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One-dimensional reduction of viscous jets. II. Applications
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In a companion paper [Phys. Rev. E 97, 043115 (2018)], a formalism allowing to describe viscous fibers as
one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows
to highlight the differences with the basic viscous string model and with its viscous rod model extension. In
particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot
be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability
for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to
the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is
dynamically attracted toward a stationary solution, around which the instability can develop freely and split the
torus in multiple droplets.
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I. INTRODUCTION

In our companion article [1], we developed a formalism to
describe a viscous fiber as a one-dimensional object with an
internal structure. Given the numerical complexity for solving
the full set of fluid dynamics equations, taking into account
junction conditions at the fiber side for the stress tensor, this
description allows for a simpler route for the numerical reso-
lution of viscous fiber dynamics. It is based on an expansion
in the slenderness parameter εR ≡ R/L, where R is the radius
of the fiber and L is the scale associated with typical velocity
gradients. At lowest order in this expansion, the description
is exactly the same as a viscous string, with no internal
resistance to bending nor twisting, and the fiber is only subject
to tangential forces from stretching. However, at the next to
leading order, which is O(ε2

R) smaller, this description departs
from the rod model developed in Refs. [2–4], which is another
theoretical refinement of the viscous string model. The goal of
this article is to emphasize the differences between these two
formalisms, considering a torus of viscous fluid that shrinks
due to the effect of surface tension. After summarizing the for-
malism in Sec. II, we show in Sec. III that the shrinking paces
between our model and the rod model are slightly different, and
we also emphasize the importance of the elliptic deformation
of the torus section to obtain a coherent description. In Sec. IV
we exhibit the differences in the Rayleigh-Plateau instability,
when considering the dispersion relation of periodic and linear
deformations. We also solve numerically for the dynamical
evolution of these linear perturbations. Finally, we revisit in
Sec. V the torus dynamics and the Rayleigh-Plateau instability
for an initially rotating torus.

II. ONE-DIMENSIONAL DESCRIPTION

In the next section, we briefly review the main features of
our one-dimensional model for viscous fibers which is built
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in Ref. [1]. We then emphasize the differences with the rod
model in Sec. II B.

A. Summary of our formalism

At each time t , a viscous fiber is described as a one-
dimensional object through the trajectory R(s,t) of its central
line, where s is a length parameter along this central line (see
Fig. 1 of Ref. [1] for an illustration). The unit tangent vector
to this central line is

T ≡ ∂s R (2.1)

and the velocity of the central line is

U ≡ ∂t R. (2.2)

Curvature of the central line at a given time is defined as

κ ≡ T × ∂s T . (2.3)

A fiber section labeled by a given s is made of points in
the viscous fluid which lie in a plane containing R(s) and
normal to T (s). For each section we form an orthonormal
basis di ≡ (d1,d2,d3 = T ), and by construction the da, a =
1,2, are tangent to the section. Any vector X (e.g., the fluid
velocity) can be split into longitudinal components (along T )
and sectional components (along the da) as

X = P⊥(X) + XT , P⊥(X) ≡ Xada. (2.4)

We also introduce the general notation

X̃ ≡ T × X, (2.5)

and in particular κ̃ is a vector which points toward the exterior
of the central line curvature.

The rotation rate of the frame is defined as

∂t di = ω × di . (2.6)

From these definitions, one infers the constraints

(∂sU) · T = 0, (2.7a)

P⊥(ω) = T × ∂sU = ∂sŨ + κU. (2.7b)
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The velocity of the fluidV on the central line is decomposed
into the velocity of the central line U and the velocity with
respect to the central line V , that is, as

V = U + V . (2.8)

In order to obtain a one-dimensional description for the viscous
fiber, we expand in multipoles the variation in each section of
the fluid velocity outside the central line. Several constraints
from the boundary junction condition (which take into account
surface tension effects) and from the Navier-Stokes equation,
allow to express all of these multipoles in functions of v and
φ̇, which are, respectively, the longitudinal part of V [that is,
v ≡ V using notation (2.4)] and the solid rotation rate of the
fluid around the central line axis T . Eventually, the description
is reduced to the dynamics of these two quantities in addition
to the central line motion found from the evolution of U ,
combined with the evolution of the section shape which is
allowed to depart from strict circularity.

In this procedure, there is a natural expansion in εR . For
instance, terms of the type κaκaR

2, where R is the fiber
radius, are of order O(ε2

R). Keeping only the lowest order terms
amounts to considering the viscous string model. However, our
model for curved fibers in Ref. [1] consists in including the first
corrections that are O(ε2

R). In particular, when including these
higher order effects, the shape of the sections cannot simply be
described by the radius R as it deforms. One must also account
for an elliptic deformation, whose dynamics is found from the
boundary condition.

B. Rod model

The rod model was used in steady or stationary situations
in Refs. [2–7], but its formulation is general and can account
for time dependence. It is based on three balance equations,
namely, the matter balance equation, the momentum balance
equation, and the angular momentum balance equation. We
gathered the rod model equations and a discussion on their
shortcomings in Sec. VII G 4 of Ref. [1]. To summarize, for the
rod model one assumes that fiber sections remain (i) circular,
(ii) orthogonal to the fiber central line, and (iii) that the fluid
velocity on the central line is such that the fluid particle on the
central line stays on the central line [P⊥(V ) = 0].

(i) Assuming circular shapes is necessary to obtain mean-
ingful momentum and angular momentum balance equations in
the rod model. However, we find that an elliptic deformation is
necessarily generated from fiber curvature as an O(ε2

R) effect.
Note that a first attempt of describing elliptic sections, but
restricted to straight fibers, was performed independently in
Ref. [8].

(ii) For the fiber section to remain orthogonal to the central
line, it requires that the solid rotation rate of the section is
equal to the rotation rate of the fluid on central line at lowest
order (see Sec. VII B 4 of Ref. [1]). Hence, the angular
momentum balance cannot be an equation which determines
the solid rotation of sections since it is determined already
by the momentum balance equation. Instead, the sectional
viscous forces P⊥(F) which lead to a net torque T × F per
unit of fiber length are constrained in the rod model by the
angular momentum balance so as to enforce this property.
Since the momentum of inertia of a fiber section scales as

R4 and sectional forces scale as R2, we deduce that adding
sectional forces to the momentum balance equation amounts
to including order ε2

R terms, which are otherwise absent in the
lowest order string model.

(iii) We showed in Sec. IV I of Ref. [1] that to ensure that
the central line remains on the section center, defined as the
position for which there is no dipole in the shape deformation,
the fluid velocity on the central line [P⊥(V)] must be slightly
different from the velocity of the central line [P⊥(U)], that is,
the difference which is P⊥(V ) does not vanish but is instead of
order ε2

R . This was clearly identified in [4] but ignored precisely
on the grounds that it was expected to be an order ε2

R correction.
However, since the inclusion of sectional forces, which is the
main difference between a rod model and a string model, is
also a correction of order ε2

R , we found that it is formally
inconsistent to choose one correction and discard another one,
if they are formally of the same order.

III. DYNAMICS OF A SHRINKING TORUS

A. Adapted coordinates and variables

In order to highlight some differences between our formal-
ism and the rod model, we study the special case of a viscous
torus surrounded by vacuum. The case of a torus surrounded by
a highly viscous fluid has been studied analytically in Ref. [9]
by considering the approximate Stokes flow equation.

There are natural cylindric coordinates (r,θ,z) associated
with the torus with a basis of unit vectors er ,eθ ,ez (see Fig. 1
for an illustration of the notation). Due to its high degree of
symmetries, no quantity can depend on θ , and if the fiber
central line is in the plane z = 0 it remains so. At any time, the
fiber central line is entirely characterized by the radial distance
r(t), hence, all quantities can only depend on t . In particular,
torus sections cannot mix and there can be no sectional viscous
forces. This implies that the viscous rod model matches exactly
the viscous string model. Hence, this system is of particular
academic interest because on the contrary our model differs
from the string model.

The orthonormal basis associated with the fiber coordinates
is given by

d1 ≡ ez, d2 ≡ er , T ≡ eθ . (3.1)

Starting from a reference angle, the relation between the polar
angle θ and the affine parameter s is simply

s = rθ. (3.2)

FIG. 1. Notation in the plane of constant θ .
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The fiber curvature has only one component κ which is

κ = κez, κ̃ = κer , κ ≡ 1

r
. (3.3)

From the symmetries, the section ellipticity (see Sec. IV D of
Ref. [1] for definitions) is necessarily fully specified by one
polarization E , and it is of the form

Rab ≡ E
(
e a
z e b

z − e a
r e b

r

)
. (3.4)

The central line sectional velocity is necessarily oriented
radially. Hence, we define

Ua ≡ Ure a
r . (3.5)

As for the fiber longitudinal velocity Ū , it is not vanishing
because the geometric point of constant affine coordinate s

has a longitudinal motion due to the shrinking of the torus.
Its value is determined by the structure relation (2.7a) which
implies

∂sŪ = −U · κ̃ = −Uaκ̃a = −Ur

r
. (3.6)

Since Ur does not depend on s, we find

Ū = − sUr

r
. (3.7)

However, the total fluid tangential velocity on the central line
is

V = Ū + v, (3.8)

and from the symmetries of the problem this quantity does not
depend on s. If furthermore there is no initial rotation around
the z axis and the fluid falls radially, then V = 0. We assume
in this section that this is the case and we postpone the case
V �= 0 to Sec. V.

One would naively expect that rotation of the fiber central
line ω should vanish due to the symmetries of the problem.
However, it is defined as the rotation of the orthonormal basis
for a geometric point of constant affine coordinate s, and it
is instead obtained from the structure relation (2.7b) which
implies

ω = κŪ . (3.9)

Finally, the evolution of the radius R satisfies

∂tR

R
= −1

2
∂sv = −Ur

2r
= − ṙ

2r
. (3.10)

This is valid even when including corrections of order ε2
R , and

it is an obvious consequence of volume conservation, which
for a torus is (2πr) × (πR2). Hence, one can directly use its
first integral which reads as

R = Ri

√
ri

r
. (3.11)

Finally, let us define an aspect ratio parameter by

εi = Ri

ri

, (3.12)

which characterizes the initial shape of the torus.

B. Governing equations

From the dynamical equations gathered in Sec. VII B 9 of
Ref. [1] for the lowest order string model and Sec. VII C 7 for
the O(ε2

R) corrections, we finally find

r̈ = ∂tU
r = −νκ

R

[
1 + 7

8
(κR)2

]
(3.13a)

−3μκ2Ur

[
1 + 11

16
(κR)2

]
−21

16
κ3R2(Ur )2 + V2

κ

[
1 + 1

2
(κR)2

]
,

d(ER2)

dt
= − ν

Rμ

[
ER2 + (κR)2

6

]
− 7

16
κ(κR)2Ur − 1

12μ
(VκR)2. (3.13b)

Since we assumed that the fluid is incompressible, we chose
a unit mass density ρ so that the viscosity μ and surface
tension ν stand in fact for μ/ρ and ν/ρ. The first line of
Eq. (3.13a) is the radial force from surface tension which tends
to shrink the torus,1 with its lowest order form and its first
correction ∝(κR)2. The second line corresponds to viscous
friction, similarly given with the lowest order and its correction
∝(κR)2. The first term in the last line is a convective effect and
the last term vanishes if the torus is not rotating initially (see
Sec. V) as it corresponds to inertial forces. Equation (3.13b)
rules the dynamical evolution of the elliptic deformation. Its
last term vanishes if the fluid is not rotating as it corresponds to
tidal inertial forces. In particular, when considered in the limit
of vanishing viscosity, Eq. (3.13b) amounts to the constraint

ER2 � − (κR)2

6
. (3.14)

It corresponds to the condition for which the quadrupole of
extrinsic curvature [Eq. (7.34c) of Ref. [1]] vanishes, inducing
no quadrupole in the pressure distribution inside sections.

Finally, note that in the inviscid case and still for no rotation
(V = 0), Eq. (3.13a) reduces to

r̈ = −νκ

R

[
1 + 7

8
(κR)2

]
− 21

16
κ3R2(ṙ)2. (3.15)

C. Analytic approximation

In this section, we look for approximate analytic solutions
using the simpler viscous string model, which consists in
keeping only the dominant term in the first two lines of
Eq. (3.13), that is,

r̈ = ∂tU
r = −νκ

R
− 3μκ2Ur. (3.16)

1Intuitively, the extrinsic curvature in the exterior of the torus is
larger than in the interior, inducing a pressure gradient toward the
exterior, hence creating an inward radial force.
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Let us first consider the inviscid case. The dynamics is simply
governed by

r̈ = − ν√
rirRi

⇒ ṙ = −2

√
ν(

√
ri − √

r)√
riRi

. (3.17)

It is very similar to a two-body problem in Newtonian gravity
with no initial angular momentum, but with an attractive
potential scaling as ∝√

r instead of ∝−1/r . It is further
integrated as

1 − 3

4
x − 1

4
x3/2 = ν

Rir
2
i

(
3t

4

)2

, x ≡ r

ri

(3.18)

which needs to be solved algebraically to obtain r(t). In
particular when r remains close to ri , that is, for the beginning
of the torus shrinking, we obtain the parabolic motion

r � ri − ν

2riRi

t2, (3.19)

which matches the approximate solution (3.6) of Ref. [10] in
the limit Ri 	 ri . However, since this is only an approximation
implicit solution to Eq. (3.18), it also tends to overestimate
r at late times, and this can be checked visually on Fig. 4
of Ref. [10]. Indeed, since Eq. (3.19) is the solution of r̈ =
−ν/(riRi), it underestimates the inward acceleration when
compared to Eq. (3.17). We use Eq. (3.19) to define the collapse
timescale for the inviscid case (the capillary time scale) as

tcap ≡ ri

√
Ri√
ν

. (3.20)

For high-viscosity cases, we need to solve instead the qua-
sistatic approximation (r̈ � 0), equivalent to the Stokes flow
equation, which leads to

3μṙ

r2
= − ν

rR
= − ν

Ri

√
rir

. (3.21)

Its solution is

t = 6μRi

ν

(√
ri

r
− 1

)
, r = ri(

1 + νt
6μRi

)2 . (3.22)

Hence, for high viscosity, the collapse timescale is

tvisc ≡ 6μRi

ν
. (3.23)

Viscosity can be neglected when tvisc 	 tcap, that is, if

μ 	 μ0 ≡ ri

6

√
ν

Ri

= 1

6

√
νri

εi

. (3.24)

D. Numerical resolution

The numerical resolution of the full system of Eqs. (3.13a)
and (3.13b) is illustrated in Fig. 2 for typical high and low
viscosities. In the low-viscosity case, we also plot the solution
to the inviscid equation (3.15). Given the elliptical deformation
of the torus sections, the far and near sides of the section are
located, respectively, at

rfar = r + R(1 − ER2), (3.25)

rnear = r − R(1 − ER2). (3.26)
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FIG. 2. The initial torus shape is εi = 1
3 in both cases. (a) A

low-viscosity case (μ = 0.01μ0) and (b) a high-viscosity case (μ =
100μ0). The continuous lines correspond to our model, the dashed
lines to the basic rod model which is equivalent to the viscous string
model in this case. The central curves correspond to the central line,
the top curves to the outer intersection of the section with the torus
plane (z = 0), and the lower curves to the inner intersection. In (a),
the inviscid solution [Eq. (3.15)] is depicted in a thin and continuous
gray line.

We observe that, in all cases, the rod model underestimates
the shrinking of the central line. The numerical results are in
agreement with our expectation that the difference between
the two descriptions should be of order of the initial ε2

R =
(κR)2 = (R/r)2 which we have taken to be (1/3)2 in initial
conditions. Furthermore, the elliptic deformation reduces even
further the distance of the inner intersection of the section with
the torus plane (z = 0) since numerically we get rnear < r − R.
The torus is deformed as if it was squeezed in the azimuthal
direction, or as if it was stretched by radial tidal forces. When
the inner point reaches a null radius, that is, approximately
when r = R, the expansion is expected to break down since the
ratio κR = R/r reaches unity. Physically, it also corresponds
to the point where the torus becomes topologically a sphere
and an accurate description of the final ring down toward a
sphere must be performed from a multipolar expansion around
such a geometry as, e.g., in Ref. [11] for linear dynamics or in
Ref. [12] for nonlinear dynamics.
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IV. RAYLEIGH-PLATEAU INSTABILITY

A. Straight fibers

It is well known that periodic radius perturbations around an
infinite straight fiber are unstable for kR < 1, where k = 2π/λ

is the mode of the perturbation. This is the celebrated Rayleigh-
Plateau (RP) instability [13–16] (see also Refs. [17,18] for
reviews). In the case of an elongated but finite fiber, the RP has
been studied numerically in Ref. [19]. The RP instability is
understood analytically by considering periodic radius pertur-
bations around an infinite cylinder of viscous fluid with radius
R0 of the form

R = R0 + δR, δR = δReαt cos(ks), (4.1)

and then linearizing the Navier-Stokes equation and the bound-
ary constraint. Using units for which R0 = 1 and ν = 1 for
convenience, this leads to the implicit dispersion relation
[16,20]

α2 kI0(k)

2I1(k)
= 1

2
(k2 − k4) − μαk2

[
2kI0(k)

I1(k)
− 1

+2μk2

α

(
kI0(k)

I1(k)
− k1I0(k1)

I1(k1)

)]
, (4.2)

where the In are the Bessel’s functions and with

k2
1 ≡ k2 + α

μ
. (4.3)

It is then found that in the inviscid case, the mode which grows
the most rapidly corresponds to kmaxR0 � 0.697 02, that is,

λmax = 2π

kmax
� 9.0144R0. (4.4)

Since Eq. (4.2) is implicit, it is convenient to expand it in
powers of k (still in units where R0 = ν = 1), and we get [see
Eq. (96) of Ref. [20]]

α � k√
2

− 3μ

2
k2 + 36μ2 − 9

16
√

2
k3 + 3μ

16
k4

+ −49 + 360μ2 − 1296μ4

512
√

2
k5 +

(
1

3072μ
− μ

96

)
k6.

(4.5)

Note that this series is not valid in the limit μ → 0. However, it
allows to compare the exact result (4.2) with the one obtained
from the straight fiber results found with our method in Sec. VI
of Ref. [1]. Equations (6.10a) for ∂tv [with its O(ε2

R) and
O(ε4

R) corrections given in Eqs. (6.23a) and (E1)], together
with Eq. (6.3) for ∂tR [with its O(ε2

R) and O(ε4
R) corrections

given in Eqs. (6.23c) and (E2)], once linearized lead to (still in
units where ν = R0 = 1)

∂tv = −∂sδK + 3μ∂2
s v + 3

8
μ∂4

s v + 1

48
μ∂6

s v

− 1

48μ
∂t∂

3
s δK + 3

64
∂5
s δK, (4.6a)

∂tδR = −1

2
∂sv − 1

16
∂3
s v + 1

128
∂5
s v − 1

96μ
∂4
s δK, (4.6b)

δK = −δR − ∂2
s δR. (4.6c)

From these we can also determine a dispersion relation. It is
achieved by expanding δR and ∂sv as in Eq. (4.1). Developing
the dispersion relation obtained in powers of k, we get

α � k√
2

− 3μ

2
k2 + 36μ2 − 9

16
√

2
k3 + 3μ

16
k4

+ −49 + 360μ2 − 1296μ4

512
√

2
k5 +

(
1

1536μ
− μ

96

)
k6.

(4.7)

One notices that it differs from Eq. (4.5) only in the terms which
are ∝1/μ. This is because our formalism is based on the fact
that the fluid has nonvanishing viscosity and is ill defined in
the inviscid case. However, we note that cancellations occur for
the lowest order and the O(ε2

R) corrections, and these divergent
terms occur only when including O(ε4

R) corrections, which
contribute only to the k5 and k6 terms of the expansion and
beyond.

B. Instability around torus

We now study how this instability is modified when
considering small linear fluctuations around the shrinking
torus described previously in Sec. III. In the case where the
torus is surrounded by a more viscous fluid than the one in
the torus, this was already studied experimentally in Ref. [21]
by forming a torus thanks to extrusion through a needle, or
in Ref. [22] using a glassy transition from solid phase to
viscous phase in a polystyrene torus. In both cases, it is found
when Ri 	 ri that the final state is a breakup of the initial
torus into several droplets. This is confirmed by the numerical
study of Ref. [23], which considers quadrupolar perturbations.
However, in our case, the torus is not surrounded by a highly
viscous fluid which retards its shrinking, hence the dynamics
of the RP instability is bound to be different. Our system is
in fact very similar to the experiment described in Ref. [10]
where liquid oxygen is sculpted into a torus thanks to its
paramagnetic property, and it differs essentially only in that
we have not included gravity. As it levitates one its own vapor,
this torus is not subject to external viscous forces. It is found
experimentally in Ref. [10] that the RP instability is never
strong enough to break up the torus in multiple droplets before
its shrinking reduces it topologically to a sphere, a result that
we confirm with our model in this section.

When restricting to linear fluctuations around the shrinking
torus (that we consider as a background), great simplifications
arise because the background quantities that we note in this
section, R0, κ0, r0, E0 and Ur

0 , do not depend2 on θ . Hence, we
can ignore small angular displacements of the fiber sections
due to the fluctuations. In practice, everything happens as if a
section which is initially at a given θ = s/r remains at the same
angular position even though s and r vary because of shrinking,
indicating that the variables (t,θ ) are more adapted for the prob-
lem than (t,s). Note that small angular displacements would
only be relevant if we were to consider the nonlinear dynamics.

2Ū0 is given by Eq. (3.7), and depends on s, but the relevant quantity
for the fluid tangential velocity is V0 = Ū0 + v0 which does not
depend on s.
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We split variables into their background and their perturbed
quantity as

κ = κ0 + δκ, (4.8)

r = r0 + δr, (4.9)

E = E0 + δE, (4.10)

Ur = Ur
0 + δUr, (4.11)

R = R0 + δR, (4.12)

V = V0 + δV . (4.13)

The dynamics of the background has already been discussed
in Sec. III and, considering no torus rotation (V0 = 0), it is
governed by the differential system (3.13) in the variables
(r0,E0).

For small linear perturbations, we can use the relations

δκ � −δr

r2
− ∂2

s δr, (4.14)

δUr � ∂t δr|θ = ∂tδr|s − Ū0∂sδr, (4.15)

so that eventually the perturbed set of variables is

(δr,δR,δV,δE). (4.16)

The linearized equations of our model are reported in the
Appendix and one needs only to replace the relations (4.14) to
get a closed system of differential equations in these variables.

We first study the growing modes of the Rayleigh-Plateau
instability by considering these equations at initial time, that
is, ignoring the effects of the secular background shrinking.
When considering periodic perturbation, the variables (4.16)
are expanded as

x = xeαt cos(nθ ) = xeαt cos

[
ns

r(t)

]
. (4.17)

Solving for α, we obtain the dispersion relation as a function of
the mode n. The algebraic expressions for α are far too complex
to be reported explicitly. Their numerical values are, however,
depicted in the left plot of Fig. 3 where we superimposed
the Rayleigh-Plateau dispersion relation (4.2) obtained in the
straight fiber case. The relative differences for our model and

for the improved rod model [see Eq. (7.74) of Ref. [1]] are
presented in the right plot of Fig. 3, and these differences come
from the fact that the models differ in their O(ε2

R) corrections.
We then consider the full system of differential equations

in the Appendix and solve for it numerically for different
viscosities. We assume that initially the perturbation is only
a perturbation in the section radius δRi , with all other per-
turbations vanishing. The growth of the linear perturbations
is then characterized by δR/δRi , which characterizes the
RP instability, and which is plotted in Figs. 4(a) and 4(b).
Additionally, departure from the toroidal geometry of the
central line is characterized by the evolution of δr . Since we
consider linear perturbations, its evolution is commensurate
with δRi , hence we plot in Figs. 4(c) and 4(d) δr/δRi that
indicates how efficiently a deformation of the sections results
in a deformation of the central line. The integration for a
given mode n is stopped at tend defined by the condition
kR = nR/r = 1 since it corresponds to εR = 1, that is, to
a breaking of the perturbative expansion in the fiber radius,
which is central to the construction of our model. This happens
unavoidably because r decreases as the torus shrinks, but also
R increases from volume conservation.

(i) For low viscosities, slightly before tend, we see an
inflexion point in the perturbation growth. In the light of
the RP instability for straight fibers, and considering that
modifications brought by the toroidal shape are small, this
corresponds to the fact that when k = n/r > kmax, the value
of α in the dispersion relation decreases to reach α = 0 when
kR = 1. For each mode, everything happens as if the mode
was climbing the dispersion relation curve α(k) of the usual
straight fiber RP instability from low values of k, to high
values of k, hence passing through the maximum value α(kmax).
And, in that process, long modes which correspond to low
values of n (but not the dipolar perturbation corresponding
to n = 1 which is otherwise constrained by center of mass
conservation) have had more time to grow so as to reach the
highest growth. However, we notice that even for the long
modes, the typical growth never reaches huge values. This is

because the timescale of the RP instability is tRP ≡
√

R3
i /ν and

it is related to the collapse timescale (3.20) by tRP = εi tcap. The
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(b)
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FIG. 3. The initial aspect ratio is εi = 0.1. (a) The dots are the adimensionalized growth rate αR
3/2
i ν−1/2 as a function of the mode integer

n, for an initial shape characterized by εi = 0.1. The continuous line corresponds to the result obtained for the Rayleigh-Plateau instability on
an infinite straight line. From top to bottom we show the cases μ = 0.1

√
νRi , μ = √

νRi , and μ = 10
√

νRi . (b) Growth rate relative difference
with respect to the one obtained for the Rayleigh-Plateau instability of an infinite straight line. Our model (circles) and the improved rod model
(crosses) is evaluated for large symbols with μ = 0.1

√
νRi (low viscosity) and for small symbols with μ = 103

√
νRi (high viscosity). In all

cases, the dipolar mode (n = 1) growth rate is identically vanishing as required by center of mass conservation.
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FIG. 4. (a), (b) δR/δRi . (c), (d) δr/δRi . The initial shape is characterized by εi = 0.1. The viscosity is low (μ = 0.1μ0) for (a) and (c) and
high (μ = 10μ0) for (b) and (d). The instability modes are plotted from n = 1 to 10 for (a) and (c), or from n = 2 to 10 for (b) and (d), starting
from the thinnest line to the thickest line.

RP instability requires a very thin torus (εi 	 1) to be able to
break it before it has collapsed. Hence, for reasonable values
of εi , the RP instability cannot destabilize the toroidal shape
and split in several droplets, in agreement with the findings of
Ref. [10]. Hence, for the low-viscosity case, the main features
of the dynamics can be understood from the perspective of the
RP instability around straight fibers. Note that if shrinking is
slowed by an external viscous fluid, it is found experimentally
[21,22] that these conclusions are reversed.

(ii) For larger viscosities, kmax corresponding to the fastest
growing mode of RP instability around a straight fiber is
much smaller. Indeed, it scales approximately as [19] kmax ∝
1/

√
2 + 3

√
2μ (still in units whereR0 = ν = 1). Furthermore,

the corresponding value α(kmax) is much smaller as illustrated
in Fig. 3 (left plot). Hence, if we were to guess the behavior
from the analogous RP instability around straight lines, one
would conclude that perturbations do not grow significantly.
In fact, we find numerically that perturbations grow indeed
mildly, but only up to around tcap, as they are damped after-
wards. In that case, there is no RP instability and the final state
is a single drop.

V. ROTATING TORUS

It is possible to prevent the torus from shrinking by
considering a torus rotating around the z axis. From angular
momentum conservation, this brings a potential barrier and if

initial rotation is strong enough, it prevents the collapse of the
torus. Indeed, the last term of Eq. (3.13a) acts as a repulsive
force. The dynamics of V , which is not identically vanishing
anymore, is ruled by

dV
dt

= −VUrκ

[
1 − 9

4
(κR)2

]
. (5.1)

When considering only the leading term in this equation, it can
be put in the form d(rV)/dt = 0 which is obviously angular
momentum conservation,3 that is,

rV = riV i . (5.2)

When the torus shrinks (Ur < 0), V must increase. As in
the two-body problem of Newtonian gravity, this leads to a
repulsive potential ∝1/r2, that is a radial force ∝1/r3 given
by the last term of Eq. (3.13).

If rotation is strong enough, the radius r undergoes damped
oscillations (except in the pure inviscid case) to reach an
equilibrium value. If we ignore the O(ε2

R) corrections, that is,
considering only the viscous string model, this is the position
for which surface tension attractive force is balanced by the

3Angular momentum per unit of mass is rV[1 + 3R2
i ri/(4r3)] and

Eq. (5.1) implies its conservation up to O(ε4
R) corrections.
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FIG. 5. For both figures V i = 0.8
√

ν/Ri , μ = μ0. (a) εi = 1
3 . The continuous lines correspond to our model and the dashed lines correspond

to the viscous string model with circular sections. The thick dotted-dashed line is −ER2 whereas the thin dotted-dashed line is R2/(4r2). (b)
εi = 0.1 and the lines (from thin to thick) correspond to the modes from n = 1 to 8 of |δR|/δRi . The dipolar mode (n = 1) does not grow
because of center of mass conservation.

repulsive inertial force, and we find

rstable � ri

(
RiV

2
i

ν

)2/5

. (5.3)

Hence, by choosing V i = √
ν/Ri the torus is directly [up to

the O(ε2
R) corrections] in its stable position.

Furthermore, now the last term of Eq. (3.13b) contributes
and it corresponds to the deformation induced by tidal forces.
In the inviscid limit, the constraint (3.14) becomes

ER2 � − (κR)2

6

(
1 + V2

R

2ν

)
. (5.4)

Once the radius has reached its equilibrium value (5.3), the
elliptic deformation tends to ER2 � −R2/(4r2) as illustrated
in the left plot of Fig. 5. We then repeat the linear perturbation
analysis of Sec. IV B, but including all the terms involving V0

(which we do not report in the Appendix), whose dynamics
is given by Eq. (5.1). Instead of expanding the linear per-
turbations with cos(ns/r) as in Eq. (4.17), we expand them
with exp(ins/r). Indeed, the amplitude x becomes complex
when including torus rotation. Its norm still characterizes the
instability, that is the size of the perturbation, and its phase
corresponds to the angular rotation induced by advection. In
the right plot of Fig. 5, we illustrate how the RP instability
can develop freely once the torus has reached a stable rotating

solution. Hence, it is expected that the initially rotating viscous
torus will break up in several droplets that will be ejected
outward.

VI. CONCLUSION

The viscous torus allows to clearly emphasize the difference
between our model and the viscous string or its refined rod
model since for the main shrinking behavior, these have no
corrections of order O(ε2

R) whereas our model does. Our
corrections affect the central line dynamics, and we find it
necessary to also describe the elliptic deformations. When
studying the Rayleigh-Plateau instability, our model and the
(improved) rod model also differ slightly as shown by consider-
ing the dispersion relation. When the torus is not surrounded by
a viscous fluid, our linear analysis indicates that the torus does
not break up into small droplets for all possible viscosities since
either the instability does not develop in very viscous fluids or
does not have sufficient time to develop in low-viscosity fluids.
However, if the torus is rotating around its geometric center
fast enough, it can reach an equilibrium configuration around
which the RP instability should lead to its unavoidable breakup
in several droplets.
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APPENDIX: LINEARIZED VISCOUS TORUS PERTURBATIONS

Dynamical equations for the variables (4.16) are obtained from Eqs. (7.18a), (7.18b), (7.20), and (7.42) and their O(ε2
R)

corrections [Eqs. (7.41), (G3), and (G4)] of Ref. [1]. After linearizing them, one uses the linearized constraints (2.7a) and (2.7b)
to get

∂t δV = −v0∂sδV + Ur
0 ∂sδU

r − Ur
0 κ0δV + 3μ∂2

s δV + 3μκ0∂sδU
r + 3μUr

0 ∂sδκ + 6μUr
0 κ0

∂sδR

R0
+ ν∂sδR

R2
0

+ νR0

(
3

4
κ2

0
∂sδR

R0
+ 1

4
κ0∂sδκ + ∂3

s δR

R0
+ ∂3

s δR

R0

)
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+R2
0

(
9

4
Ur

0 κ3
0 δV + 3

4

(
Ur

0

)2
κ2

0
∂sδR

R0
− 9

2
μUr

0 κ3
0
∂sδR

R0
− 15

8
Ur

0 κ2
0 ∂sδU

r − 63

16
μκ3

0 ∂sδU
r + 3

8

(
Ur

0

)2
κ0∂sδκ

− 75

16
μUr

0 κ2
0 ∂sδκ + 3

8
Ur

0 κ0∂
2
s δV − 57

16
μκ2

0 ∂2
s δV + 3μUr

0 κ0
∂3
s δR

R0
+ 3

8
μUr

0 ∂3
s δκ + 3

8
μ∂4

s δV
)

, (A1)

∂tδU
r = −v0∂sδU

r − ν
δκ

R0
+ νκ0

δR

R2
0

− 6μUr
0 κ0δκ − 3μκ2

0 δUr − 3μκ0∂sδV

+νR0

(
−21

8
κ2

0 δκ − 7

8
κ3

0
δR

R0
− 13

8
κ0

∂2
s δR

R0
− 3

4
∂2
s δκ

)
+R2

0

(
− 63

16

(
Ur

0

)2
κ2

0 δκ − 21

8

(
Ur

0

)2
κ3

0
δR

R0
− 21

8
Ur

0 κ3
0 δUr − 33

4
μUr

0 κ3
0 δκ − 33

8
μUr

0 κ4
0
δR

R0
− 33

16
μδUrκ4

0

− 3

8
Ur

0 κ2
0 ∂sδV − 27

16
μκ3

0 ∂sδV − 39

4
μUr

0 κ2
0
∂2
s δR

R0
− 9

4
Ur

0 κ0∂
2
s δUr − 9

2
μκ2

0 ∂2
s δUr

−27

4
μUr

0 κ0∂
2
s δκ − 27

8
μκ0∂

3
s δV − 3

4
μ∂4

s δUr

)
, (A2)

∂t δE = −v0∂sδE + E0∂sδV + ν

μR0

(
δE + E0δR

R0
− 1

3
κ0δκ + 1

6

κ2
0 δR

R0

)
+ E0U

r
0 δκ + Ur

0 κ0δE + κ0E0δU
r

−21

16
Ur

0 κ2
0 δκ − 7

16
κ3

0 δUr − 5

16
κ2

0 ∂sδV − 1

8
κ0∂

2
s δUr, (A3)

∂t δR

R0
= −v0

∂sδR

R0
− 1

2
Ur

0 δκ − 1

2
κ0δU

r − 1

2
∂sδV + R2

0

(
−3

8
Ur

0 κ0
∂2
s δR

R0
− 1

16
κ0∂

2
s δUr − 1

16
Ur

0 ∂2
s δκ − 1

16
∂3
s δV

)
. (A4)
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