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Shock-wave structure based on the Navier-Stokes-Fourier equations
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We use the Navier-Stokes-Fourier constitutive equations to study plane shock waves in dilute gases. It is shown
that the experimental information on the normalized density profiles can be fit by using the so-called soft sphere
model, in which the viscosity and thermal conductivity are proportional to a power of the temperature.
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I. INTRODUCTION

The dynamical theory of fluids has been studied for a long
time and the field has broadened enormously its application
to several subjects [1]. Despite all the successes coming from
them, some problems are not completely solved, such as an
accurate description of the shock-wave structure in simple
fluids. There are at least four main approaches to study such
a problem. Let us first briefly describe how the Boltzmann
equation for simple fluids and its methods of solution are
used to deal with the shock-wave profiles. In a broad way
we group the papers around two branches of development.
The branch based on normal solutions is exemplified by the
Chapman-Enskog method to obtain an approximation for the
distribution function which solves the Boltzmann equation [2]
(or the Bhatnagar-Gross-Krook, BGK model [3]), in which
a perturbation expansion in terms of the Knudsen number
is done. It is well known that this methodology drives the
Euler constitutive equations to the lowest order, then the
Navier-Stokes-Fourier (NSF ) constitutive set of equations is
obtained, whose application to the shock-wave problem has a
long history [4–7]. They contain the dissipative effects caused
by the transport processes in the system, represented mainly
by the viscosity and the thermal conductivity. Such transport
coefficients depend on the interaction potential between par-
ticles in the gas, and the search for a proper potential has
provided hard work for several years. The Burnett equations
[8], which can be obtained with the Chapman-Enskog method
to second order in the Knudsen number [2], and the method
of stretched fields or Maxwellian iteration [9], are well-known
attempts to extend the NSF hydrodynamics that, besides the
NSF constitutive equations, rely on equations of state and
the conservation equations. Its derivations, limitations, modifi-
cations, renormalizations, regularizations, and generalizations
are discussed in the literature [10–23]. However, we have the
moment solution branch [23–37], where the Maxwell-Cattaneo
equations may be considered as a precursor theory for this
branch that is based on an expansion of the distribution function
in terms of a complete set of functions (usually Hermite
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tensor polynomials). The main problem being the closure
hypothesis needed to cut the expansion. However, the NSF
constitutive equations have been obtained from this method,
which provides a way to extend them. It should be mentioned
that both branches do not exclude each other, in a certain
way they may be considered as complementary lanes to solve
the kinetic equation. Also, there have been several attempts
to generalize the NSF hydrodynamic equations or methods
that have been useful for shock waves, which are neither
necessarily linked to the Boltzmann equation solutions nor
restricted to dilute gases. Some examples for these approaches
are the Maxwellian iteration method or the method of stretched
fields [9,16,18,33] and the Mott-Smith method and its variants
[38–41]: the two or multitemperature theories [42–49], the
two-velocity theory [50–53], the finite-scale equations [54,55]
for compressible flows, the two-fluids theory [56], among
others.

Second, the NSF constitutive equations have been modified
phenomenologically through some considerations about their
structure and the temperature dependence in the transport
coefficients [43]. We will insist on that in this work. As a
third approach we consider the numerical methods, such as the
direct simulation Monte Carlo (DSMC) [57,58], the molecular
dynamics calculations (MD) [11,59], and the lattice Boltzmann
gas [60–62]. The results coming from them can be considered
as experimental data to describe the shock-wave behavior
to compare with the calculations based on the kinetic or
the phenomenological theories. Finally, the experimental data
obtained directly in shock tubes provide us with elements to
decide about the robustness of the underlying models [63–66].
It is not our purpose to give a detailed account of such attempts,
instead we bring back our attention to the NSF constitutive
equations. In fact, we will show that it is possible to fit the
experimental information concerning the normalized density
profiles for shock waves using the NSF constitutive equations,
provided that we include a modification in the viscosity and the
thermal conductivity to enhance their effects. In addition, we
use the ideal gas law, equipartition of energy (we assume that
both hold locally along the shock wave), and the conservation
equations.

The structure of this work is as follows. After this Intro-
duction, we study the NSF constitutive equations for the case
of a plane shock wave and derive the corresponding NSF

2470-0045/2018/97(4)/043117(11) 043117-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.043117&domain=pdf&date_stamp=2018-04-30
https://doi.org/10.1103/PhysRevE.97.043117


F. J. URIBE AND R. M. VELASCO PHYSICAL REVIEW E 97, 043117 (2018)

hydrodynamic model used here. Then, we compare the nu-
merical solutions obtained with the experimental information
and the direct simulation Monte Carlo method. We give some
remarks in the concluding section.

II. THE NAVIER-STOKES-FOURIER EQUATIONS

Let us begin with the conservation equations for mass, mo-
mentum, and energy fluxes valid for a plane one-dimensional
shock wave [4], namely,

ρ(x) u(x) = C1, (1a)

Pxx(x) + ρ(x) u(x)2 = C2, (1b)

ρ(x) u(x)

[
e(x) + Pxx(x)

ρ(x)
+ u(x)2

2

]
+ q(x) = C3, (1c)

where ρ(x) is the mass density, u(x) is the hydrodynamic
velocity, Pxx(x) is the xx component of the pressure tensor,
e(x) is the specific internal energy, q(x) is the heat flux, and
the quantities C1, C2, and C3 are constants. The previous con-
servation equations must be supplemented with the equation
of state and the internal energy for a dilute gas, which will be
assumed as an ideal one,

p(x) = ρ(x)
k

B
T (x)

m
, e(x) = 3 k

B
T (x)

2 m
, (2)

where kB is the Boltzmann constant and m is the mass. Besides,
the constitutive equations for the xx component in the pressure
tensor and the heat flux are taken from the usual Navier-Newton
and Fourier empirical laws; they read as

Pxx(x) = p(x) − 4

3
η[T (x)]

du(x)

dx
, (3)

q(x) = −κ[T (x)]
dT (x)

dx
, (4)

where η is the shear viscosity and κ is the thermal conductivity.
Both depend on the temperature. The constants written above
are determined by the Rankine-Hugoniot jump conditions,

ρ0 u0 = ρ1 u1 = C1, (5)

ρ0
k

B
T0

m
+ ρ0 u2

0 = ρ1
k

B
T1

m
+ ρ1 u2

1 = C2, (6)

5 k
B
T0

2 m
+ u2

0

2
= 5 k

B
T1

2 m
+ u2

1

2
= C3/C1, (7)

where subscripts 0 and 1 in the temperature and the velocity
refer to the cold (where the flow is supersonic) and hot (where
the flow is subsonic) parts of the shock, respectively. The
differential equations to be solved result when the constitutive
relations are substituted in the conservation equations, then
the conservation of mass is used to express the mass density
in terms of the velocity. Hence, the conservation equations of
momentum and energy, Eqs. (1b) and (1c), can be written as
follows:

C1
k

B
T

m u
− 4

3
η(T )

du

dx
+ C1 u = C2, (8a)

5 k
B
T

2 m
− 4

3

η(T )

C1
u

du

dx
+ u2

2
− κ(T )

C1

dT

dx
= C3/C1. (8b)

It is convenient to use dimensionless variables defined as
follows:

v(s) ≡ u(x)/u0, T ∗(s) ≡ k
B
T (x)/m u2

0,

η∗[T ∗(s)] ≡ η[T (x)]/η0, κ∗[T ∗(s)] ≡ κ[T (x)]/κ0, (9)

where η0 and κ0 are the viscosity and thermal conductivity at
T0, respectively, and the variable

s ≡ x/λ (10)

is a dimensionless distance whose specific definition, the value
of the length λ, is given below. In terms of the previous reduced
variables, Eqs. (8) take the form

T ∗

v
− η∗(T ∗)

(
4 η0

3 λ C1

)
dv

ds
+ v = 1 + T ∗

0 , (11a)

5

2
T ∗ − η∗(T ∗)v

(
4 η0

3 λ C1

)
dv

ds
+ v2

2
− κ∗(T ∗)

×
(

κ0 m

k
B
λ C1

)
dT ∗

ds
= 1

2
+ 5

2
T ∗

0 , (11b)

where we recall that the viscosity and thermal conductivity
depend on the temperature, so η∗(T ∗), κ∗(T ∗). In the literature,
the value for λ has been taken in several ways, one election
which is used to report the experimental measurements is given
in Refs. [63–66],

λ
A

≡ 16

5

(
5

3

1

2 π

)1/2
η0

ρ0 a0
, (12)

where a0 is the velocity of sound at T0. For simplicity, we will
use for λ the value

λ = 4

3

η0

C1
= 4

3

η0

ρ0 u0
, (13)

so that Eq. (11a) takes a simple form. For a given reference
system and a value of the position x, we call sA ≡ x/λA and
s ≡ x/λ, then the solutions using sA or s are related as

v(sA) = v(s), T ∗(sA) = T ∗(s), (14)

with

λ = 5

12

√
2 π T ∗

0 λA. (15)

Using Eq. (13), we are lead to the following explicit dynamical
system that can be obtained from Eqs. (11):

dv

ds
= v2 − (1 + T ∗

0 ) v + T ∗

v η∗(T ∗)
, (16a)

dT ∗

ds
= 2 k

B
η0

3 m κ0

−v2 + 2 (1 + T ∗
0 ) v + 3 T ∗ − (1 + 5 T ∗

0 )

κ∗(T ∗)
.

(16b)

These equations must be solved by taking into account
the Rankine-Hugoniot jump conditions that in terms of the
reduced variables introduced before, see Eqs. (5)–(7), give us
the following values for v and T ∗ written in terms of the Mach
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number at up-flow M2 = 3
5T ∗

0
:

Up-flow coordinates: v0 = 1, T ∗
0 = 3

5M2
, (17)

Down-flow coordinates: v1 = 3 + M2

4M2
= 1

4
+ T ∗

0

4
,

T ∗
1 = 3 (−3 + 14M2 + 5M4)

80M4
= 3

16
+ 7

8
T ∗

0 − 5

16
T ∗

0
2
.

(18)

The problem is to find a solution curve to the dynamical system
given by Eqs. (16) that joins the two critical, or equilibrium,
points (down-flow and up-flow). In the mathematical parlance,
such a curve is called a heteroclinic trajectory or heteroclinic
orbit. For the Navier-Stokes an existence theorem for such
shock-wave solution (the heteroclinic trajectory) is known
as well as a methodology to find an approximation to it
[6]. To find an approximation, it is convenient to know the
nature of the critical points, for the Navier-Stokes equations
up-flow is an unstable node while down-flow is a saddle.
Then, one starts near down-flow and integrates the dynamical
system by decreasing x (“the integration is performed in the
negative sense”), such a procedure gives an approximation for
the heteroclinic trajectory. In practice, the initial conditions,
denoted by (vi,T

∗
i ), are obtained by perturbing down-flow; we

used (vi,T
∗
i ) = (v1 + 10−10,T ∗

1 ) [43].
While there has been several works dealing with the Navier-

Stokes equations for shock waves, we would like to bring to the
fore one aspect that as far we know has not been considered in
the literature. It is possible to fit the experimental normalized
density profiles using the Navier-Stokes equations by assuming
that the viscosity is proportional to a power of the temperature
(the soft sphere model),

η ∼ T σ , (19)

where the fitting parameter is provided by the viscosity-
temperature index σ .

For simplicity, we will use the first Sonine approximation
[2], which is supported by experimental values and the corre-
sponding states principle [35],

m κ

k
B
η

= 15

4
⇒ κ∗ = η∗ =

(
T ∗

T ∗
0

)σ

. (20)

Now the equations to be solved are written as follows:

dv

ds
= v2 − (1 + T ∗

0 ) v + T ∗

v T ∗σ T ∗
0

σ
, (21a)

dT ∗

ds
= 8

45

−v2 + 2 (1 + T ∗
0 ) v + 3 T ∗ − (1 + 5 T ∗

0 )

T ∗σ T ∗
0

σ
.

(21b)

Solutions to the previous differential equations that can be
expressed in terms of elementary functions are not known,
and there probably are none, but a proof is lacking. Therefore,
numerical methods are used to solve the dynamical system.
However, an implicit solution to Eqs. (16) was found by Becker
in 1922 for constant transport coefficients and a Prandtl number
of value 3/4. The details, analysis, and generalizations can
be found in the literature [5,7]. In our case, Eq. (20) gives

a Prandtl number of value 2/3 that gives a better agreement
with the experimental information for dilute gases. Taylor
gave another (implicit) solution for the case when either the
viscosity or the thermal conductivity is zero [4], and there is
a well-known approximate explicit solution for weak shocks
that can be expressed in terms of the hyperbolic tangent and
is not restricted to dilute gases [1]. For weak shocks in gases,
a similar solution, written in terms of the hyperbolic tangent,
was found by Taylor [4] and has been discussed in the existence
theorem for shock profile solutions to the Boltzmann equation
by Caflisch and Nicolaenko [67]; solutions to the Boltzmann
equation for very strong shocks of hard spheres have also been
discussed in the literature [68].

From Eqs. (21), we notice that the derivative of the reduced
temperature with respect to the reduced velocity is

dT ∗

dv
= 8

45

v [−v2 + 2 (1 + T ∗
0 ) v + 3 T ∗ − (1 + 5 T ∗

0 )]

v2 − (1 + T ∗
0 ) v + T ∗ ,

(22)

from which we conclude that the solution curves (orbits) are
locally independent of the viscosity-temperature index (σ ).

In terms of the Mach number and using Alsmeyer’s mean
free path (λA), the equations to be solved for the soft sphere
model are

dv

ds
A

= 2

25

√
30

π

5 v2M2 − v (5 M2 + 3) + 5 T ∗ M2

Mη∗ v
, (23a)

dT ∗

ds
A

= − 16

1125

√
30

π

× 5 v2M2−2 v(5 M2+3) − 15 T ∗ M2 + 5 (M2+3)

M η∗ ,

(23b)

where

η∗ =
(

5 M2 T ∗

3

)σ

. (24)

Given the initial conditions mentioned previously for v and
T ∗, the initial value of sA (or s) is taken in such a way that
the normalized density, ρn, has the value 1/2 at the origin.
It should be noticed that Eqs. (23) are translational invariant,
a fact that can be seen in the following way. Let c be any
constant, if we define v̂(s) = v(s + c) and τ (s) = T ∗(s + c)
or v̂(sA) = v(sA + c) and τ (sA) = T ∗(sA + c), then Eqs. (21)
and (23) retain the same form in terms of v̂ and τ . This
means that both sets of differential equations are translational
invariant, it is a common practice to fix the election of the
origin of the coordinate system (s = 0, sA = 0, x = 0), so that
the normalized density profile, defined by Eq. (25), has the
value 1/2 at the origin, and we will use such a convention.

III. COMPARISON WITH EXPERIMENTS AND
THE DSMC METHOD

There is a fair amount of information on the shock-wave
problem and here we consider experiments that provide the
normalized density profiles, and quantities derived from it such
as the reciprocal shock thickness and the asymmetry of the
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density profiles. In addition, if simulations are available, it is
possible to obtain information on the temperature profiles and
the shock-wave behavior in the plane v-T ∗. The definitions and
relevant information for these quantities as well as comparisons
with experiments and simulations are given below. Since
Eqs. (21) for v and T ∗ are coupled, it is possible to have good
normalized density profiles but not necessarily the temperature
profiles will automatically be good. Therefore, we consider
necessary to give a detailed account of several features that
have been considered in the literature to discuss properly the
shock-wave problem.

The experimental information is given for the normalized
density profile ρ(sA) [63–66]. It is defined as

ρn(sA) = ρ(sA) − ρ0

ρ1 − ρ0
, (25)

where ρn(sA) is called as the normalized density profile, ρ0

and ρ1 are its values at the cold and hot parts of the shock,
respectively. Several works dealing with the NSF constitutive
equations to study shock waves assume a certain value for
the viscosity-temperature index σ , though there is not a
general agreement about its precise value. For example, the
experimental comparison for the normalized density profile
using the NSF constitutive equations done by Schmidt [63]
and Alsmeyer [65] take σ = 0.68 or σ = 0.72. It is also
possible to use the corresponding states principle [35], which
gives information of the viscosity, to solve Eqs. (21) without
assuming the specific temperature dependence given by the
soft sphere model, the results of this procedure give practically
the same normalized density profiles as the soft sphere model
with σ = 0.72 for Mach numbers in the range; M ∈ [1,2] [35].
The DSMC also uses a viscosity proportional to a temperature
power to study shock waves for Argon, the recommended value
is σ = 0.81 [57,58]. However, Greenshields and Reese [51]
argued that for Mach numbers about 10 the value σ = 0.76
gives a better fit to available information for the viscosity; they
actually suggested to use the viscosity-temperature index as
an adjustable parameter to fit the experimental values of the
viscosity, and in this work we will use it to fit the experimental
normalized density profiles.

The DSMC computations reported here use the variable
soft sphere (VSS) interaction model, which in addition to
the variable molecular diameter d ∝ c−ϑ

r , considers that the
deflection angle (χ ) in the binary collision is given by

χ = 2 cos−1(b/d)1/α, (26)

where cr is the relative velocity in a binary elastic collision,
ϑ = σ − 1/2 with σ the viscosity-temperature index, and b

is the impact parameter. So that two parameters characterize
the VSS interaction model. The normalized density profiles
provided by Bird’s DSMC are given in terms of the mean free
path defined by him (λB) [57]:

λB = 4α(5 − 2σ )(7 − 2σ )β0η0

5
√

π (α + 1)(α + 2)ρ0
, where β0 =

√
m

2kBT0
.

(27)

The results shown in Fig. 1 come from the comparison
between the normalized density as calculated with Eqs. (21),
or Eqs. (23), with the soft sphere model and the experimental

values for some Mach numbers. The DSMC computations are
also included for different values of the viscosity-temperature
index; in general, the agreement shown is very good. In all
the normalized density profiles plots, up-flow is at the far
left side of them. A more detailed quantitative information
is provided in Table I for Argon at M = 8 and different values
of the temperature-viscosity index. One infers that the use of
σ = 0.9 provides a significant improvement with respect to the
value σ = 0.72, but the behavior of the solution with σ = 0.9
is not accurate, when compared to the experimental data, near
up-flow (see s

A
= −6.0, − 5.0, − 4.0 in Table I).

Also, apart from the comparisons between the normalized
density profiles, there are other characteristics that have been
considered, namely,

(i) Reciprocal shock thickness (inverse density thickness).
It is defined by [69]

δ−1 = 1

ρ1 − ρ0
max{|ρ ′(x)|}, (28)

where the prime denotes the derivative of the density profile
and max refers to its maximum value within the profile. We
obtain that

δ−1 = max{|dρn/dsA|}
λA

= 1

λA

12

5
√

2πT ∗
0

max{|dρ∗/ds|}
(ρ∗

1 − 1)
,

(29)
with ρ∗(s) = ρ(x)/ρ0 = 1/v(s).

(ii) Asymmetry of the density profiles (density asymmetry
quotient), Q [65]. Defined as Q = lims→∞ Q(s), with

Q =
∫ 0
−s

ρn(s ′)ds ′∫ s

0 [1 − ρn(s ′)]ds ′ . (30)

It should be mentioned that both properties in the shock
structure are in fact a different measure of the shock structure.
The inverse shock thickness represents a local one, whereas
the asymmetry factor shows a kind of global measure.

The results of our calculations for the two previous quanti-
ties are given in Table II. From the values given it follows that
the approach used here not only provides very good profiles but
also the experimental values for the reciprocal shock thickness
as well as the asymmetry factor are reproduced. Certainly, the
following comments must be taken into account. First, the
experimental data have dispersion as all experiments have.
Second, the agreement shown is good and it is done with
just one parameter, though both properties are related with the
density profile. At this point we recall the comment made by
Schmidt [63]: “Shock-wave thickness fails to give sufficiently
detailed information about structure; calculated and measured
profiles may differ considerably, but the thickness can be the
same.” However, there is a loose point in the previous remark:
The normalized density profiles obtained with Eqs. (21) are
accurate when compared to the experiments, therefore agree-
ment with both the inverse shock thickness and the asymmetry
of the density profiles is to be expected, though apparently
it is not the case. As an example, take the case for M = 8
where the experimental shock thickness and the one calculated
with Eqs. (21) are nearly the same, see Table II, but the
asymmetry factor is not. For M = 8, the experimental value
reported by Schmidt [63] is QS ≈ 1.15, while Eqs. (21) with
σ = 0.9 give Q(σ = 0.9) = 1.26, whereas Q(σ = 0.68) ≈
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FIG. 1. Normalized density profiles vs the reduced distance, ρn vs sA, for Argon at different Mach numbers. (a) M = 8. Solid circles:
experiments from Steinhilper [64]; open circles: DSMC for σ = 0.81 and α−1 = 0.6015; solid line: solution to Eqs. (23) for σ = 0.9. (b)
M = 1.55. Solid circles: experiments from Alsmeyer [65]; open circles: DSMC for σ = 0.81 and α−1 = 0.6525; solid line: solution to Eqs. (23)
for σ = 1.6. (c) M = 1.55. Solid circles: experiments from Alsmeyer [65]; open circles: DSMC for σ = 0.81 and α−1 = 0.6525, diamonds:
DSMC for σ (Maxwell model) and α−1 = 0.6525, boxes: DSMC for σ = 0.0 (constant transport coefficients) and α−1 = 0.6525. The DSMC
results using α−1 = 0.6015 give practically the same output when α−1 = 0.6525 is used. (d) M = 1.2. Solid circles: experiments from Garen
et al. [66]; open circles: DSMC for σ = 0.81 and α−1 = 0.6015; solid line: solution to Eqs. (23) for σ = 3.

1.45 [63], certainly the first value gives a better agreement
with the experimental one, but it seems that there is room
for improvement. Other comparisons of the asymmetry of the
density profiles for different theories and the experiments are
available [51,70].

We now discuss additional information on the shock-wave
structure that can be obtained with the use of simulations. As

far as we know, there is not experimental information on the
temperature profiles for shock waves, but we can use the DSMC
calculations to calculate them and show that Eqs. (21) with
the viscosity-temperature index quoted are not consistent with
DSMC results for high Mach numbers (M = 8). To show this
we consider the orbits, that is, the solution curve in the v-T ∗
plane for two different Mach numbers. In Fig. 2 a comparison
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TABLE I. Normalized density profiles vs reduced distance, ρn vs s
A

, for Argon at M = 8. The experimental values are taken from the
work by Steinhilper [64]. Theory refers to the numerical solution of Eqs. (21) for different values of the temperature-viscosity index, and in
parentheses we provide the numerical solution to Eqs. (23).

Reduced distance Experiment Theory Theory Theory
(σ = 0.90) (σ = 0.72) (σ = 1.05)

s
A

ρn ρn ρn ρn

7.0 1.009 1.000 (1.001) 1.000 (1.019) 0.997 (0.997)
6.0 1.006 1.000 (1.000) 1.000 (1.007) 0.993 (0.992)
5.0 1.000 0.999 (0.998) 1.000 (1.002) 0.982 (0.982)
4.0 0.989 0.994 (0.994) 1.000 (1.001) 0.958 (0.957)
3.0 0.962 0.977 (0.977) 0.999 (0.999) 0.905 (0.904)
2.0 0.892 0.914 (0.914) 0.986 (0.987) 0.807 (0.806)
1.0 0.735 0.748 (0.747) 0.879 (0.879) 0.662 (0.662)
0.0 0.500 0.500 (0.500) 0.500 (0.500) 0.500 (0.500)
−1.0 0.266 0.289 (0.288) 0.191 (0.190) 0.354 (0.354)
−2.0 0.133 0.151 (0.150) 0.056 (0.055) 0.239 (0.239)
−3.0 0.062 0.066 (0.066) 0.006 (0.006) 0.153 (0.152)
−4.0 0.028 0.017 (0.017) 0.000 (0.000) 0.089 (0.088)
−5.0 0.013 0.001 (0.001) 0.000 (0.000) 0.042 (0.041)
−6.0 0.006 0.000 (0.000) 0.000 (0.000) 0.010 (0.010)

for M = 1.2 and M = 8 is shown. For M = 1.2 there is very
good agreement between the orbits but there is a noticeable
difference of the orbits given by the NSF equations and those
obtained from the DSMC method. Therefore, Eqs. (21) do not
provide agreement with the DSMC method for high Mach
numbers when the orbits are considered. Another difference

TABLE II. Experimental and theoretical values given by the
solution to Eqs. (21), for different values of the temperature-viscosity
index, of the reduced reciprocal shock thickness (δ

E
,δ

T
), and the

asymmetry of the density profiles for Argon (Q
E
,Q

T
). Numbers in

bold are the present calculations using Eqs. (21); the numbers in
parentheses refer to an independent computation with Eqs. (23).

M σ
λ
A

δ
T

λ
A

δ
E

Q
T

Q
E

8 0.90 0.26 (0.26) 0.24 [65] 1.26 (1.26) 1.13 [65]
8 0.86 0.29 (0.29) 0.24 [65] 1.28(1.28) 1.13 [65]
8 0.81 0.34 (0.33) 0.24 [65] 1.30 (1.30) 1.13 [65]
8 0.72 0.42 [51] 0.24 [65] 1.4 [51] 1.13 [65]
8 0.72 0.44 (0.44) 0.24 [65] 1.34 (1.35) 1.13 [65]
6 0.90 0.30 (0.30) 0.275 [63] 1.26 (1.26) 1.08 [63]
6 0.86 0.33 (0.34) 0.275 [63] 1.27 (1.28) 1.08 [63]
6 0.81 0.37 (0.38) 0.275 [63] 1.30 (1.30) 1.08 [63]
6 0.72 0.46 (0.47) 0.275 [63] 1.34 (1.37) 1.08 [63]
1.55 3.0 0.08 (0.08) 0.12 [65] 0.81 (0.85) 0.92 [65]
1.55 1.6 0.13 (0.13) 0.12 [65] 1.00 (1.01) 0.92 [65]
1.55 0.9 0.17 (0.17) 0.12 [65] 1.13 (1.13) 0.92 [65]
1.55 0.86 0.17 (0.17) 0.12 [65] 1.13 (1.14) 0.92 [65]
1.55 0.81 0.17 (0.17) 0.12 [65] 1.14 (1.15) 0.92 [65]
1.55 0.72 0.18 (0.18) 0.12 [65] 1.16 (1.18) 0.92 [65]
1.2 3.0 0.053 (0.054) 0.05 [66] 0.90(0.96)
1.2 0.9 0.07 (0.07) 0.05 [66] 1.06 (1.03)
1.2 0.86 0.07 (0.07) 0.05 [66] 1.06(1.04)
1.2 0.81 0.07 (0.07) 0.05 [66] 1.06 (1.04)
1.2 0.72 0.08 [51] 0.05 [66] 1.07 [35]
1.2 0.72 0.07 (0.07) 0.05 [66] 1.07(1.04)

is that the DSMC data show a temperature overshoot at down-
flow (the hot part of the shock)—the temperature is greater than
the value at down-flow—[31,57,58], but this characteristic is
not present in the NSF equations, as can be seen in Fig. 2.

In addition, we can use the normalized temperature profile
defined as

Tn(sA) = T (sA) − T0

T1 − T0
, (31)

where T0 and T1 are the temperatures at up-flow and down-flow,
respectively. The normalized temperature profiles obtained
with DSMC are shown in Fig. 3. We notice that the density-
temperature separation denoted by δT ρ—defined as the differ-
ence in reduced distance between the value at which ρn(0) =
0.5 (s

A
= 0) and that at which Tn(sT

A
) = 0.5; δT ρ = |sT

A
|—is

not very different from the DSMC values as shown in Figs. 3(a)
and 3(c). This distance can be seen in Figs. 3(a) and 3(c), and
they are consistent between themselves. However, we think
it is more important to compare the normalized temperature
profiles as shown in Figs. 3(b) and 3(d) that reassure that
the temperatures given by the solution to Eqs. (23) are not
consistently produced for high Mach numbers, even when the
predicted normalized density profiles are.

We end this section by considering two features that are
seldom considered in the literature. First, the effect of the initial
conditions to solve Eqs. (21), and second, the independence
of the predicted normalized density profiles in terms of the
reduced variables considered here.

In Figs. 4(a) and 4(c), we show the effect of taking different
initial conditions to solve the NSF equations for σ = 0.9
and M = 6 where the critical points are (1,1/60) (up-flow)
and (13/48,2327/11520) (down-flow). In Fig. 4(a) the ini-
tial condition used is P1 ≡ (13/48 + 10−12,2327/11520) ≈
(0.2708333333,0.2019965278), while in Fig. 4(c) it is equal
to P2 ≡ (0.2686783094,0.20), the initial value of s (or sA) is
chosen so that the solution at s = 0 gives a normalized density
profile with value 1/2 to a certain tolerance, the initial value
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FIG. 2. Orbits (solution curves) for Argon at different Mach numbers. (a) Orbit (solution curve) in the T ∗-v plane at M = 1.2. Solid line:
solution to Eqs. (23); open circles: DSMC for σ = 3 and α−1 = 0.6015. (b) Orbit (solution curve) in the T ∗-v plane at M = 8. Solid line:
Solution to Eqs. (23), recall that the orbits are independent of the viscosity; open circles: DSMC with σ = 0.81 and α−1 = 0.6015.

of s (or sA) is different for each initial condition. One would
be tempted to say that the initial condition P2 gives a better
agreement with the experiments (specially near down-flow)
for Ne, but an important issue here is the asymptotic behavior
of the numerical solutions. The solution to the NSF equations
generated with the initial condition P2 does not behave in the
way expected for a heteroclinic orbit, meaning that the flat
region corresponding to ρn = 1 should extend to sA = ∞ (or
s → ∞). Actually, the solution to the NSF equations using
P1 also has a similar behavior (not shown) but has a flatter
plateau.

There are relatively minor discrepancies of our compu-
tations for the asymmetry quotient and those reported by
other authors; see, for example, the case for M = 8 and
σ = 0.72 given in Table II, which can be attributed to the initial
conditions used, but to be sure a different approach to calculate
the asymmetry quotient was performed. It consists in using
the same initial condition for the velocity (vi = v1 + 10−10)
and solving the differential equation for the orbits, which we
obtained from Eqs. (23), to get T ∗ as a function of v, when
the normalized density is equal to 1/2 the value of v can be
determined (say v0) and the corresponding value of T ∗ (say T ∗

0 )
can be obtained from the solution to the differential equations.
Then the differential equations for v and T ∗, see Eqs. (23), were
solved using the initial condition v(0) = v0 and T ∗(0) = T ∗

0
and from the numerical solution the value of the asymmetry
quotient was calculated. The results of the two approaches
used to calculate the asymmetry quotient are given in Table II;
in most cases, there is fair agreement in the two calculations
but differences exist. We think that the differences in the two
ways we evaluated the asymmetry quotient together with the
values reported in the literature can provide an estimation of
the accuracy of the calculations.

One prediction that follows from the NSF equations is that,
in terms of the reduced variables used here, the normalized
density profiles are independent of the physical system and
depend only on the Mach number; this is tested for Krypton and
Xenon in Fig. 4(b). It follows that such a prediction is relatively
good when compared with the experimental values reported by
Steinhilper [64]. The sensitivity of the calculated normalized
density profiles with respect the viscosity-temperature index
is considered in Figs. 4(b) and 4(d).

IV. CONCLUDING REMARKS

The hydrodynamic model considered in this work (NSF
hydrodynamics model) considers the conservation equations
given by Eqs. (1), the equations of state given by Eqs. (2),
and the Navier-Stokes-Fourier constitutive equations given
by Eqs. (3). This leads to solve Eqs. (21) or, equivalently,
Eqs. (23). The main conclusion is that the experimental nor-
malized density profiles can be explained with Eqs. (23) when
the viscosity-temperature index of the soft sphere model is
regarded as an adjustable parameter for Mach numbers ranging
from 1.2 to 8; see Fig. 1. The agreement between the ex-
perimental reciprocal shock thickness and our hydrodynamic
model is also good for the viscosity-temperature index reported
in this work. However, concerning the density profile asymme-
try, the consistency between experimental data and the NSF
soft model as calculated here improve previous studies using
Navier-Stokes-Fourier constitutive equations. Figure 1(c) sug-
gests that the viscosity-temperature index can also be taken as
an adjustable parameter for the DSMC calculations—the index
appears in the definition of the VSS interaction model, see the
discussion below Eq. (26)—but the possibility has not been
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FIG. 3. Normalized density or temperature profiles for Argon versus Alsmeyer’s reduced distance, ρn or Tn vs sA. (a)ρn and Tn vs sA for
M = 8. Experiments [64]: solid circles for ρn. DSMC (σ = 0.81, α−1 = 0.6015): open circles for ρn, diamonds for Tn. Solution to Eqs. (23)
for σ = 0.9: solid line for ρn, dashed line for Tn. (b) Tn vs sA for M = 8. DSMC (σ = 0.81, α−1 = 0.6015): diamonds. (c) ρn and Tn vs sA for
M = 1.2. Experiments [66]: solid circles for ρn. DSMC (σ = 0.81, α−1 = 0.6015): open circles for ρn, diamonds for Tn. Solution to Eqs. (23)
for σ = 3.0: solid line for ρn, dashed line for Tn. (d) Tn vs sA for M = 1.2. DSMC (σ = 0.81, α−1 = 0.6015): diamonds. Solutions to Eqs. (23):
dashed line for σ = 3.0; dotted line for σ = 0.

explored in this work. Of course, it is not necessary to use the
DSMC calculations to fit the experimental normalized profiles
using the NSF hydrodynamic model.

The DSMC calculations allow us to perform further com-
parisons since they include the temperature, so the normalized
temperature profiles given by DSMC can be compared with
those coming from the NSF hydrodynamic model, as well
as the orbits. For Mach numbers near one [M = 1.2 in

Fig. 3(d)] the viscosity-temperature index that gives better
agreement for the normalized temperature profiles (σ = 0)
is different from the one that gives a better agreement for
the experimental normalized density profiles (σ = 3.0). For
greater Mach numbers (M = 8 in Fig. 3), the temperature
profiles predicted by our NSF hydrodynamic model and the
DSMC data are very different. This can also be seen in the
predicted orbits shown in Fig. 2; we recall that the orbits of
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FIG. 4. Normalized density profiles vs the reduced distance, ρn vs sA, for different systems and Mach numbers. (a) M = 6. Solid diamonds:
Experiments for Neon from Steinhilper [64]; open circles: DSMC for Neon with σ = 0.66 [57] and α−1 = 1.0; solid line: Solution to Eqs. (23) for
σ = 0.9 with initial condition P1 = (13/48 + 10−12,2327/11520). (b) M = 8. Boxes: experiments for Krypton from Steinhilper [64]; asterisks:
experiments for Xenon from Steinhilper [64]; solid line: solution to Eqs. (23) for σ = 0.9. (c) M = 6. Solid diamonds: experiments for Neon
from Steinhilper [64]; open circles: DSMC for Neon with σ = 0.66 [57] and α−1 = 1.0; dashed line: solution to Eqs. (23) for σ = 0.9 with initial
condition P2 = (0.2708333333,0.2019965278). (d) M = 8. Boxes: Experiments for Krypton from Steinhilper [64]; asterisks: experiments for
Xenon from Steinhilper [64]; solid line: solution to Eqs. (23) for σ = 0.95.

NSF equations are independent of the viscosity-temperature
index, but for Mach numbers near one (M = 1.2 in Fig. 2)
the agreement is satisfactory. The NSF hydrodynamic model
considered here fails to give the temperature overshoot near
down-flow predicted by DSMC for Mach numbers about 8,
see Fig. 2(b), though the lack of experimental data does not
allow to decide about such an specific point.

The relevant physical explanation for the better description
of the shock-wave problem done here is the enhancement
of the transport coefficients when compared to the reported
experimental values of the viscosity and thermal conductivity.
The results of our NSF hydrodynamical model are good for
Mach numbers near 1.5 but deteriorate for Mach numbers
about 8, though there is an important improvement for the
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normalized density profiles when compared to theories in
which such enhancement is not taken into account. The fact that
the calculated normalized temperature profiles do not compare
well with the simulations for high Mach numbers suggest that
there could be a missing physical mechanism that must be
taken into account.

Last, it is well known that the description and understanding
of the shock-wave structure poses a very big challenge in
several aspects, not only in fluid mechanics, kinetic theories,
numerical calculations, etc. In this work we have tried to
improve the performance of the phenomelogical approach
based on the Navier-Stokes-Fourier constitutive equations with
a single adjustable parameter. However, it should be desirable

to give a physical construction to go deeper even in the phe-
nomenological treatment in this problem. In particular, taking
the work done here as a starting point of departure, we can
extract some questions to study in the near future. For example,
the viscosity-temperature index to describe the shock wave is
greater than the one needed to give a good account of the tem-
perature dependence in the viscosity as reported directly from
the shear viscosity measurements. We know that the relation
between viscosity and the thermal conductivity may not be
the same, hence: What kind of relation must be taken? Does
the bulk viscosity play a role as some authors have mentioned
[21]? Is it possible to give a phenomenological argument to
assume a different behavior for such properties? And so on.
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