increase in the slow-
time growth rate of large-scale field generated by the α-effect.

B. Family V1

We have computed slow-time growth rates γα of large-scale
magnetic field generated by the α-effect in a sample family
V1 flow (58) constructed for randomly chosen functions and
constants

U1(x1) = −2 cos x1 + 1.5 sin x1 + 0.5 sin 2x1

+ 0.75 cos 3x1 − 0.2 sin 3x1 − 0.1 sin 4x1,

U2(x2) = cos(ecos 3x2 − sin 2x2) − 0.3 sin x2, (62)

U3(x3) = sin x3 − 0.75 cos 2x3 + 0.25 cos 3x3 + 0.2 sin 4x3,

C1 = 1, C2 = 2, C3 = −3.

For this flow, the plot of γα (see the upper panel of Fig. 2) has
a rather intricate structure: by virtue of (14), it falls off to zero
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FIG. 2. Upper panel: Maximum slow-time growth rate of large-scale magnetic field generated by the α-effect (vertical axis) versus magnetic
molecular diffusivity η (horizontal axis) for a sample flow from family V1 (58) constructed for (62). Lower panel: Three eigenvalues αi of the
symmetrized α-tensor sA for the same flow (solid line) and the intermediate eigenvalue α2 multiplied by 20 (dashed line). Dotted vertical lines
join the locations of the zero maximum growth rate due to the α-effect with the zeros of the intermediate eigenvalue of sA.
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FIG. 3. Maximum slow-time growth rate of large-scale magnetic field generated by the α-effect (vertical axis) versus magnetic molecular
diffusivity (horizontal axis) in the three sample flows (60) from family V2 constructed for (63) (a), the rms-normalized functions Ui (63.4)
and (64) (b), and Ui that are Fourier series with pseudorandomly generated coefficients (c). Dots show the computed values. Plots of the three
functions Ui (63.4) (d).

each time the intermediate eigenvalue α2 of the symmetrized
α-tensor sA vanishes (in order to visualize legibly these zeros,
the product 20α2 is shown in the lower panel of Fig. 2 by
a dashed line). This is reminiscent of the “window” in η, in
which small-scale generation by the 1:1:1 ABC flow fails [46];
however, in the present case intervals where there is no dynamo
degenerate into individual points.

C. Family V2

We plot in Fig. 3(a) the maximum slow-time growth rate
(14) of large-scale magnetic field generated by the α-effect in
a sample flow from family V2 (60) constructed for

u1(x1) = e(sin x1)/4−cos 2x1 + (cos x1)/2, (63.1)

u2(x2) = (e(sin x2)/4+(cos 3x2)/3 + (cos 2x2)/6)2, (63.2)

u3(x3) = esin x3+4 cos 3x3 + 5 sin 2x3, (63.3)

Ui(xi) = ui(xi) − 〈ui(xi)〉, (63.4)

C1 = 3, C2 = 2, C3 = 1. (63.5)

For the smallest molecular diffusivity η = 0.005 considered
for this flow, the energy spectrum of solutions to auxiliary
problems of type I, S1, S2, and S3, decays by 5, 3, and 6
orders of magnitude in runs with the resolution of 1283 Fourier
harmonics, respectively, and by 9, 7, and 9 orders in 2563

harmonics runs. Nevertheless, the discrepancy in the elements
of the α-tensor A and the maximum slow-time growth rate of
large-scale field is below 2 × 10−8 (owing to the fast energy
spectrum decay of the flow).

The growth rates γα for this flow are rather small [see
Fig. 3(a)]. This can be attributed to its strong anisotropy: while
the amplitude of the functions U1 and U2 is below unity, the
amplitude of U3 is roughly 60 [see Fig. 3(d)]; the resulting
flow (60) is thus close to a plane-parallel horizontal flow that is
incapable of dynamo action by the Zeldovich [19] antidynamo
theorem. This has prompted us to also consider the flow (60)
constructed for all

Ci = 1 (64)

and the functions Ui (63.1)–(63.4) used previously but nor-
malized so that their rms value becomes 1. The maximum
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FIG. 4. Isosurfaces of the flow velocity [(a), (c)] and vorticity [(b), (d)] at the levels of 1/3 of the respective maxima for the two sample
family L flows (43.2) featuring nonzero helicity spectrum, for which the magnetic α-effect has been explored, and small-scale magnetic field
generation starts in the even [(a), (b)] or odd [(c), (d)] invariant subspace. One periodicity cube T3 is shown.

slow-time growth rates γα are about an order of magnitude
higher [see Fig. 3(b)].

Slow-time growth rates of large-scale magnetic field gener-
ated by the α-effect in the flow (60), (63) are also significantly
smaller than those obtained for a yet another sample family V2

flow [see Fig. 3(c)]. It involves zero-mean functions Ui that are
Fourier series with pseudorandom coefficients for wave num-
bers up to 63, whose energy spectrum decays exponentially
by more than 10 orders of magnitude. We have checked that
no small-scale dynamo operates for the considered molecular
diffusivities (by computing the dominant fast-time growth
rates γsm of small-scale modes for η = 0.005, 0.01, 0.02, and
0.05). A different (compared to the sample flows discussed
above) behavior of γα is observed on decreasing molecular
diffusivity; however, the considered values of η are still too
high to conjecture that the saturated regime for η → 0 has set
in.

D. Family L

Two sample family L flows (43.2) have been considered
for the Monge potentials A and B that are eigenfunctions
of the Laplace operator associated with the eigenvalue −26;
they are sums of 72 Fourier harmonics, whose wave vectors
are composed of numbers ±3, ± 4, ± 1 or of ±5,0, ± 1, in

both sets in any order and for any combination of signs.
The harmonics enter the sums with complex pseudorandom
coefficients (complex conjugacy is enforced for the flows to
be real). Isosurfaces of the velocity |v| and vorticity |∇ × v| of
these flows in Fig. 4 illustrate their strong spatial intermittency;
Fig. 5 showing helicity spectrum seminorms

�M =
∑

M−1<|m|�M

|Hm|

furnishes evidence that the helicity spectra of the two flows do
not vanish. The plots of the maximum slow-time growth rate
(14) of large-scale magnetic field generated by the α-effect,
as functions of magnetic molecular diffusivity [see Figs. 6(b),
6(d)], involve square-root type cusps where the growth rates
vanish together with the intermediate eigenvalue α2 of the
symmetrized α-tensor sA; this is the same phenomenon as
the one seen in Fig. 2.

Notably, in Figs. 6(b), 6(d) the graphs of the maximum
slow-time growth rate γα have vertical asymptotes. A similar
singular behavior of eddy diffusivity was encountered (see
Sec. 3.7 in [26]), but to the best of our knowledge it was never
documented for the α-effect. The nature of this phenomenon
is the same for both mechanisms of large-scale generation, as
we will now briefly discuss. Let us consider a first auxiliary
problem (7) in the form of the left equation for a zero-
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FIG. 5. Helicity spectrum seminorm (vertical axis) versus the wave vector shell number (horizontal axis) for the two sample family L flows
under consideration, in which small-scale magnetic field generation starts in the even (a) or odd (b) invariant subspace.

mean solenoidal field Sk . Generically, the magnetic induction
operator L has a three-dimensional kernel spanned by the
fields ek + Sk , thus being invertible in the functional subspace
of our interest. We expand, for a given η, the unknown field
and the right-hand side of the left equation (7) in the basis
of solenoidal zero-mean eigenfunctions fn(η) of the magnetic
induction operator, Lfn(η) = μn(η)fn(η):

Sk(η) =
∑

n

σnk(η)fn(η), − ∂v
∂xk

=
∑

n

αnk(η)fn(η).

(For the sake of argument, we assume that L does not involve
Jordan form cells of size 2 or more, although it is not difficult to
take them into account in a fully formal proof.) Then, evidently,

σnk(η) = αnk(η)

μn(η)
⇒ Sk(η) =

∑
n

αnk(η)

μn(η)
fn(η); (65)

while L is invertible, all μn(η) �= 0 and μn(η) → −∞, the
series thus remaining well defined and convergent.

Suppose now η → ηcr for the onset of the small-scale
magnetic field generation, i.e., μN (ηcr) = 0 for some N (corre-
sponding in our case to the dominant mode; again, to simplify
the argument, we assume that the emerging eigenvalue zero has
multiplicity one; it is important that the eigenvalue at the onset
is real). The eigenfunction fN (η) remains smooth and bounded;
however, the solution (65) infinitely increases, as well as the
α-effect tensor

Ak(η) = αNk(ηcr)

μN (η)
〈v × fN (ηcr)〉 + o

(
μ−1

N

)
.

This results in emergence of the vertical asymptote like the one
shown in Fig. 6(b). [Note that this may be interpreted not as
“an infinite rate of generation” at η = ηcr, but rather as that the
ansatz (6) becomes inapplicable for the critical η. Although
|λ1| → ∞ when ηcr is approached, Re λ1 approximates the
slow-time growth rate only for ε → 0; for acceptable ε,
the product εReλ1 approximating the fast-time growth rate
remains finite, if does not tend to zero.]

There is a subtlety: the Monge potentials A and B defining a
family L flow are linear combinations of Fourier harmonics that
are eigenfunctions of the Laplacian associated with the same
eigenvalue. Because of the periodicity condition, a wave vector
of each harmonics has integer components, whose sum has the

same parity as the Laplacian eigenvalue. Therefore, any flow
(43.2) belongs to what we call the “even” subspace composed
of harmonics such that the sum of wave numbers is even. In
the “odd” complementary subspace, the sum of wave numbers
of the constituting harmonics is odd. When the flow belongs
to the even subspace, even and odd subspaces are invariant
for the small-scale magnetic induction operator L. All neutral
modes ek + Sk belong to the even subspace and do not “feel”
the onset of small-scale field generation, when it occurs (on
decreasing η) in the odd subspace. The α-effect tensor acquires
singularity, as discussed above, when the onset is in the even
subspace. This happens [see Figs. 6(a), 6(b)] for the sample
flow shown in Figs. 4(a), 4(b). For the flow shown in Figs. 4(c),
4(d) the onset occurs in the odd subspace [see Fig. 6(c)] not
affecting the graph of the maximum slow-time growth rate of
large-scale magnetic field generated by the α-effect Fig. 6(d).
[For this flow, the part of the graph of γα shown in Fig. 6(d) by
the dotted line for η between the critical values for the onset of
small-scale generation in the two subspaces only illustrates the
singular behavior near the critical molecular diffusivity in the
even subspace. As discussed in the introduction to the present
section, large-scale generation, whose fast-time growth rate is
order ε, is overshadowed in this interval by the small-scale one
in the odd subspace, whose fast-time growth rate is order unity.]
Actually, small-scale magnetic field generation occurs in the
odd subspace more frequently than in the even one. Perhaps, the
reason is in that the shortest wave vector in the even subspace
is

√
2 times longer than the one in the odd subspace, and hence

the small wave number harmonics (storing a significant part of
energy of a dominant small-scale magnetic mode) are more
amenable to molecular diffusion in the even subspace than in
the odd one.

V. MAGNETIC EDDY DIFFUSIVITY IN NONHELICAL
FLOWS: NUMERICAL RESULTS

We have examined numerically magnetic eddy diffusivity
of some instances of flows belonging to families L, C, and V1

(see Secs. III B, III C, and III E, respectively), that are parity-
invariant and hence lack the α-effect. Family V2 flows are not
parity-invariant (see a comment to this effect at the end of
Sec. III E) and generically sustain the α-effect; hence, they have
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FIG. 6. The fast-time growth rate [(a), (c)] of small-scale magnetic modes (vertical axis) dominant in the even (solid line) and odd (dashed
line) invariant subspaces, and the maximum slow-time growth rate γα (14) of large-scale magnetic field [(b), (d)] generated by the α-effect
(vertical axis) versus magnetic molecular diffusivity (horizontal axes) for the two sample family L flows under consideration, where small-scale
magnetic field generation starts in the even [(a), (b)] or odd [(c), (d)] invariant subspace. Dots show the computed values. In panels (b), (d), thin
vertical lines are located at the critical molecular diffusivities for the onset of the small-scale dynamo in the even (solid lines) or odd (dashed
lines) subspaces. In (d), dotted line shows the part of the graph of the slow-time growth rate for η between the critical values for the onset of
small-scale generation in the two subspaces, for which large-scale generation by the α-effect is overshadowed by the small-scale one in the odd
subspace.

been excluded here from examination. As when exploring the
α-effect, for each pair (a flow / magnetic molecular diffusivity)
considered here, we have computed the fast-time growth rate
γsm of the dominant small-scale magnetic mode, and in what
follows we comment on the minimum magnetic eddy diffu-
sivity (24) for flows that do not generate small-scale magnetic
field. The rationale is discussed in the introduction to Sec. IV.

Each employed flow has a unit rms velocity.
Computation of the eddy diffusivity tensor can be signif-

icantly simplified (to the extent that there may be no need
to solve auxiliary problems for the adjoint operator) in the
presence of certain symmetries of the flow. In particular, the
symmetries of the cosine flows imply splitting of the domain of
the magnetic induction operator into invariant subspaces and
a special structure of the eddy diffusivity tensor. We discuss
these issues in Sec. V B.

A. Family L

Like in Sec. IV D, we consider here a sample family L flow
(43.2) for the Monge potentials A and B that are eigenfunctions

of the Laplace operator associated with the eigenvalue −26.
They are again linear combinations of Fourier harmonics
for wave vectors (±3,±4,±1) and permutations, as well as
(±5,0,±1) and permutations. However, the pseudorandom
coefficients in the combinations are now imaginary, whereby
each potential is an odd [i.e., f (−x) = −f (x)] real scalar field,
resulting in parity invariance of the flow. Isosurfaces of the flow
velocity and vorticity (see Fig. 7) reveal its elaborate internal
structure.

The upper panel of Fig. 8 presents the minimum magnetic
eddy diffusivity (24) for this flow as a function of the mag-
netic molecular eddy diffusivity η. For η sufficiently large,
ηeddy > 0, but on decreasing molecular diffusivity ηeddy

changes the sign near η ≈ 0.0612. The plot of ηeddy has a
vertical asymptote located at the critical molecular diffusivity
ηcr ≈ 0.0207 for the onset of the small-scale magnetic field
generation (see the lower panel of Fig. 8). Section 3.7 of [26]
explains this phenomenon: solutions to the auxiliary problems
involve the inverse small-scale magnetic induction operator
L−1; in short, when η is close to ηcr, the norm of L−1
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FIG. 7. Isosurfaces of the flow velocity (a) and vorticity (b) at the levels of 1/3 and 2/5 of the maxima, respectively, for a sample
parity-invariant family L flow (43.2) for which magnetic eddy diffusivity has been explored. One periodicity cube T3 is shown.

is large, and thus either solutions to auxiliary problems of
type II are large (if the neutral zero-mean magnetic mode
emerging at η = ηcr is parity-invariant), or solutions to all
auxiliary problems are large (if the mode is anti-invariant).
As an illustration, we have also plotted by a dotted line the
least-squares hyperbolic fit (the ratio of two linear functions)
obtained for the seven computed values of ηeddy in the interval
0.023 � η � 0.032. The position of the vertical asymptote of
the fit, at the zero of the denominator, differs from the linearly

estimated critical molecular diffusivity ηc ≈ 0.0207 by less
then 10−4.

Small-scale anti-invariant magnetic field is generated for
0.0077 � η � 0.0207. For smaller η in the adjacent interval
0.0063 � η � 0.0077, generation in this symmetry subspace
ceases. This is analogous to the window where the 1:1:1 ABC
flow does not act as a small-scale kinematic dynamo [46].
Inside this interval, at η ≈ 0.0064, the branch of dominant
anti-invariant magnetic modes is replaced by a different one:
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FIG. 8. Upper panel: Minimum magnetic eddy diffusivity ηeddy (vertical axes) versus molecular diffusivity η (horizontal axis) in the sample
parity-invariant family L flow (43.2). Dots show the computed values. The scales for the left and right branches of the plot are shown in
the left and right vertical axes, respectively. Dotted curve is the least-squares hyperbolic fit for the 7 shown values of ηeddy computed in the
interval 0.023 � η � 0.032. Lower panel: Dominant fast-time growth rate of small-scale modes (vertical axis) as a function of η for the sample
flow in the invariant subspaces of parity-invariant (solid line) and anti-invariant (dashed line) vector fields. Filled (hollow) circles indicate
that eigenvalues of the small-scale magnetic induction operator are real (complex, respectively). Thin vertical lines are located at the critical
molecular diffusivities for the onset of the small-scale dynamo in the two symmetry subspaces.
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the associated eigenvalues change from real (for large η)
to complex ones (for small η), the imaginary part of the
dominant eigenvalue experiencing a jump. In the same interval,
at η ≈ 0.0071, generation of small-scale parity-invariant field
sets in. (All the critical values have been determined by linear
interpolation of real parts of the computed eigenvalues.)

Thus, no small-scale generation takes place in a short
interval 0.0071 � η � 0.0077. At the right end point of this
interval, η ≈ 0.0077, there exists a neutral (i.e., the associated
eigenvalue of the magnetic induction operator is 0) parity-
anti-invariant zero-mean small-scale magnetic mode. By the
same argument as for ηc ≈ 0.0207, the end point hosts another
singularity of ηeddy. The minimum eddy diffusivity tends to
−∞ on increasing η towards the right end point η ≈ 0.0077
(see the left branch of the plot in the upper panel of Fig. 8).
Thus, we have encountered an example of a flow that has at
least two windows in magnetic molecular diffusivity where
no small-scale magnetic field is generated, but generation of
large-scale field does take place. At η ≈ 0.0063, the increment
of magnetic field also vanishes, but the respective eigenvalue
of the magnetic induction operator has a nonzero imaginary
part, and consequently ηeddy remains nonsingular.

B. Cosine flows: Family C

Numerical investigation of eddy diffusivity of the cosine
flows (47) is significantly simplified by their two properties:
translation by half the period in the vertical direction reverses
the flows, and they are symmetric in x3.

If translation by a vector a reverses the flow,

v(x + a) = −v(x) (66)

(|a| is then half of the smallest period in the direction of a),
then by virtue of (7) and (18)

S−
l (x) = Sl(x + a) (67)

for all l. Thus, for such flows it suffices to solve the 3 auxiliary
problems (7) of type I. For the cosine flows (47) this happens
for a = (π/n) e3.

Furthermore, following [29], we use (66), (27), and (67) for
the index k instead of l to transform (25) into

Dl
mk = η

∫
T3

Zl(x) ·
[

2 ∇ × ∂

∂xm

Zk(x + a)

− em × ∇2Zk(x + a)

]
dx

(2π )3
.

Integrating here by parts the first scalar product and exploiting
self-adjointness of the Laplacian and the curl, as well as the
antisymmetry of the triple product with respect to permutation
of its factors, we find that

Dl
mk = −Dk

ml ⇒ Dk
mk = 0

for all indices l,m,k. Therefore, sD = 0 implying d = 0, and
for any wave vector q eigenvalues (23) of the eddy diffusivity
operator are twofold.

A field f = (f 1,f 2,f 3) is called symmetric in xi , if for all
i and j

f j
(
(−1)δ

1
i x1,(−1)δ

2
i x2,(−1)δ

3
i x3

) = (−1)δ
j

i f j (x),

and antisymmetric in xi , if for all i and j

f j ((−1)δ
1
i x1,(−1)δ

2
i x2,(−1)δ

3
i x3) = (−1)1−δ

j

i f j (x).

The symmetry in xi of the flow v implies that vector fields sym-
metric or antisymmetric in xi constitute invariant subspaces of
the magnetic induction operator L (4). It is then evident from
(7) and (26) that for the cosine flows,

Sk is symmetric in x3 for k = 1,2 and antisymmetric in x3

for k = 3;
Zl is antisymmetric in x3 for l = 1,2 and symmetric in x3

for l = 3.
Consequently, by (25), Dl

mk = 0 if all indices l,m,k do not
exceed 2, or precisely two of them are equal to 3.

Thus, eddy diffusivity tensor D for a cosine flow involves
5 pairs of nonzero entries of opposite signs, and by virtue of
(23)

λ2(q) = −η + D2
31 cos2 θ + sin2 θ

[
D3

12 cos2 ϕ

+ (
D3

22 + D1
13

)
cos ϕ sin ϕ + D1

23 sin2 ϕ
]

for the wave vector (11.1). The minimum eddy diffusivity (24)
is now

ηeddy = η − max
(
D2

31,
1
2

[
D3

12 + D1
23

+
√(

D3
12 − D1

23

)2 + (
D3

22 + D1
13

)2])
.

We have investigated magnetic eddy diffusivity for a set of
cosine flows that satisfy the following conditions:

(1) The nonzero horizontal vectors a = (a1,a2,0) and
b = (b1,b2,0) �= 0 have integer components, |ai |� 3, |bi |� 3.

(2) n � 3 is a positive integer.
(3) a and b are neither orthogonal, nor parallel. [If a · b = 0,

the vertical component of (47) vanishes identically; such flows
are irrelevant for us, since by the Zeldovich [19] antidynamo
theorem a planar flow cannot generate magnetic field. For
parallel a and b, the flow is also planar: v · (b2, − b1,0) = 0.]

(4) The largest common divisor of four integers ai and bi is
1, so that the flow does not have a smaller horizontal periodicity
cell aligned with the coordinate axes.

(5) No pair a,b used for construction of a flow in the set
is derived from another such pair by performing the following
transformations or their compositions:

(i) swapping a ↔ b (this does not alter the flow);
(ii) inverting the signs a → −a or b → −b (the flow is

invariant under any of the two reversals simultaneously with a
shift in half a period π/n in x3);

(iii) swapping the components a1 ↔ a2 and b1 ↔ b2 (flows
obtained for two such pairs a,b map into each other under
swapping of the horizontal components of vector fields and of
the horizontal Cartesian axes, x1 ↔ x2);

(iv) for some i � 2, inverting the signs of ai → −ai

and bi → −bi (a flow remains invariant under this inversion
accompanied by reflection of the direction xi → −xi and
changing the sign of the ith component of vector fields).

This set of essentially distinct low-wave-number cosine
flows comprises 183 flows, which we will call primary cosine
flows. The distribution of the dominant fast-time growth
rates of small-scale magnetic field and of the minimum eddy
diffusivity computed for these flows is shown in Figs. 9 and 10
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FIG. 9. Histogram of dominant fast-time growth rates of small-scale magnetic modes generated by the 183 primary cosine flows (a) for
three values of magnetic molecular diffusivity: η = 0.01 (black solid line), 0.02 (gray solid line; the area below the plot is filled in gray), 0.05
(dashed line). Histograms of the minimum magnetic eddy diffusivity in the 183 primary cosine flows (solid line) and for those of them which
are not small-scale dynamos (dashed line) for η = 0.01 (b), 0.02 (c), and 0.05 (d).

for three values of molecular diffusivity, η = 0.01, 0.02, and
0.05 (see also Table II). While a significant proportion of the
primary flows is capable of generating small-scale magnetic
field for η � 0.02, only three instances of them are small-scale
dynamos for η = 0.05. This value is also close to the upper
bound ofη, for which large-scale generation by the cosine flows
is possible: for η = 0.05, only 11 instances of primary cosine
flows feature negative magnetic eddy diffusivity, including the
3 flows that can generate small-scale field.

The most populated class (consisting of more than a half of
the total number of flows for all considered η) are the primary
cosine flows that are neither small- nor large-scale dynamos
(quadrant II in Fig. 10). By contrast, for η = 0.01 and 0.02,
the second largest class are flows that sustain both small- and
large-scale (by the mechanism of negative eddy diffusivity)
generation (quadrant IV in Fig. 10). Nevertheless, for these
values of molecular diffusivity, there are quite a few primary
cosine flows of our prime interest, that are incapable of small-
scale generation but feature negative eddy diffusivity (quadrant
III in Fig. 10). Finally, for both η, the least numerous is the
class of flows that can generate small-scale flows, but give rise
only to positive eddy diffusivity (quadrant I in Fig. 10). For
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FIG. 10. Minimum eddy diffusivity ηeddy (vertical axis) versus
dominant fast-time growth rates of small-scale modes (horizontal
axis) in the primary cosine flows (47) for three values of mag-
netic molecular diffusivity: η = 0.01 (stars), 0.02 (circles), and 0.05
(triangles).
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TABLE II. Primary cosine flows as small- and large-scale dy-
namos. Columns 1–4 present numbers of the primary cosine flows
(47) in the specified classes for two values of magnetic molecular
diffusivity.

η = 0.01 η = 0.02

Small-scale ηeddy < 0 ηeddy > 0 ηeddy < 0 ηeddy > 0

dynamo 61 12 27 4
no dynamo 25 85 20 132

each of the three classes of flows that sustain at least one of
the two considered types of generation, the cardinality falls
when molecular diffusivity increases from η = 0.01 to 0.02;
this agrees with the “common sense” argument that enhancing
magnetic molecular diffusivity hinders the ability to generate
magnetic field.

C. Family V1

The minimum magnetic eddy diffusivity in a family V1

sample flow (58) constructed for C1 = 1, C2 = 1, C3 = −2 is
shown in Fig. 11. The functions Ui(xi) have been synthesized
as Fourier series with zero coefficients for the wave numbers
|n| > 10 and n = 0. The coefficients for 0 < n � 10 have
been assigned the imaginary values i6−nrn, where rn is a
pseudorandom real number in the interval [0,1], and complex-
conjugate values are employed for n < 0. The energy spectrum
of the resultant flow decays by 10 orders of magnitude. By
construction, all Ui(xi) are odd, whereby (58) is a parity-
invariant flow.

We observe a typical behavior of the minimum eddy
diffusivity (24): ηeddy > 0 for sufficiently large molecular
diffusivity η, but ηeddy < 0 and thus large-scale generation
becomes possible below a certain η > 0. The minimum eddy
diffusivity tends to −∞ when η approaches the critical value
for the onset of the small-scale generation (see Sec. 3.7 of [26]).
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FIG. 11. Minimum magnetic eddy diffusivity (vertical axis) in a
family V1 sample flow (58) versus the magnetic eddy diffusivity η

(horizontal axis). Dots show the computed values.

VI. CONCLUDING REMARKS

(1) We have presented (Sec. III) six families of pointwise
nonhelical [i.e., satisfying Eq. (2)] steady space-periodic three-
dimensional flows of incompressible fluid. One, family P (see
Sec. III A), consists of poloidal flows. For determining the
potentials P (x) (39) for certain such flows, we propose to
solve the two-dimensional scalar problems (40)–(41) of the
“nonlinear eigenvalue” type. Four families (C, L, V1, and V2)
are analytically defined. This has provided enough flows to
conduct numerical experiments in magnetic field generation.
However, it is desirable to find methods for constructing
pointwise zero-helicity solenoidal flows, whose streamlines
involve knots of a given topology, in the spirit of [9].

Furthermore, we have shown (Sec. III F) that flows com-
prising families P, C, V1, and V2 have zero helicity spectrum.

(2) In application of the multiscale formalism (see [26]) to
the problem of kinematic generation of large-scale magnetic
field by small-scale flows in the limit of high scale separation,
eigenfunctions and the associated eigenvalues of the large-
scale magnetic induction operator are expanded in the power
series (6) in the scale ratio ε. Generically, the α-effect is
present, and the leading term in expansion of the eigenvalue is
ελ1, whereλ1 is an eigenvalue of the magneticα-effect operator
[see (8)]. For an arbitrary unit (large-scale) wave vector q,
we have derived the eigenvalues λ1 (13) associated with the
harmonic eigenfunctions (10), as well as the maximum, over
unit q, slow-time growth rate (14) sustained by the action of
the α-effect. The growth rate is controlled by the symmetric
part of the α-effect tensor, A. We have also proven that the
α-effect tensor A− for the reverse flow −v(x) is obtained from
the tensor A for v(x) by matrix transposition.

When the α-effect is absent (A = 0), the leading term
in the expansion of the eigenvalue is ε2λ2, where λ2 is an
eigenvalue of the magnetic eddy diffusivity operator [see (21)].
We have calculated the eigenvalues λ2 (23) associated with the
harmonic eigenfunctions (10). (To the best of our knowledge,
the relations (13) and (23) were so far unavailable in the
literature; however, see Sec. 9.3 in [31].)

(3) We have computed (Sec. IV) the maximum (over the
direction of the wave vector q) slow-time growth rates Re λ1

due to the action of the magnetic α-effect in sample flows from
families P, V1, V2, and L (defined in Secs. III A, III E, and III B),
as well as (Sec. V) the maximum slow-time growth rates Re λ2

sustained by the magnetic eddy diffusivity in sample flows
from families L, C (defined in Sec. III C), and V1. (Family C
cosine flows are parity-invariant and thus lack the α-effect; by
contrast, no family V2 flows are parity-invariant and might be
used to investigate magnetic eddy diffusivity.)

In all considered families we have encountered flows that,
for sufficiently small magnetic molecular diffusivities, η, gen-
erate large-scale magnetic field by employing the respective
mechanism. In addition, in all the families we have found
sample flows that generate small-scale field. Thus, we have
demonstrated that zero kinetic helicity density does not rule out
generation of large-scale magnetic field by the mechanisms of
the α-effect or negative magnetic eddy diffusivity, and of small-
scale field. This can be explained heuristically as follows:
Various topological properties of knottedness of vorticity lines
are controlled by the independent quantities W , T , and N ,
whose sum n enters the kinetic helicity (1) as a factor. Zero
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helicity does not require vanishing of any of these quantities,
and nonzero values indicate that the lines possess nontrivial
respective knottedness properties. This implies an intricate
topological structure of the nonhelical flow that, empirically,
is likely to give rise to generation of magnetic field.

Actually, from this perspective the flow helicity rather than
the kinetic helicity (which is the vorticity helicity) seems to
be more appropriate for characterizing the flow complexity
significant for magnetic field generation. Indeed, in the limit of
small local magnetic Reynolds numbers, in view of the relation

tr A = −η−1〈v · (−∇ × ∇−2v)〉 + O(η−2)

for the tensor (28) (see also Chaps. 10 and 11 of [26]), the
α-effect is directly linked with the flow helicity equal to the
spatial mean on the right-hand side. Furthermore, the same
expression [up to the O(η−2) term] was found for the trace
of the α-effect tensor in the mean-field electrodynamics (see
[21] and references therein) in the low-conductivity limit, and
the mean flow helicity was claimed to play a fundamental
role for the dynamo action of the α-effect especially for
steady flow [cf. expression (33) for the α-effect tensor for
time-periodic flow]. Consequently, a numerical investigation
analogous to the present one is desirable, in which the α-effect
and eddy diffusivity tensors, (9) and (22), respectively, will
be studied numerically for a set of steady three-dimensional
space-periodic solenoidal flows, whose flow helicity density
vanishes pointwise.

(4) Hydrodynamic helicity exists in two loosely related
incarnations: kinetic helicity with the density v · ∇ × v, which
is mainly of our concern in the present work, and the helicity
spectrum (34), which can be regarded as a kind of helicity
density in the Fourier space. It was shown in the theory of
mean-field electrodynamics that a nonzero helicity spectrum is
necessary for the action of the α-effect under certain conditions
[27,28]. Asymptotic multiscale methods (see Sec. II C) yield
the same conclusion and the same expression for the α-effect
tensor in the limit of small Rloc

m .
However, our numerical results demonstrate that for finite

(nonvanishing) Rloc
m a nonzero helicity spectrum is required

neither for the action of small-scale dynamo nor for generation
of large-scale field. Although flows comprising families P, C,
V1, and V2 have an identically vanishing helicity spectrum
(see Sec. III F), computations attest that this does not result
in vanishing of the α-effect tensor and does not prevent the
α-effect from generation. We also observe that the helicity
spectrum is zero for all parity-invariant flows, but nevertheless
they can sustain negative eddy diffusivity.

Thus, all flows that we consider numerically feature a zero
kinetic helicity density and zero helicity spectrum, except for
two instances of family L flows discussed in Sec. IV D, whose
helicity spectrum (but not kinetic helicity density) is nonzero.
The slow-time growth rates of large-scale magnetic fields that
they generate are roughly an order of magnitude higher than the
slow-time growth rates due to the action of the α-effect in other
flows that we have considered, but it is unclear whether this
is just a coincidence (the influence of the singularities in the
graphs Fig. 6), or indeed generation becomes more vigorous
under the influence of a nonzero helicity spectrum. Following
our anonymous referee, we can formulate a conclusion as a

relaxed modification of the title of [20]: helicity is unnecessary
for dynamo action, but it may help.

The kinetic helicity and helicity spectrum turn out to be
unsatisfactory measures of the flow chirality deemed necessary
for generation, except in certain limit cases. By analogy, we
doubt that any helicity-type integral quantity can serve for
predicting the ability of a steady flow to generate a small-
or large-scale magnetic field, except in specific limits—as
the helicity spectrum becomes necessary for persistence of
the α-effect when Rloc

m → 0. Any such criterion is unlikely
to be useful, just predicting that under certain conditions the
first term in the respective expansion of the eigenvalue of the
induction operator vanishes—in which case generation may
still be made possible by virtue of subleading terms (e.g., in
the absence of the α-effect generation may still be powered by
negative eddy diffusivity).

Magnetic analogs of the kinetic helicity and helicity spec-
trum do show up in the mathematical multiscale kinematic
dynamo theory. The α-effect tensor (9) can be decomposed as

Ak = i
∑
n �=0

|n|−1H v,Sk
n , (68)

where

H v,Sk
n = v̂n · (in × Ŝk,n)

can be interpreted as the cross-helicity spectrum of the flow v
and neutral magnetic mode Sk (their Fourier coefficients are
denoted by v̂n and Ŝk,n, respectively). In view of the relations
(16) (to the best of our knowledge discovered in [26]), helicities
of the currents ∇ × Sk associated with small-scale neutral
modes of the magnetic induction operator L are also more
appropriate than the kinetic helicity or helicity spectrum for
characterizing the magnetic α-effect: in the limit of high spatial
scale separation, (68) and (16) hold true for any local magnetic
Reynolds number and not just for Rloc

m → 0. However, such
identities just manifest the mathematical fact that the mean
vector product of two solenoidal space-periodic fields is a
linear functional of their cross-helicity spectrum; we doubt
that this reveals any physical significance of their helicity
spectra. The α-effect tensor does vanish when all H

v,Sk
n = 0,

but to check this we must compute the neutral modes Sk—
and afterwards it is straightforward to directly compute the
tensor (9).

(5) The maximum slow-time growth rate (14) due to the
action of the magnetic α-effect is non-negative; it vanishes if
and only if the intermediate eigenvalue α2 of the symmetrized
α-effect tensor sA is zero. Figure 2 demonstrates that on
decreasing η there can be quite a few points, where α2 = 0.
Thus, the maximum growth rate (14) may be expected to
exhibit an intermittent behavior analogous to the one shown
in Fig. 2, with strictly positive values separated by zero for
infinitely many η’s accumulating at η = 0.

(6) It is known that magnetic eddy diffusivity can be-
come infinitely negative when magnetic molecular diffusivity
approaches the critical value η → ηcr for the onset of the
small-scale dynamo action, and we have encountered such
behavior in the present work. When considering generation
of large-scale magnetic field by the magnetic α-effect, we
have come across a similar infinite increase of the maximum
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slow-time growth rate γα (14) in the limit η → ηcr [see
Fig. 6(b)]. The two phenomena have the same nature. We
have explained such a singular behavior of γα by considering
expansions of the fluctuating part Sk of neutral modes in the
basis of eigenfunctions of the small-scale magnetic induction
operator L.

(7) We have encountered an instance of two disjoint inter-
vals of magnetic molecular diffusivity where small-scale gen-
eration is absent, but large-scale magnetic field is generated by
the mechanism of negative magnetic eddy diffusivity. The win-
dow between these two intervals, where no large-scale gener-
ation happens, may be regarded as a large-scale dynamo coun-
terpart to the window of quiescence of the small-scale kine-
matic dynamo action by the 1:1:1 ABC flow discovered in [46].

(8) Are our dynamos fast or slow? Families V1 (58)
and V2 (60) flows are integrable (to see this, introduce a
new time τ satisfying dτ/dt = U̇1U̇2U̇3 for a V1 flow or
dτ/dt = U1U2U3 for a V2 flow). Therefore, they cannot act as
fast dynamos, because this requires chaotic behavior of fluid
particle trajectories and positiveness of topological entropy
of the flow [47] (see also [48,49]). Equally, trajectories of a
cosine flow (47) and of a family P flow (36) for the potential
(39) lie on vertical cylindrical surfaces, whose intersection
with a horizontal plane can be found by considering the ratio
of the two differential equations for horizontal coordinates of
a fluid particle. This rules out chaos. For other family P flows
and for family L flows a more detailed study of integrability
and chaotic properties is required.

We can examine this question from a different perspective.
Computations suggest that for the molecular diffusivity η

tending to zero, the small-scale neutral modes Sk + el (and
their reverse-flow counterparts S−

l + el) grow in amplitude. In
view of (9), the magnitude of the α-effect tensor is an outcome
of the competition of this growth and the decay of the energy
spectrum of the smooth flow v. Also, we observe in Sk a shift
of the maximum of the energy spectrum towards large wave
vectors; if it occurs simultaneously with a similar shift in S−

l ,
then by (25) and (27) the magnitude of the eddy diffusivity
tensor may increase in this limit [although the definition (22)
does not make this obvious]. Consequently, a fast (in the
respective slow time) dynamo is apparently not ruled out for
both mechanisms of large-scale generation. However, a version
of the argument presented in Sec. IV D is applicable: the growth
rates measured in the fast time are approximated by the leading
terms in (6.2), εRe λ1 for the α-effect dynamos and ε2Re λ2

for the eddy diffusivity dynamos, for sufficiently small ε only.
Bounds for such relevant ε on varying η are an open question;
the growth rates observed in the fast time for these ε are likely
to tend to zero even if λ1 or λ2, respectively, increase when
η → 0.

(9) How will the subsequent nonlinear evolution modify our
findings about kinematic generation? This is affected by many
factors.

Will kinetic helicity density remain zero? Even in the purely
hydrodynamic (in the absence of magnetic field) nonlinear
evolution of ideal fluid flow governed by the Euler equation,
nothing prevents the flow from losing this property: it is
only guaranteed, as we have mentioned in the introduction,
that the mean kinetic helicity stored in any volume, whose
boundary is everywhere tangent to the vorticity (including

the periodicity cell which can be regarded as having no
boundary), does not change in time and will thus remain zero.
However, the presence of the Lorentz force and/or viscosity
renders inapplicable this conservation law. The flow is likely to
acquire nonzero helicity density—thus making inappropriate
the question that we address in the present work.

How long will the magnetic field remain multiscale? This
is an intriguing open question, which can be fully solved
by direct numerical simulations only. We expect the scale
separation to persist while the MHD perturbation remains
weakly nonlinear. A study of amplitude equations for a large-
scale weakly nonlinear perturbation of a small-scale convective
dynamo [50] has revealed that the amplitudes governing the
perturbation blow up at a finite slow time. This does not
mean that the perturbation itself develops a singularity—
just the asymptotic expansion ceases to be applicable when
the perturbation becomes too strong—but perhaps suggests
an abrupt transition to a regime without scale separation.
Other reasons may also be responsible for transformation of
a multiscale field into one with a continuous distribution of
scales. A magnetic perturbation composed of a unique mode
(6.1) is a mathematical idealization: In a physical system many
such modes corresponding to different integer (taking into
account the periodicity) multiples of the scale ratio ε are present
due to noise and emerge, because the magnetic perturbation
is coupled with the hydrodynamic one; the same is true for
digital simulations, in which the noise is due to round-off
errors. The larger is the integer factor, the larger is the slow-time
growth rate (6.2) of the mode. Thus, competition of large-scale
magnetic modes sets in, in which the modes of smaller spatial
periods have higher chances to win. Together with the inverse
cascade, this will apparently destroy the multiscale nature of
the magnetic field.

Will magnetic field generation continue and will magnetic
field persist? Simulations of various nonlinear small-scale
convective dynamos attest that most different scenarios are
possible: upon modification by the Lorentz force due to the
growing magnetic field, the flow can settle to a nongenerating
hydrodynamic attractor, and in such a “self-extinguishing
dynamo” magnetic field decays to zero [51]; alternatively, the
MHD regime can saturate to a stable MHD steady or periodic
state [52]; or it may consist of a chaotic sequence of visits to
formerly attracting hydrodynamic states, some of which can
generate magnetic field, and other ones cannot, thus exhibiting
intermittent upsurges and decays of magnetic field [53]; or the
evolution can consist of a chaotic sequence of visits to unstable
but identifiable MHD states—a scenario [54] for development
of magnetic field reversals is an example; or it can be just
an unstructured chaotic trajectory in the phase space. In any
case, when the overcriticality is not too small, the initial flow
is abandoned, rendering inapplicable our analysis.
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