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One-dimensional reduction of viscous jets. I. Theory
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We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure.
We present in full generality the steps needed to describe the viscous jets around their central line, and we argue
that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free
tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and
we report the first and second corrections to the lowest order description, also allowing for a rotational component
around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds
to a viscous string model whose sections are circular. However, when including the first corrections, we find that
curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be
described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating
frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by
rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and
exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors,
the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as
xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections
consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of
these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal
viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018)].
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I. INTRODUCTION

Solving exactly the nonlinear fluid equations for long
viscous jets is extremely complicated, and one needs to resort
to an approximation scheme to study the dynamics of these
systems. Due to the elongated shape, there is an obvious
simplification which consists in considering a one-dimensional
description. A body is considered as being slender if its radius
R is typically much smaller than the inverse size of velocity
gradients L, that is, if the velocity field changes on length
scales which are larger than the fiber radius. Hence, the one-
dimensional reduction induces naturally an expansion in the
slenderness parameter εR ≡ R/L. Given that at lowest order
a solid is approximated by a point particle, then we expect
that a slender jet is approximated at lowest order by some type
of string. Furthermore, as extended objects are described as
point particles with an internal structure encoded in various
moments (e.g., in the moment of inertia), the internal structure
of the one-dimensional object which approximates a viscous
jet is encoded in some moments which vary continuously along
the one-dimensional fiber. From the perturbative expansion in
the small parameter εR , we show how this series of moments
must be truncated at a given order of corrections around the
string description. The various moments describing the viscous
jet happen to separate naturally into moments which evolve
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dynamically and moments which are related by constraints to
the former ones.

For simplicity, we restrict our analysis to incompressible
Newtonian fluids whose internal forces are captured entirely
by a constant viscosity parameter, and we allow for surface
tension effects. These ingredients are sufficient to describe
the dynamics of drop formation from the Rayleigh-Plateau
instability [1–3]. However, concerning the global shape of
the viscous jet, our aim is to remain as general as possible,
allowing for curved fibers (that is curved central lines) with
possibly noncircular cross sections. Indeed, there are a series of
geometrical simplifications which are usually performed given
the symmetries of specific problems. From the most restrictive
to the most general, we find the axisymmetric case, the straight
fiber case with noncircular sections, the curved fiber case with
circular sections, and the curved fiber case with noncircular
sections.

(i) Axisymmetric fibers. The fiber central line is a straight
line and the cross sections around that central line are disks
only. The one-dimensional reduction of viscous jets for this
geometry has been extensively studied in previous literature
with several nonequivalent methods. A first method consists
in using the Cosserat theory [4], and it has been shown that
this method is in fact equivalent to expanding the velocity
fields along a suitable basis of functions [3,5]. The second
method is based on a radial expansion (mathematically a Taylor
expansion) of velocity fields and it has been developed in,
e.g., García and Castellanos [6], Eggers and Dupont [7], or
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Bechtel et al. [8] when allowing for a possible angular rotation
around the axis of symmetry. The validity of these methods
has been studied in details in the subsequent literature, e.g.,
in Perales and Vega [9], Gañán-Calvo et al. [10], Montanero
et al. [11], or Vincent et al. [12]. In Sec. VI, we recover the
standard lowest order results plus first corrections using the
radial expansion method. We also report a general method to
obtain recursively its corrections up to any order and report the
second set of corrections. In this geometry, once the constraints
from the stress tensor on the fiber side have been used, the fun-
damental dynamical variables appear to be the velocity along
the axis v, the local rotation rate around that axis φ̇, and the
radius R.

(ii) Straight fibers. The fiber central line is still a straight
line, but the cross sections can have more general shapes. We
find that the section shape is most conveniently expanded into
shape multipoles which are symmetric trace-free tensors. The
lowest multipole describes for instance the elliptical modula-
tion of the cross sections [13,14]. Under this description, the
shape multipoles are additional fundamental variables.

(iii) Curved fibers with circular sections. The fiber central
line can have any general shape as long as the curvature radius
remains larger than the typical extension of the cross sections.
A formalism was initially developed in Entov and Yarin [15]
and further summarized in Yarin [16,17]. Curved fibers were
considered with surface tension effects in Dewynne et al.
[18,19] and also in Arne et al. [20,21] to study rotational
spinning processes such as those used in the production of
glass wool or candy floss. A similar viscous rod model, based
on curvilinear coordinates adapted to the problem, has been
developed by Ribe [22] and Ribe et al. [23,24] to study the
coiling of viscous jets, and numerical methods were developed
by, e.g., Audoly et al. [25,26] to obtain general solutions.
In this article, we develop a formalism based on a 2 + 1
splitting [27] of equations, that is, a separation between the
two-dimensional fiber sections and its one-dimensional central
line, to reduce curved viscous jets as one-dimensional object.
We first describe in full generality the central line along
which the jet is described by following essentially the method
developed by Ribe. The tangential direction of this central line
naturally determines a fiber direction and a fiber section which
is orthogonal to it, along which our 2 + 1 splitting of equations
is performed. Then, using the irreducible representation of
SO(2), we build an expansion of the velocity field. It is based
on symmetric trace-free tensors which are lying in the fiber
sections and we show that these tensors are the moments
which naturally take into account the internal structure of the
fiber. Eventually, the fundamental variables are the same as
for straight fibers with noncircular sections (velocity along
the axis v, local rotation rate around that axis φ̇, fiber radius
R, and shape multipoles), since all other velocity moments
can be obtained as constraints from these variables. These
fundamental variables must also be supplemented by the fiber
central line position and velocity. The difference with the
straight case lies mainly in the fact that circular sections are
only compatible with the lowest order description, that is, with
the viscous string model. Indeed, as soon as corrections are
included, the shape multipoles are necessarily sourced. For
instance, terms which are quadratic in the central line curvature
generically source the ellipticity.

Our consistent description of elongated but possibly curved
viscous fibers allows to find a number of qualitative results
on the structure of the one-dimensional models which contrast
with past literature. Most importantly, we find that the first
corrections for curved fiber geometries cannot be encompassed
by the rod model of Arne et al. [20], Ribe [22], and Ribe et al.
[23]. These methods are based on the observation that, when
considering extended solid objects instead of point particles,
we must supplement the momentum balance equation by an
angular momentum equation. It is thus expected that to go
beyond the string approximation which can also be obtained
from a momentum balance equation, we should use some form
of angular momentum balance equation. However, this method
inspired from solids fails for viscous fluids for a number of
reasons which are absent in nondeformable solids.

At lowest order in εR , the rotation of the fiber section
follows the rotation of the fluid on the fiber central line.
Since the dynamics of the central line is determined from
the momentum balance equation, its local rotation rate is
also derived from it, implying that the angular momentum
method cannot bring any new dynamical information about
fiber section rotation. In fact, it is precisely because the
rotation of sections is determined from the rotation of the
central line at lowest order that the angular momentum method
is instead a constraint on the sectional component of the
viscous forces which appear as corrections to the lowest order
description. Eventually, the coupling between the momentum
balance and angular momentum balance equation amounts
to selecting only some corrections and discarding the other
ones as several order ε2

R effects are missing. For instance, the
sectional component of the velocity on the central line differs
from the sectional component of the velocity of the central
line by corrections of order ε2

R . Additionally, the longitudinal
velocity develops a Hagen-Poiseuille profile (that is a parabolic
profile in terms of the radial distance), which blurs the notion
of solid displacement of fiber sections.

For these various reasons, we find that we should not build
a one-dimensional reduction of viscous fibers from the usual
methods which have been developed to describe the continuous
deformation of solids, but we should instead start from a Taylor
expansion of the velocity field and find a consistent truncation
at any given order. When deriving corrections to a viscous
string model, this requires to abandon the hypothesis of circular
sections and to derive the dynamical equations for the shape
moments as well.

A. Outline

In Sec. II, we review the general formalism to describe the
fiber central line and fiber sections. We introduce a coordinates
system and a vector basis which are adapted to the description
of curved fibers. In Sec. III, we review in details how scalar
fields and vector field such as velocity can be expanded in
multipoles using an adapted 2 + 1 decomposition. This leads
us to introduce irreducible representations of SO(2) according
to which these multipoles are classified. With this formalism
clearly established, it is then possible to explore in full
generality all the kinematical relations of fluid fibers in Sec. IV
and then the dynamical laws in Sec. V. The formalism is then
applied for the two main geometries of interest. First, in Sec.VI
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we rederive the axisymmetric results up to first corrections,
including the interplay between the velocity along the axis
of symmetry, and rotation around that same axis. Second
corrections of the axisymmetric case are also reported in
Appendix E. In Sec.VII, we then tackle the problem of curved
fibers, first deriving the lowest order string model and then
discussing the general method to obtain corrections. We report
the first corrections in the curved case and show that elliptical
shapes are necessarily sourced at that order. We also discuss the
special case of straight but noncircular sections in Sec. VII D.
Finally, we compare our method with the rod models where
dynamical equations are usually obtained from momentum
and angular momentum balance and we discuss the range
of validity of these methods. Several technical developments
are gathered in the Appendices, among which the symmetric
trace-free tensors in Appendix A which we use throughout
the article. The formalism is applied to study toroidal viscous
fibers in Pitrou [28].

B. Notation

Assuming incompressibility, the mass density ρ is constant.
Hence, in the remainder of this article we will use the notation

μ/ρ → μ, ν/ρ → ν, P/ρ → P, (1.1)

where μ is the viscosity of the fluid, ν the surface tension
parameter, and P the pressure. We use Einstein summation
convention whenever indices are placed in pairs with one index
up and one index down as, e.g., in xμxμ or XiYi .

II. GEOMETRY

For axisymmetric fibers, it is natural to use cylindrical
coordinates. The third coordinate (z) is naturally associated
with the axis of symmetry, and the other coordinates (r,θ )
parametrize the two-dimensional space which is orthogonal
to this axis. However, for generally curved fibers, we must
use fiber adapted coordinates. They are closely related to
cylindrical coordinates in the sense that we choose a central
line inside the fiber and we use the natural coordinate of this
line as the third coordinate. The two other coordinates are then
used to describe the planes which are orthogonal to this central
line. In this section, we construct fiber adapted coordinates and
the orthonormal basis which is naturally associated with it.

A. Description of the fiber central line

Throughout this article, we use Cartesian coordinates xμ,
with the corresponding canonical basis of vector and covectors
(forms) eμ and eμ = dxμ. Greek indices refer to components
in this canonical basis. The scalar and wedge products of two
vectors X = Xμeμ and Y = Yμeμ are simply

X · Y ≡ XμYμ , [X × Y ]α ≡ εαμνXμYν, (2.1)

where εαμν is the totally antisymmetric tensor with ε123 = 1.
We assume that it is possible to define a fiber central line

(FCL) as an approximation to the fiber shape. We postpone
to Sec. IV I the discussion about the geometrical construction
of this line. The position of this FCL and its tangent vector

T = T μeμ are given by

Rμ(s,t), T μ ≡ ∂sR
μ, T μTμ = 1. (2.2)

The last condition ensures that the coordinate s can also be
used to measure lengths along the FCL, and t is the absolute
time. A parallel projector, also named longitudinal projector,
and an orthogonal projector, also named sectional projector,
can be defined as

P‖μ
ν

= T μTν, P⊥μ
ν = δμ

ν − T μTν = δμ
ν − P‖μ

ν
, (2.3)

and can be used to project any vectorial quantity along and
orthogonally to the fiber tangential direction T μ.

The velocity of the FCL is given by

U ≡ ∂t R (2.4)

from which we deduce that the evolution of the tangent vector
obeys

∂s∂t R = ∂t∂s R ⇒ ∂t T = ∂sU . (2.5)

From the normalization condition (2.2) of T μ, we deduce that

T · ∂t T = 0 ⇒ T · ∂sU = 0. (2.6)

This last relation means that the FCL velocity can only rotate
the FCL direction T , but without stretching it. Indeed, since
it is only a geometrical line there would be no physical
information contained in such stretching and we thus chose
the normalization (2.2). The FCL can be understood as a
nonextensible but flexible wire that would be inside the bulk
of the viscous jet, and the coordinate s can be thought of as the
distance along that wire from a reference point s = 0.

The curvature of the FCL is defined as the rate of change of
the tangential direction along the line for a fixed time, that is

κ ≡ T × ∂s T , ∂s T = κ × T , (2.7)

and it depends on (s,t). Note that we have chosen deliberately
κ · T = 0 and our convention thus differs from Arne et al.
[20], Ribe [22], and Ribe et al. [23] where the longitudinal
component of curvature does not necessarily vanish.

Finally, to alleviate the notation, for any vector X we will
use the notation ‹X ≡ T × X . (2.8)

Note that the vector κ̃ points toward the exterior of the FCL
curvature.

B. Local orthonormal basis

On each fiber section we can consider an orthonormal basis
(d1,d2,d3 ≡ T ) where the vectors of the basis depend only
on (s,t). We use coordinates i,j ,k, . . . to refer to components
along this basis. It is oriented such that

di × dj = εij
kdk, (2.9)

where εijk = ε
ijk = εij

k with ε123 = 1 is the alternating sym-
bol which is fully antisymmetric. This orthonormal basis is
related to the canonical Cartesian basis by a change of basis

di = d
μ
i eμ. (2.10)
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FIG. 1. Fiber central line position Rμ, and the associated or-
thonormal basis d

μ

i . A point lying in a fiber section is then labeled by
xμ defined in Eq. (2.29).

Similarly, the cobasis which depends also only on (s,t) is
related to the canonical cobasis by a change of cobasis

di = di
μeμ. (2.11)

The change of basis and cobasis satisfies the basic properties

di
μ = δ

ij
δμνd

ν
j = d

μ
i , (2.12a)

d
μ
3 = T μ, d3

μ = Tμ = δμνT
ν. (2.12b)

Any vector on the central line is decomposed as

X(s,t) = Xi(s,t)di(s,t). (2.13)

The fiber central line and its associated orthonormal basis
are illustrated in Fig. 1. Note that for components in the
orthonormal basis, the position of indices does not matter.
Indeed, from (2.12), we find that for any vector Xi = Xi . In
the orthonormal basis, the scalar products and wedge products
of two vectors X and Y are

X · Y = XiYi, [X × Y ]i = ε
ijk

XjYk. (2.14)

Following the evolution of the tangent vector along the fiber
(2.7), we choose to transport this basis along the FCL according
to

∂s di = κ × di ⇔ κi = 1
2ε

ijk(∂s dj ) · dk, (2.15)

which is consistent with (2.7) since T = d3.

C. Rotation of the orthonormal basis

The rotation rate of the orthonormal basis is defined by

∂t di = ω × di ⇔ ωi = 1
2ε

ijk(∂t dj ) · dk. (2.16)

In particular ∂t T = ω × T and the sectional projection of
rotation satisfies

P⊥(ω) = T × ∂t T = T × ∂sU . (2.17)

From the definitions (2.7) and (2.16) of curvature and rotation,
we get the structure relation

∂tκ − ∂sω = ω × κ . (2.18)

This relation is a consequence of the flatness of the classical
structure of space-time as explained in Appendix D. When

projected on T , it also implies

(∂sω) · T = 0. (2.19)

We use the indices a,b, . . . = 1,2 for the sectional com-
ponents, that is, which are orthogonal to the fiber tangential
direction. For instance, the curvature κ is projected since
P⊥(κ) = κ , but the rotation is not a projected vector, so their
decompositions in components read as

κ = κada, ω = ωi di , P⊥(ω) = ωada. (2.20)

The notation (2.8) in components is simply‹Xa = (T × X)a = Xbε
ba, (2.21)

where εab = εab ≡ εab3 is the two-dimensional alternating
symbol (ε12 = 1). Since ∂sε

ab = ∂tε
ab = 0 the tilde operation

and the ∂s or ∂t derivatives commute.
From (2.18) the relations between the derivatives of com-

ponents of curvature and rotation read as

∂tκ
i − ∂sω

i = ε
ijk

κjωk. (2.22)

Separating the sectional and longitudinal components, these
relations are just

∂tκ
a − ∂sω

a = εabκbω
3 = −κ̃aω3, (2.23a)

∂sω
3 = εabωaκb = −ωaκ̃

a = ω̃aκ
a. (2.23b)

This last relation (2.23b), which is the component version
of (2.19), states that once the curvature and the sectional
projection of the rotation are fixed at a given time along the
FCL, then the longitudinal component of rotation ω3 is also
determined at that time along the FCL, as a consequence of
the structure relation (2.18). We call this type of relation a
constraint equation.

D. Essential relations for components

For a vector X(s,t), the components of the derivatives [e.g.,
(∂tX)i ≡ di · ∂t X] are not the derivatives of the components
[e.g., ∂tX

i ≡ ∂t (d
i · X)]. Indeed, they are related by

(∂tX)i = ∂tX
i + (ω × X)i

= ∂tX
i + ε

ijk
ωjXk, (2.24a)

(∂sX)i = ∂sX
i + (κ × X)i

= ∂sX
i + ε

ijk
κjXk. (2.24b)

In particular, for the projected (or sectional) indices, this reads
as

(∂tX)a = ∂tX
a − ω̃aX3 + ‹Xaω3, (2.25a)

(∂sX)a = ∂sX
a − κ̃aX3. (2.25b)

If a vector X is projected, that is orthogonal to the tangential
direction (X3 = 0), then in that special case, (∂sX)a = ∂sX

a

but note that we still have (∂tX)a �= ∂tX
a . From the derivatives
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of the components, that is, from ∂tX
i , ∂sX

i , we can conversely
obtain the derivatives of the vector using (2.24) with the simple
relations

∂s X = (∂sX)i di = (∂sX
i)di + κ × X, (2.26a)

∂t X = (∂tX)i di = (∂tX
i)di + ω × X . (2.26b)

Let us report in coordinates some relations previously
obtained in a covariant form. Equation (2.6) reads as in
components

∂sU
3 + εabκaUb = ∂sU

3 + κ̃bUb = 0. (2.27)

As for the property (2.17) for the projection of the rotation, it
reads as simply

ωa = ∂s
‹Ua + κaU 3. (2.28)

This relation which is also a constraint equation states that
once the sectional projection of the central line velocity (Ua)
is known at a given time along the central line, then the
projection of rotation (ωa) is determined. Since the longitudinal
component of rotation ω3 is determined from (2.23b), we
can then determine the time evolution of the components of
curvature from (2.23a).

E. Fiber adapted coordinates

We use Cartesian coordinates ya = y1,y2 inside the fiber
section labeled by (s,t) so as to parametrize points which do
not lie exactly on the FCL. With y3 ≡ s, the fiber adapted (FA)
coordinates are the set of (yi) = (ya,s). The FA coordinates of
a point in the fiber are related to the Cartesian coordinates xμ

by

xμ(yi) = Rμ(s,t) + yadμ
a (s,t). (2.29)

These coordinates are illustrated in Fig. 1. The canonical basis
and cobasis associated with the FA coordinates are

ei = e
μ
i eμ, ei = ei

μeμ, e
μ
i = ∂xμ

∂yi
, ei

μ = ∂yi

∂xμ
(2.30)

and they are related to the orthonormal basis by

e3 = hT = hd3, e3 = 1

h
d3, (2.31a)

ea = da, ea = da, (2.31b)

where we defined

h ≡ 1 + κ̃ay
a. (2.32)

Given the relations (2.31b), we will ignore in the rest of this
article the difference between indices referring to ea (resp.
ea) and da (resp. da) since they are equal and refer to unit
vectors in both cases. The distinction is only meaningful for the
third components, that is, the components along the tangential
direction, since d3 is normalized whereas e3 is not.

The relation between the FA coordinates canonical basis
and the orthonormal basis can also be written in the form

di = d
j
i ej , di = d

i

j ej (2.33)

with

d3
3 = h−1, da

3 = 0, d3
a = 0, db

a = δb
a, (2.34a)

d
3
3 = h, d3

a = 0, da
3 = 0, da

b = δa
b . (2.34b)

The metric and its inverse in the canonical basis of the FA
coordinates are simply

gij ≡ ei · ej =
Ñ

1 0 0
0 1 0
0 0 h2

é
, (2.35a)

gij ≡ ei · ej =
Ñ

1 0 0
0 1 0
0 0 h−2

é
, (2.35b)

We notice that it looks very much like a metric of cylin-
drical coordinates. The main difference lies in the fact that h

depends on all coordinates (y1,y2,s) whereas for cylindrical
coordinates h is replaced by the radial coordinate [h → r in
Eq. (2.35)].

Finally, we define the unit directional vector na and the unit
orthoradial vector ña in the section plane by

ya ≡ rna, ña ≡ −εabnb, r2 ≡ yay
a. (2.36)

Since na and ña are unit vectors which are mutually orthogonal
and projected, then we find the identities

P⊥a
b = δa

b = nanb + ñañb, (2.37)

εab = nañb − ñanb. (2.38)

Using (r,na) rather than (y1,y2) in the section plane amounts
simply to using polar coordinates instead of Cartesian coor-
dinates. With the variables (r,na,s), the FA coordinates can
be understood as a cylindrical coordinates system that one
would have deformed so that the z axis is curved and onto
the FCL. The factor h defined in Eq. (2.32) which is larger that
unity in the exterior of curvature and smaller than unity in the
interior (κ̃a points toward the exterior of curvature) is the local
amount of stretching which had to be applied to perform this
deformation.

F. 2 + 1 decomposition

As mentioned in Sec. II A, any vector can be decomposed
into its part along T (its longitudinal part) and a sectional part
according to

Xμ = XT μ + X
μ
⊥, X

μ
⊥ ≡ P

μ
⊥ νX

ν, X ≡ X · T (2.39)

or in components

X = X3, Xa
⊥ = Xa. (2.40)

Given this last property, we will omit the ⊥ subscript when
dealing with the components of the projection of a tensor. This
decomposition is easily extended to tensors as each index needs
to be decomposed into a longitudinal and a sectional part.

From now on, we thus use the notation U = U 3 and ω = ω3

for the longitudinal components of the fiber velocity and of the
rotation rate.
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G. Spatial derivatives in fiber adapted coordinates

The components of the derivative of a vector in the canonical
basis of the FA coordinates are given by1

e
μ
i eν

j (∂μvν) = ∂ivj − 
k
ij vk, (2.41a)

e
μ
i ej

ν (∂μvν) = ∂iv
j + 


j
ikv

k, (2.41b)

where the Christoffel symbols are defined as



j
ik ≡ e

μ
i ej

ν

(
∂μeν

k

)
. (2.42)

They are related to the components of the metric in the
canonical basis of the FA coordinates by


i
jk = 1

2gil(∂jglk + ∂kglj − ∂lgjk). (2.43)

The only nonvanishing Christoffel symbols are


3
33 = ∂sh

h
, 
3

a3 = κ̃a

h
, 
a

33 = −hκ̃a. (2.44)

The derivative of the orthonormal basis is then deduced
from (2.41) and the relations (2.31). We find

d
j

ν

Ä
∂μdν

i

ä
= d

j

ν e3
μεαβνκα(di)β = e3

με
aij

κa, (2.45)

where from (2.31) we must use e3
μ = Tμ/h. Finally, the diver-

gence of a vector has a simple expression in FA coordinates.
For a general vector Xμ it reads as

∂μXμ = 1

h
∂i(hXi) = 1

h
[∂a(hXa) + ∂sX

3]

= 1

h
[κ̃aX

a + ∂sX
3] + ∂aX

a. (2.46)

In particular, this allows to obtain the Laplacian of a scalar
function S by using Xμ = ∂μS, and we get

�S = ∂a∂aS + ∂2
s S

h2
− (∂sS)ya∂s κ̃a

h3
+ κ̃a∂aS

h
. (2.47)

III. FIELDS EXPANSION ON SECTIONS

With the FA coordinates we have an appropriate method to
describe the position of a fluid particle inside the viscous jet.
However, in order to describe the dynamics of the viscous
fluid inside the fiber, we also need to find an appropriate
description for the fluid velocity itself, and this is the goal of

1For simplicity, we have chosen to use the Cartesian coordinates xμ

in the ambient space. If we were to choose general curvilinear coordi-
nates, e.g., spherical coordinates, then in all our equations we should
promote the partial derivative to a covariant derivative and perform
the replacement ∂μ → ∇μ, ∂i → ∇i and δμν → gμν, δμν → gμν

everywhere. We would also have to use the rule ∂s → e
μ

3 ∇μ. The
indices μ,ν . . . could even be given an abstract meaning and not refer
to a particular system of coordinates. This is a standard notation for
general relativity [29] in which the background space is unavoidably
curved, but for classical physics this extra layer of abstraction is not
necessary. We have thus chosen the simplest and most transparent
notation based on an ambient set of Cartesian coordinates with its
associated partial derivative, but we must bear in mind that the results
are more general.

this section. Clearly, in the slender approximation the velocity
field is necessarily very close to the velocity Uμ on the FCL.
It is thus natural to Taylor expand the velocity field around
the velocity on the FCL. However, we cannot keep all orders
of this expansion and we need general principles to guide
us in truncating such expansion. Since the fiber sections are
two dimensional, it is natural to classify the various orders
of the Taylor expansion according to their transformation
property under SO(2), that is, the local group of rotations
around the tangential direction. In this section, we give the
essential steps to find the irreducible representations of SO(2)
and their tensorial expressions. Further details for this method
are reported in Appendix A.

A. Taylor expansion

Any 2-field, that is, a field on the fiber section with only
sectional indices, can be Taylor expanded in the variables
(y1,y2) for each (s,t). For a scalar field, this Taylor expansion
is of the form

S(ya,s,t) =
∞∑

�=0

SL(s,t)yL, (3.1)

where we use the multi-index notation L = a1 . . . a� on which
the Einstein summation convention applies. The SL are nec-
essarily symmetric rank-� tensors since the yL are symmetric.
They are obtained by successive applications of ∂/∂ya on S.
If there is no index, that is, for � = 0 in Eq. (3.1), then we use
the notation S∅. For a 2-vector the expansion is instead of the
form

V a(yi,t) =
∞∑

�=0

V a
L (s,t)yL, (3.2)

and this is obviously extended to higher order tensors. The
tensors V a

L are symmetric in the � indices L but there is no
particular symmetry involving the index a.

If we decompose the total fluid velocity V μ into its longi-
tudinal part V and its projected part V a as in Sec. II F, then
the former is a scalar function whereas the latter is a 2-vector
and they are Taylor expanded, respectively, as in Eqs. (3.1)
and (3.2).

B. Irreducible representations of SO(2)

It proves useful to decompose the ya dependence in the
Taylor expansion of (3.1) by separating the dependence in
the radial coordinate r and the direction na . The dependence
in the direction na can be further decomposed onto the
irreducible representations (irreps hereafter) of SO(2). This
method follows a method long known in three dimensions
where the direction vector lies in the two-sphere, and the irreps
considered are those of SO(3) [30–33].

The irreps of SO(2) are given by the functions einθ . More
precisely, the irreps are two dimensional as they are represented
by e±inθ , except for D0 which is one dimensional and which is
just the set of constants. We note these irreps Dn. Any function
depending on na = (cos θ, sin θ ) is indeed expanded in Fourier
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series as

f (θ ) =
∞∑

n=−∞
fne

inθ = f0 +
∞∑

n=1

fne
inθ + f−ne

−inθ . (3.3)

The symmetric trace-free (STF) 2-tensors are also irreps of
the rotation group SO(2) just like STF 3-tensors are irreps of
the group SO(3). The corresponding expansion of f reads as
simply

f (ni) =
∞∑

�=0

fLnL, (3.4)

where this time the fL are symmetric but also traceless tensors
of rank � (we recall the multi-index notation L = a1 . . . a�).
The two expansions are related thanks to (for m > 0)

Ym
a1...am

≡ (d1 + id2)a1 . . . (d1 + id2)am, (3.5a)

Y−m
a1...am

≡ (d1 − id2)a1 . . . (d1 − id2)am . (3.5b)

Indeed, it is easily found that

fL =
∑

m=±|�|
Ym

L fm, fm = 1

2�
f LYm

L . (3.6)

The STF tensors of rank � have indeed only two degrees
of freedom. For instance, for a symmetric rank-4 tensor, the
only independent degrees of freedom are f1111 and f1112 since
from the traceless condition the other components are related
through f1222 = −f1112, f2222 = −f1122 = f1111. We are led
to decompose all tensors appearing in Taylor expansions in
STF tensors so as to obtain a decomposition in terms of irreps.

C. Irreps of scalar functions

For scalar functions in the fiber section plane, the expansion
(3.1) is already made in terms of symmetric tensors and we only
need to remove the traces. For any symmetric tensor SL, the
traceless part can be extracted as

S〈a1...a�〉 =
[�/2]∑
n=0

an
� δ(a1a2 . . . δa2n−1a2n

Sa2n+1...a�)b1...bn

b1...bn ,

(3.7)

an
� ≡ (−1)n

(2� − 2n − 2)!!(2n − 1)!!

(2� − 2)!!

Ç
�

2n

å
. (3.8)

In the expression above, the symmetric part of a tensor
Ta1...a�

which is not initially symmetric is denoted T(a1...a�),
and the STF part is denoted with angle brackets T〈a1...a�〉.
If the symmetrization ranges on the indices of a product of
tensors, this product has to be considered as a single tensor for
which the indices are symmetrized. We also use the notation
n!! = n(n − 2)(n − 4) . . . .

From the Taylor expansion (3.1), we see that by removing
the traces in the tensors SL, we get factors of r2 ≡ yay

a . The
expansion in terms of STF tensors only is thus of the form

S(yi,t) =
∞∑

�=0

∞∑
n=0

S
(n)
L (s,t)yLr2n, (3.9)

where the S
(n)
L are STF. The dependence in the direction and

the radial coordinates have now been clearly separated. The
directional dependence is decomposed onto STF tensors, and
the dependence in the radial distance is an even polynomial
as it is a polynomial in r2. If no ambiguity can arise, we can
omit the sums over �,n so as to alleviate the notation. The STF
multipoles of the decomposition (3.9) can be obtained from
angular integrals as explained in Appendix A.

Finally, in the case � = 0, that is, for the monopole of the
directional dependence, the coefficients are noted S

(n)
∅

. For
instance, if we consider the longitudinal part of the velocity
field V , then V

(0)
∅

corresponds to a uniform flow, and V
(1)
∅

corresponds to a parabolic velocity profile, also known as a
Hagen-Poiseuille (HP) flow.

D. Irreps of 2-vector fields

It is shown in Appendix A 2 that the expansion in irreps of
a 2-vector is necessarily of the form

Va = “V (n)
aL yLr2n + ya

2
ÙV (n)

L yLr2n − εaby
bV̊

(n)
r2n, (3.10)

where the “V (n)
L and ÙV (n)

L are STF tensors and where we recall
that there is an implicit sum on � and n. At first sight, this form is
very cumbersome if we are familiar with the irreps of 3-vectors
[that is, irreps of SO(3)]. Indeed for 3-vectors, the directional
dependence can always be expanded in terms of electric type
and magnetic type multipoles [31,34]. The result for 2-vectors
is necessarily very different because the antisymmetric tensor
has only two indices in two dimensions, hence the expressions
from the three-dimensional results, which also involve the
antisymmetric tensor in three dimensions, cannot be exported
directly to two dimensions.

Note also that the tensors “V (n)
L have no monopole since they

must have at least one index. Conversely, the functions V̊
(n)

are
purely monopolar since they do not have any tensorial index.
So, we can interpret (3.10) by saying that we have also two sets
of STF tensors. The first set is made of the ÙV (n)

L , � � 0, and the

second set consists in the V̊
(n)

and the “V (n)
L , � � 1. Physically,

V̊
(0)

corresponds to a solid rotation around the fiber tangential
axis (axial rotation hereafter) and ÙV (0)

∅
corresponds to a radial

infall of the fluid.
Finally, note that we could also decompose a vector field by

projecting its free index so as to obtain a scalar function. For
instance, we can select the radial and orthoradial components
by projecting along na and ña . Then, each scalar function can
be expanded as in (3.9). The relation between the two methods
is (with an implied sum on � and n)

rVr ≡ yaVa = “V (n)
L yLr2n + 1

2
ÙV (n)

L yLr2(n+1), (3.11a)

rVθ ≡ ỹbVb = εb
a1
“V (n)

aL−1b
yaLr2n + V̊

(n)
r2(n+1). (3.11b)

This points to a simple method to extract the STF components
of a vector. We first extract the STF components of its
radial and orthoradial projections as for scalar functions (see
Appendix A) and then deduce the STF multipoles of the
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decomposition (3.10) from the relations

[rVr ](n)
L = “V (n)

L + 1
2
ÙV (n−1)

L , (3.12a)

[rVθ ](n)
L = εb

〈a1
“V (n)

aL−1〉b + δ0
� V̊

(n−1)
, (3.12b)

which are inverted as

V̊
(n) = [rVθ ](n+1)

∅
, (3.13a)“V (n)

L = −εb
〈a1

[rVθ ](n)
aL−1〉b, (3.13b)ÙV (n)

L = −2“V (n+1)
L + 2[rVr ](n+1)

L . (3.13c)

As a final comment on STF tensors, we must stress that
these are much more adapted to abstract tensor manipulation
than the usual representation (3.3), and we chose to perform
all the tensor manipulations of this article with xAct [35].

IV. KINEMATICS

We are now equipped with all the necessary formalism
to study in details the kinematics and dynamics of viscous
fibers. In this section we present all the relations needed for
the kinematics, and in the next section we shall focus on the
description of dynamics, so as to obtain the one-dimensional
reduction of viscous fibers from its intrinsic physical laws.

A. Velocity parametrization

We separate the total fluid velocity Vμ into the velocity of
the FCL (Uμ) and the small difference V μ as

Vμ = Uμ + V μ. (4.1)

V is decomposed into a longitudinal part V and a sectional part
V a which are decomposed as in Eqs. (3.9) and (3.10). In order
to avoid cluttering of indices when the decomposition (3.10)
is used for the velocity field, we shall use the short notation

v
(n)
L ≡ V

(n)
L , v(n) ≡ v

(n)
∅

, v ≡ v
(0)
∅

, (4.2a)

φ̇(n) ≡ V̊
(n)

, φ̇ ≡ V̊
(0)

, (4.2b)

u
(n)
L ≡ ÙV (n)

L , u(n) ≡ u
(n)
∅

, u ≡ u
(0)
∅

. (4.2c)

B. Incompressibility

The incompressibility translates into a condition on the
velocity field as it implies that its divergence vanishes. This
incompressibility condition is a scalar equation

CE ≡ [∂μVμ = 0], (4.3)

which is a constraint for the velocity field. Since (2.6) or
(2.27) imply that the fiber central line velocity Uμ is also
divergenceless (∂μUμ = 0), we deduce that ∂μV μ = 0 and
from (2.46) it reads as, in terms of the FA coordinates,

h∂aV
a + κ̃aV

a + ∂sV = 0. (4.4)

As this constraint is scalar, it can be expanded into irreps just
like (3.9) and each STF tensor of this expansion must vanish

identically. Using the property (A13), we get

0 = [CE](n)
L = ∂sv

(n)
L + 2(n + 1)“V (n+1)

L + δ1
�κaφ̇

(n)

+ 2(n + 1)“V (n+1)
〈L−1 κa�〉 + (n + 1)κ̃a“V (n)

aL

+
Å

�

2
+ n+ 1

ãÅ
1

2
κ̃au

(n−1)
aL + u

(n)
L + u

(n)
〈L−1κ̃a�〉

ã
. (4.5)

In general, the tensors u
(n)
L can always be expressed in terms of

the other tensors using the incompressibility conditions (4.5).
In particular, from [CE](0)

∅
we get

u
(0)
∅

= −“V (0)aκ̃a − ∂sv. (4.6)

This relation has a simple physical interpretation. Indeed, the
right-hand side is (minus) the stretching rate of the velocity
field on the central line T · ∂s V given that on the central line
the velocity is just V = “V (0)ada + v(0)T . It thus states that a
radial infall necessarily appears when the fiber is stretching, so
as to ensure volume conservation.

C. Coordinate velocity

Initially, the total velocity Vμ is defined as the rate of
coordinate change, that is, as dxμ/dt for the fluid elementary
particles. However, if we take the components of the velocity
in the basis associated with FA coordinates, that is the V i , we
do not get the rate of change of the FA coordinates dyi/dt .
We thus need to infer the nontrivial relation between V i and
dyi/dt . For this we define the speed of the coincident point as

Vμ
C ≡ ∂xμ

∂t

∣∣∣∣
yi

, V i
C ≡ − ∂yi

∂t

∣∣∣∣
xμ

= ei
μV

μ
C , (4.7)

that we gave in both the Cartesian and the FA system of
coordinates (see Appendix C for details). The speed of the
coincident point is the speed of a point that would have constant
FA coordinates y1,y2,s. The total velocity is related by

Vμ = dxμ

dt
= ∂xμ

∂yi

dyi

dt
+ Vμ

C , (4.8)

that is, in FA coordinates by

V i = V i
R + V i

C, V i
R ≡ dyi

dt
. (4.9)

V i
R is thus the coordinate velocity for the FA coordinates since

it equals the rate of change of FA coordinates. From the above
definition of Vμ

C and using the parametrization (2.29) together
with the property of the rotation (2.16), we get the expressions

Vμ
C = Uμ + [ω × (yada)]μ

= Uμ + (ω̃ay
a)T μ + ωỹadμ

a , (4.10a)

Vμ
R = V μ − [ω × (yada)]μ

= V μ − (ω̃ay
a)T μ − ωỹadμ

a . (4.10b)

On the expression (4.10a) it appears that the coincident point
velocity is the velocity of the FCL, on which is added the solid
rotation of the system of FA coordinates which does not vanish
when the point considered is not lying exactly on the FCL. Part
of the rotation is due to the projected part of the rotation rate
ωa and corresponds to the rotation of section planes, and the
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rest of the rotation is due to the longitudinal part of rotation
ω and corresponds to a rotation of the basis vectors d1 and d2

around the fiber tangential direction, that is, to a rotation inside
the section plane itself.

D. Section shape description

The section shape can be characterized by its radius as a
function of the direction in the section, that is, by its curve in
polar coordinates

R(s,t,na). (4.11)

As any function depending on the direction inside the fiber
section, it can be decomposed in STF multipoles RL:

R(s,t,na) = R(s,t)

(
1 +

∞∑
�=1

RL(s,t)R�nL

)
. (4.12)

We call R(s,t) the radius of the fiber and the lowest multipole
Rab can be interpreted as an elliptic elongation of the fiber
section shape. Instead of working with the multipoles RL

which have a dimension 1/L�, we can define dimensionless
STF moments as “RL ≡ RLR�. (4.13)

There exist alternate ways for describing the shape of the
fiber section, and we give an example of another method in
Appendix B and relate it to the description (4.12).

E. Normal vector

For a function depending on the direction f (na), we can
define an orthoradial derivative by

D

Dna
f (nc) ≡ ⊥b

a

∂f (yc)

∂yb

∣∣∣∣
yc=nc

, (4.14)

where the orthoradial projector is defined by

⊥a
b≡ δa

b − nanb. (4.15)

This projector satisfies ⊥a
b nb = 0, ⊥a

b ñb = ña , and ⊥a
a= 1.

Note that it can also be written as

⊥b
a= ñañ

b = r∂bn
a. (4.16)

When applied on the fiber radius, this yields

DR
Dna

= r
∂R
∂ya

= R

∞∑
�=1

(� + 1) ⊥b
a
“RbLnL (4.17)

= R

∞∑
�=1

(� + 1)ña(“RbLñbnL). (4.18)

A normal covector (not necessarily unity) to the boundary
surface is N = Nμdxμ with

Nμ = ∂μ�|�=0, (4.19)

where the boundary function � is defined as

�(s,t,ya) = r − R(s,t,na) = √
yaya − R(s,t,na). (4.20)

The components of the normal vector are in our case

Na = na − 1

R
DR
Dna

(4.21a)

= na − ña

(� + 1)“RbLñbnL

1 + “RLnL
, (4.21b)

N3 = −∂sR, N3 = 1

h
N3, (4.21c)

where sums over � are implied. This vector can be normalized
and the unit normal vector is just“Nμ ≡ Nμ»

NaNa + (N3)2
. (4.22)

F. Scalar extrinsic curvature

In order to use Young-Laplace law for surface tension, we
need the general expression for the scalar part of the extrinsic
curvature of the fiber boundary, which by definition is the
divergence of the unit normal vector. Using (2.46), it is thus
obtained as

K ≡ ∂μ
“Nμ = κ̃a

“Na

h
+ ∂a

“Na + ∂s
“N3

h
. (4.23)

G. Boundary kinematics

Since the boundary must follow the velocity field, the
constraint � = 0 must propagate with the velocity, that is,ï

d�

dt

ò
�=0

=
ñ

∂�

∂t
+ dyi

dt

∂�

∂yi

ô
�=0

= 0. (4.24)

Since ∂sr = ∂t r = 0, then ∂t� = −∂tR and given the defini-
tion (4.19) for the nonunit normal vector and the definition (4.9)
of the coordinate velocity, this constraint is simply rewritten
as

RE ≡ [
∂tR = V i

RNi = V3
RN3 + Va

RNa

]
�=0. (4.25)

We must be careful with the fact that it is V3
R = ds/dt which

appears and not V3
R , and we must thus use V3

R = d3
3V

3
R =

h−1V3
R to relate them.

Despite its apparent simplicity, this equation is actually
rather complicated. First, we stress that it is the coordinate
velocity which appears since it is the velocity which gives
the rate of change for FA coordinates. But, more importantly,
all quantities must be evaluated on the fiber side, meaning that
every occurrence of ya must be replaced byRna whereR itself
has a directional dependence given by (4.12). This equation is
thus in general extremely nonlinear in the STF multipoles RL.
We are forced to realize that it is hopeless to solve the general
problem of curved viscous jets without major simplifications,
which leads to consider a perturbative scheme on which we
should perform a consistent truncation.

H. Slenderness perturbative expansion

If the typical length for variations in the velocity field is L

and is much larger than the radius R, then the approximation
that the body considered is elongated holds and we can
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hope to find a coherent one-dimensional reduction. The small
parameter of our perturbative expansion is thus

εR ≡ R/L. (4.26)

For instance, the moment v(1) comes originally from a Taylor
expansion of the velocity, as can be checked from the dimen-
sion [v(1)] = [v(0)]/L2. A term like v(1)R2 is thus of order ε2

R

compared to the lowest order velocity v(0), meaning that the
former is really a correction to the latter. In general, higher
order multipoles correspond to higher orders in εR because
they primarily come from gradients of the velocity fields which
bring inverse powers of L. As an example, v(0)

ab yayb is of order
ε2
R compared to v = v

(0)
∅

.
When including the effect of curvature, we also assume

that the scale 1/|κ | (the curvature radius) is also of the
order of L at most. Indeed, if there is curvature, the velocity
flow must adapt on scales which are commensurate with the
curvature radius. As a consequence, terms of the type κay

a

must also be of order εR . In any case, it would be impossible
to consider sections which have a section radius larger than
the fiber curvature radius. Indeed, in that case fiber sections
would intersect, hence, |κ |R ∝ εR must be small to obtain a
satisfactory one-dimensional approximation.

I. Gauge fixing

Since there are three degrees of freedom in the position of
the FCL inside the viscous jet, we can fix two of these by asking
that there is no dipole in R. This corresponds to the intuitive
requirement that the fiber central line should be in the middle
of the fiber section. Formally, this means that we fix the gauge
by setting

Ra = 0, (4.27)

and it leads to a constraint equation when considering the
dipole of (4.25).

The gauge restriction (4.27) is an order ε2
R expression as it

is automatically satisfied at lowest order. It reads as indeed“V (0)
a = 1

6R2(−2“V (1)
a + 6Hv(0)

a − 6Hvκ̃a + 2κaφ̇

− 6Hω̃a − 3κ̃a∂sv + 2∂sv
(0)
a

) + O
(
ε4
R

)
, (4.28)

where we have defined the stretching factor

H ≡ ∂s lnR. (4.29)

The gauge restriction fixes the global velocity shift with respect
to the fiber central line velocity Ua which is encoded by the
velocity moment “V (0)

a . And, since this shift is of order ε2
R ,

we can state that the projected component of the velocity on
the central line is nearly the projected velocity of the central
line itself, that is, [Va 
 Ua]y1=y2=0.

With (4.27), we have fixed only two of the three gauge
degrees of freedom which arise from the fact that we are free
to choose any curve as the FCL. The third degree of freedom
corresponds to the possible reparametrization of the fiber inside
the same curve, that is, to the replacement s → s + f (s,t).
Given the choice of normalization for the tangent vector in
Eq. (2.2), this freedom is only a global but time-dependent
reparametrization freedom s → s + f (t). For every problem
considered, there is a natural way to fix unambiguously the

affine parameter s, for instance, setting it to s = 0 at the
boundary.

J. Shape restriction

With the gauge choice of the previous section, we have
managed to cancel the shape dipole. However, we cannot
assume that in general higher order shape multipoles van-
ish. Indeed, if we have curvature, then terms of the type
∝R2κ〈aκb〉 which are of order ε2

R would source the section
shape quadrupole Rab. Typically, we expect to find that shape
terms like RLyL or R�RL are of order ε�

R . In Sec. VII,
we discuss this scaling and show that circular sections are
compatible with the string description of curved fibers, which
is the lowest order description in which order ε2

R effects are
ignored.

Of course, if we restrict to axisymmetric jets as we shall do
in Sec. VI, then κa = 0 and circular sections are consistent
throughout even though one might still want to consider
straight jets with noncircular sections.

K. Velocity shear rate

In order to describe the dynamics of the viscous fluid inside
the fiber, we will need to consider the gradient of the velocity
field. Let us define the nonsymmetric tensor

Sμν ≡ ∂μVν . (4.30)

Its components are given by

Sab = ∂aVb, (4.31a)

Sa3 = ∂aV3, (4.31b)

hS3a = ∂sVa − κ̃aV3, (4.31c)

hS33 = ∂sV3 + κ̃aVa. (4.31d)

These components are obtained either from the components
in the canonical basis of the FA coordinates, that is, the Sab,
S3a , Sa3, and S33 which we compute from (2.41), that we
then project on the orthonormal basis, or using directly (2.45)
in the velocity decomposition V = V i di . This tensor can be
decomposed as

Sμν = 1
2σμν + ωμν, (4.32)

where we used that the velocity shear rate is (twice) the
symmetric part

σμν ≡ 2S(μν) = Sμν + Sνμ, (4.33)

and the vorticity is the antisymmetric part

�μν ≡ S[μν] = 1
2 (Sμν − Sνμ). (4.34)

We also define the vorticity (Hodge) dual vector by

�α ≡ 1
2εαμν�

μν ⇒ �μν = εμνα�α. (4.35)

From (4.31), we find that the components of the shear in the
orthonormal basis are then given by

σab = ∂aVb + ∂bVa, (4.36a)

hσa3 = h∂aV3 + ∂sVa − κ̃aV3, (4.36b)

hσ33 = 2(∂sV3 + κ̃aVa). (4.36c)
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Similarly, the components of the vorticity vector are

�a = 1
2εab(Sb3 − S3b)

= 1

2
εab

ï
∂bV3 − 1

h
(∂sVb − κ̃bV3)

ò
(4.37a)

� 3 = 1

2
εab∂[aVb] = 1

4
εab(∂aVb − ∂bVa) . (4.37b)

V. DYNAMICS

The dynamics of viscous fluids is well known and arises
from the Navier-Stokes equation. However, in order to achieve
a one-dimensional reduction for viscous jets, we must find a
way to get rid of the physics on the fiber boundary. Enforcing
the boundary conditions on the stress tensor on the fiber
boundary leads to a set of three constraints which can be
conveniently used to reduce the number of free fields in our
one-dimensional reduction. This section is dedicated to the
general construction of this method and we then apply it in the
subsequent sections for axisymmetric and curved fibers.

A. Total stress tensor and viscous forces

The total stress tensor is decomposed as

τμν = τ (P )
μν + τ (μ)

μν , (5.1)

where the two components arise from pressure forces and shear
viscosity. For a Newtonian fluid, they are simply given by

τ (P )
μν = −Pgμν, τ (μ)

μν = μσμν. (5.2)

The pressure is a scalar and it is thus decomposed as in
Eq. (3.9):

P =
∞∑

�=0

∞∑
n=0

P
(n)
L yLr2n, (5.3)

where the P
(n)
L are STF tensors.

From the total stress tensor (5.1), we can define a viscous
force per unit area on the fiber sections

Fμ ≡ τμ3. (5.4)

As any vector it has a longitudinal part F which corresponds
to viscous traction or compression on fiber sections, and a
sectional part Fa .

B. Boundary conditions

The boundary condition for the stress tensor is the vector
constraint

Cμ ≡ [τμν
“Nν + νK“Nμ = 0]

≡ [
τ (μ)
μν

“Nν + νK“Nμ − P “Nμ = 0
]
. (5.5)

As any vector, it can be decomposed into its longitudinal
component C and its sectional component Ca . The latter
can be further decomposed into a radial contribution and an
orthoradial contribution as

rC ≡ Can
a, θC ≡ Cañ

a. (5.6)

However, these are not fields on the fiber sections since they
are defined only at the boundary. They depend on the position
on the FCL s, on time t , but their sectional dependence is only a

dependence in the direction vector na . They also depend on the
fiber radius R and on the shape multipoles RL. So, in general
they can be expanded in STF components as

C(s,t,na) =
∞∑

�=0

CL(s,t,R)R�nL (5.7a)

=
∞∑

�=0

∑
n

C(n)
L (s,t)R2n+�nL, (5.7b)

where in the second line we have also expanded the dependence
of the STF multipoles in powers of R, and with similar
expansions for the radial and orthoradial boundary constraints
θC and rC. To be precise, for the latter, the expansion takes the
form (5.7) for rC/R. Note again the difference with (3.9) as the
powers of r are replaced by powers of R because constraints
are only defined on the boundary. In practice, it is simpler to
consider the constraint (5.5) with the non-normalized normal
vector Nμ instead of “Nμ since they are equivalent.

We realize that the total sum involves all orders of the form
ε2m
R . Since we are eventually interested in results which are

valid up to a given order in εR , we define the moments of the
constraints up to a given order by

C(�n)
L =

m=n∑
m=0

C(m)
L R2m, (5.8)

with similar definitions for the radial and orthoradial con-
straints.

As we shall detail in two examples in Secs. VI and VII, we
will deduce general relations from the vector constraint (5.5) or,
more precisely, from its three scalar components (longitudinal,
radial, and orthoradial).

C. Volumic forces

Once the stress tensor is computed, it is straightforward to
get the volumic forces f μ since they are expressed as

f μ = ∂ντ
νμ + gμ = μ�Vμ − ∂μP + gμ, (5.9)

where gμ are long range volumic forces such as gravity. Its
components are related to the components of the stress tensor
thanks to

f 3 = ∂aτ
a3 + 1

h
(∂sτ

33 + 2κ̃aτ
a3) + g3,

f a = ∂bτ
ba + 1

h
(∂sτ

3a + κ̃bτ
ba − κ̃aτ 33) + ga. (5.10)

D. Navier-Stokes equation

The dynamics of a viscous fluid is governed by the
conservation equation and the Navier-Stokes equation. The
conservation equation has already been used since from in-
compressibility it implied the divergenceless condition (4.3).
Having developed all the tools to express the volumic forces,
we are now in position to write the Navier-Stokes equation. It
is of the form

Dμ ≡ [Aμ = f μ], (5.11)
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where the acceleration vector is

Aμ ≡ ∂tVμ|yi + Vν
RSνμ + Gμ. (5.12)

If the dynamics is considered in a (constantly) rotating frame,
the fictitious or geometrized forces (inertial and Coriolis
forces) gathered in Gμ are expressed as

Gμ ≡ 2εμαβ�αVβ + (�νx
ν)�μ − �2xμ, (5.13)

where �μ is the rotation of the frame with respect to a Galilean
(inertial) frame.

Just as any vector, the Navier-Stokes equation (5.11) is
decomposed into a longitudinal part D and a sectional part
Da which we can further decompose in irreps as in Sec. III D.
The components of the first term of (5.12) are simply obtained
from

(∂tV)3 ≡ d3
μ∂tVμ = ∂tV + ω̃aVa, (5.14a)

(∂tV)a ≡ da
μ∂tVμ = ∂tVa − Vω̃a + Ṽaω, (5.14b)

where we recall the notation V ≡ V3 for the longitudinal
component of the velocity.

E. Secondary incompressibility constraint

The incompressibility implies the divergenceless condition
(4.3), and as such it can be considered as a primary constraint.
Then, by ensuring that this constraint remains satisfied when
time evolves, we obtain a secondary constraint. Indeed, taking
the divergence of the Navier-Stokes equation (5.11) we obtain
an incompressibility constraint

∂μAμ = ∂μf μ = −�P, (5.15)

where we have assumed that the long range forces are constant
(e.g., for gravity) or have at least no divergence (∂μgμ = 0).
If the long range forces have a divergence, then this should be
included in Eq. (5.15).

From the expression (5.12) of the acceleration, this con-
straint is

DC ≡ [SμνS
νμ + 2εαβμ�βSαμ − 2�2 = −�P ]. (5.16)

Using the decomposition (4.32) of the velocity gradient tensor
into velocity shear rate and vorticity, it can be recast nicely as

1
4σμνσ

νμ − 2(�μ + �μ)(�μ + �μ) = −�P. (5.17)

The right-hand side of this equation can be computed by using
(2.47). We will use this secondary incompressibility constraint
to get constraints on the various moment of the pressure field.

F. Dimensionless reduction

So far, all physical quantities have a physical dimension. It
is, however, possible to build dimensionless quantities. Usually
for viscous fluids, this is done by noting that the dimensions of
viscosity and surface tension [recalling that we have divided
them by the mass density in Eq. (1.1)] are

[μ] = L2T −1, [ν] = L3T −2. (5.18)

It is thus possible to define a length scale μ2/ν and a timescale
μ3/ν2 from which we can define dimensionless quantities for
all physical quantities in the problem at hand. However, we

want to allow for the possibility of having no surface tension,
and we do not wish to use ν to define dimensionless quantities.
Instead, we decide that there is a natural length scale L in our
problem which corresponds to the typical length of velocity
variations. The timescale is then obtained fromL2/μ. The main
quantities in the problem are simply adimensionalized using
these length scales and timescales. For instance, we define
dimensionless quantities with

t = L2

μ
t, s = L s, v = μ

L
v, g = μ2

L3
g,

φ̇ = μ

L2
φ̇, R = LR, ν = μ2

L
ν, (5.19)

κa = 1

L
κa, ωa = μ

L2
ωa,

where we recall the notation v = v
(0)
∅

and φ̇ = φ̇
(0)
∅

. For
higher order multipoles, this construction of dimensionless
variables is straightforwardly performed as the dimension of
the multipoles is read from the expansion from which it is
defined. For instance, from (3.9) we get v

(n)
L = μ/L1+�+2nv

(n)
L .

Note also that by construction εR = R so that in practice it is by
expanding in powers of R that we identify for any expression
the various orders in powers of εR .

The dimensionless ratios of fluid mechanics which are
relevant for viscous jets in a rotating frame are the Reynolds
number, the Froude number, the Rossby number, and the Weber
number. If we consider a typical reference reduced velocity vr,
then they are simply expressed as

Re = vr, Fr2 = (vr)2

g
, Rb = vr

�
, We = (vr)2

ν
. (5.20)

In the remainder of this article, we use the dimensionless
physical quantities rather than the dimensionless numbers, but
using the dictionary (5.20), all expressions can be recast with
these dimensionless numbers.

In the next section, we present two main applications of
our formalism and we shall assume that we have performed
such a dimensionless reduction for all quantities. In order to
avoid cluttering of notation, we will omit in the remainder
of this article to specify that the quantities are dimensionless.
In practice, the dimensionless reduction amounts simply to
replacing μ → 1 in all our equations but keeping ν, and it
is thus used as a consistency check. Note that several other
schemes would have been possible to build dimensionless
quantities, just by using other physical quantities that might
be present in the problem. For instance if we use gravity, then
we can build a length scale and a timescale without resorting
to a choice of L simply by

L = μ2/5g1/5, T = μ2/5g−4/5. (5.21)

After building dimensionless quantities with these scales, the
gravity vector gμ is replaced by a unit vector while μ → 1 in
all equations.

Similarly, if we are working in a rotating frame we can use
the rotation vector magnitude to build a timescale and then
from the viscosity we can build a length scale as

T = �−1, L = √
μ/�. (5.22)
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After building dimensionless quantities, the rotation vector �μ

is replaced by a unit vector while μ → 1 in all equations.

VI. APPLICATION TO AXISYMMETRIC JETS

Using the formalism developed so far in the particular
case of a straight viscous jet (κa = 0) would be equivalent
to kill a fly with a sledgehammer, especially if we also require
axisymmetry of the fiber around the FCL. Indeed, in that case
the FA coordinates are just Cartesian coordinates, with the
third coordinate s corresponding to the axis of symmetry of
the problem. This problem has been studied already in the
literature [6,7] and we shall rederive, recover, and extend
these standard results to include higher order corrections, and
a possible rotation of the viscous fluid around the axis of
symmetry (called torsion by Bechtel et al. [8]).

From the assumed rotational symmetry of the problem, only
the monopolar moments are nonvanishing and we need only to
consider the v(n) = v

(n)
∅

, φ̇(n) = φ̇
(n)
∅

, and u(n) = u
(n)
∅

. We recall
that we use the short notation introduced in the definitions
(4.2), and in particular we emphasize the notation v = v(0) for
the fundamental lowest order component of the longitudinal
velocity. It is also possible to further restrict the problem to
nonrotational flows, and require that all the φ̇(n) vanish, as
done in, e.g. García and Castellanos [6], Eggers and Dupont
[7], but we will not perform such simplification and allow for a
rotation of the fluid around the axis of symmetry as in Bechtel
et al. [8].

From the symmetry of the problem we also deduce that
Ua = 0 and the rotation rate of the central line satisfies neces-
sarily ωa = 0. Then, from (2.23b), the longitudinal component
of rotation ω is constant along the fiber so it is reasonable
to choose ω = 0. Eventually, the only possible velocity com-
ponent for the central line is U = U3. However, it is natural
to also set U3 = 0 which amounts to taking a nonmoving
FCL. As a consequence from (4.10) the total velocity Vμ is
also the coordinate velocity Vμ

R . The sledgehammer comes
from the fact that the FA coordinates (y1,y2,y3 = s) are
just Cartesian coordinates so they can be chosen to be the
Cartesian coordinates (x1,x2,x3), and all the machinery of FA
coordinates is not used in this case.

Finally, the long range volumic forces need also to respect
the symmetry and ga = 0, so if we consider the effect of
gravity, the fiber needs to be vertical and we will write simply
g = g3 = g. Let us also mention that we discard the possibility
of considering a rotating frame (�a = � = �μ = 0). Indeed,
even though it is possible in principle to also consider the
problem in a frame rotating around the axis of symmetry (that
is � �= 0), this would be of very limited interest as it can
be obtained from the replacement φ̇(0) → φ̇(0) + � (see the
discussion in Sec. VII E).

A. Lowest order viscous string model

The divergenceless condition (4.5) leads simply to the set
of relations

u(n) = − 1

n + 1
∂sv

(n), (6.1)

so that we need only to consider the v(n) and the φ̇(n). At
lowest order (n = 0), (6.1) has a very simple interpretation.

A gradient in the longitudinal velocity ∂sv
(0) leads to a radial

inflow u(0) because of incompressibility. Indeed, if the flow
stretches, the radius shrinks to ensure volume conservation
and thus incompressibility.

The lowest contributions of the Navier-Stokes equation are

D(0)
for the longitudinal part and

◦
D(0) for the rotational part.

At lowest order they lead to

∂tv + v∂sv = −∂sP
(0) + 4v(1) + ∂2

s v + g, (6.2a)

∂t φ̇ + v∂sφ̇ − φ̇∂sv = ∂2
s φ̇ + φ̇(1). (6.2b)

The evolution of the radius is easily obtained from (4.25)
and it reads as, at lowest order,

∂t ln R = −Hv − 1
2∂sv + O

(
ε2
R

)
. (6.3)

In order to find a closed system of equations from (6.2), we
need to find P (0), v(1), and φ̇(1) from the boundary constraint
equation (5.5). First, it turns out that in the axisymmetric case,
the contribution of surface tension can only be in P (0), and we
can separate the pressure field as

P ≡ Pν + p, Pν ≡ νK, (6.4)

where p is the contribution coming from viscous forces and
where the extrinsic scalar curvature K does not depend on r . It
is also more convenient to combine the longitudinal part and the
radial part of the boundary constraint (5.5) to obtain a constraint
which gives directly p and remove the pressure dependence
in the longitudinal constraint. Indeed, the components of the
normal vector take exactly the form

Na = na, N3 = −HR, (6.5)

and we find that the three scalar constraints can be expressed
in the form

pC ≡ [(1 − α2)p = μ(σabn
anb − α2σ33)], (6.6a)

C ≡ [(1 − α2)σ3an
a = α(σ33 − σabn

anb)], (6.6b)

θC ≡ [σabn
añb = ασ3añ

a], (6.6c)

where α ≡ HR.
Using that constraints are expanded according to (5.7), then

from the lowest order of the pressure constraint (pC(0)
∅

) we
obtain the pressure monopole at lowest order

p(0) = u(0) + O
(
ε2
R

) = −∂sv + O
(
ε2
R

)
. (6.7)

The longitudinal constraint C at lowest order (that is C(0)
∅

) gives
the HP profile encoded by v(1):

v(1) = 3
2H∂sv + 1

4∂2
s v + O

(
ε2
R

)
. (6.8)

Finally, the orthoradial constraint θC does not vanish identi-
cally if we have rotation. Instead, if we consider θC(1)

∅
, we get

φ̇(1) = 1
2H∂sφ̇ + O

(
ε2
R

)
. (6.9)

The lowest order of the incompressibility constraint DC is not
needed for the lowest order dynamics and is only required
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when considering higher order corrections as we shall see in
Sec. VI B.

Using (6.7)–(6.9) replaced in Eq. (6.2), we are now able to
obtain

∂tv = g − ν∂sK − v∂sv + 6H∂sv + 3∂2
s v + O

(
ε2
R

)
, (6.10a)

∂t φ̇ = φ̇∂sv + 4H∂sφ̇ − v∂sφ̇ + ∂2
s φ̇ + O

(
ε2
R

)
. (6.10b)

Together with (6.3), it forms a closed set of equations.
Since rotation does not couple to the longitudinal velocity in
Eq. (6.10a), it is reasonable to consider that the dynamical
equation (6.10b) should be considered only when including
the first corrections. In fact, in order to obtain it we had to
consider θC(1)

∅
and not θC(0)

∅
which vanishes identically, so we

realize that we have been using a higher order constraint to be
able to close (6.2b).

We note finally that if surface tension is ignored, the
evolution of velocity and rotation does not depend on the ra-
dius. However, as soon as we consider surface tension, the
dependence in R appears of course through K, and we thus
need (6.3) to complement the dynamical equations for v. We
intentionally did not replace in Eq. (6.10) the expression of
the extrinsic scalar curvature K since even though we might
use our perturbative expansion in powers of R, it proves often
useful to keep its most general expression when considering
the axisymmetric geometry. Instead of using K = 1/R, which
is the lowest order expression obtained from (4.23), we obtain
a much better description if we use instead the exact expression
[5]

K = 1

R
√

1 + (∂sR)2
− ∂2

s R

[1 + (∂sR)2]3/2
, (6.11)

which is easily obtained from the general expression of the
extrinsic scalar curvature (4.23). In Eq. (6.10a), one should
thus use (6.11). It amounts to resumming all higher order
contributions from surface tension effects, and this is made
possible thanks to the decoupling property (6.4).

Equation (6.10a) together with (6.11) for surface tension
induced pressure and the boundary kinematic relation (6.3)
constitute the lowest order model for an axisymmetric jet. Note
that the expression for ∂tv involves second order derivative with
respect to the affine parameter s. The factor 3 in front of the last
term of (6.10a) is the famous Trouton factor [36] and we review
its origin in Sec. VII F 1. As for the factor 6H in the previous
term, it is easily understood from the longitudinal component
of viscous forces per unit area (5.4) F (0)

∅
= 3μ∂sv. Indeed,

this implies that the longitudinal viscous forces integrated on
a circular section are

F 
 3μπR2∂sv, (6.12)

which implies that the lineic density of longitudinal forces is
μ∂s(3πR2∂sv).

In the next section we detail the general method to obtain
corrections up to any order in the small parameter εR and
report the detailed expressions of the first set of corrections
(corrections up to order ε2

R). The second set of corrections
(that is up to order ε4

R) is reported in Appendix E.

TABLE I. Structure of dependencies from the pressure, radial,
and orthoradial boundary constraints.

Equation Variable Dependence

pC (6.13) p(0) v(0) and p(1)R2, p(2)R4 . . .

C (6.14) v(1) v(0) and v(2)R2, v(3)R4 . . .
θC (6.15) φ̇(1) φ̇(0) and φ̇(2)R2, φ̇(3)R4 . . .

B. General method for higher order corrections

The equations (6.2) are formally unchanged when consider-
ing higher orders because they are exact. However, they involve
quantities that we have determined from the side constraints
up to order ε0

R contributions. We thus need to determine
these quantities (v(1), φ̇(1), p(0)) with greater precision, that
is, also taking into account contributions of order ε2

R . To this

end, we need to consider pC(�1), C(�1)
, and θC(�1). After a

straightforward computation, we can show that the longitudinal
constraint C reads as

∞∑
n=0

R2n[∂su
(n) + 4(n + 1)v(n+1) − H2∂su

(n−1)

− 4nH2v(n) + (8n + 6)Hu(n)] = 0, (6.13)

and the truncated constraint C(�1)
is found by keeping only

n = 0 and 1 in this sum. However, we notice that if we want to
deduce v(1) from C(�1)

, that is, keeping corrections of order ε2
R ,

then we need an expression for v(2) at lowest order. Similarly, if
we want corrections up to order ε6

R , we need v(3) at lowest order
and v(2) up to corrections of order ε2

R and v(1) up to corrections
of order ε4

R .
It is straightforward to show that the pressure constraint pC

has the general form∑
n

p(n)R2n =
∑

n

R2n

ñ
(2n + 1)(1 + H2R2)

1 − H2R2

ô
u(n) (6.14)

and if we want to deduce p(0) up to order corrections of order
ε2
R we need the truncation pC(�1) in which we need to replace

an expression for p(1) at lowest order. Similarly, if we want p(0)

up to corrections ε4
R , then from pC(�2) we need p(2) at lowest

order and p(1) up to corrections ε2
R , and so on.

Finally, the orthoradial constraint θC reads as in full gener-
ality

∞∑
n=1

R2n[2nφ̇(n) − H∂sφ̇
(n−1)] = 0, (6.15)

and in particular, from θC(�2) we deduce that if we need φ̇(1) up
to corrections of order ε2

R , then we need an expression for φ̇(2)

at lowest order. The structure of these recursive dependencies
in the three boundary constraints is summarized in Table I.

This problem is solved if we now also consider higher
moments of the Navier-Stokes equation (5.11) together with
the incompressibility constraint (5.15) so as to find expressions
for the missing moments. The key is to notice that these equa-
tions contain a Laplacian, e.g., �P for the incompressibility
constraint or �Vμ for the Navier-Stokes equation. Since for
any scalar S expanded as (3.9), the coefficients of the expansion
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of �S are

[�S](n)
L = 4(n + 1)(n + 1 + �)S(n+1)

L + ∂2
s S

(n)
L , (6.16)

then in the axisymmetric case we can use this property for
� = 0, and from the incompressibility constraint (5.15) we
can express P (n+1) in terms of ∂2

s P (n). Similarly from the
longitudinal part of the Navier-Stokes equation (5.11) we can
express v(n+1) in terms of ∂2

s v(n) since it contains �V .
Indeed, the general expansion of the longitudinal part of the

Navier-Stokes equation in powers of r2n (the D(n)
) is

∂tv
(n) +

∑
m

u(n−m)∂sv
(m) +

∑
m

mv(m)u(n−m)

= 4(n + 1)2v(n+1) + ∂2
s v(n) − ∂sp

(n) + δ0
n(g − ∂sPν).

(6.17)

For instance, using D(1)
, we can obtain v(2) at lowest order,

in function of ∂tv
(1) and also ∂sp

(1). Let us ignore this latter
dependence for the sake of simplicity. Given that we already
know the lowest order expression of v(1) in terms of v = v(0)

from (6.8), then using it we obtain v(2) as a function of v(0). The
time derivatives on v(0) can be further replaced with the lowest
order dynamical equation of v(0) (6.10a). In the end, we have
obtained v(2) in terms of v(0) and its derivatives with respect to
s, thus having the structure of a constraint equation.

As for the rotational part, its expansion in powers of r2n,

that is
◦
D(n), leads to

∂t φ̇
(n) +

∑
m

(v(n−m)∂sφ̇
(m) + (m + 1)φ̇(m)u(n−m))

= ∂2
s φ̇(n) + 4(n + 1)(n + 2)φ̇(n+1). (6.18)

Similarly, from
◦
D(n) we see that we can obtain φ̇(n+1) as a

function of ∂2
s φ̇(n), and the time derivatives are eventually elim-

inated in the same manner once all replacements with lowest
order relations are performed. Finally, using the expansion in
powers of r2n of the incompressibility constraint, that is, using
the DC(n)

we get∑
m

ï
3n + 5

2
+ 2m(n − m)

ò
u(m)u(n−m)

+
∑
m

[−2(n + 1)φ̇(m)φ̇(n−m) + 2mv(m)∂su
(n−m)]

= −∂2
s p(n) − 4(n + 1)2p(n+1). (6.19)

We see that from DC(n)
we can obtain p(n+1) in terms of ∂2

s p(n)

and this time it is directly in form of a constraint since it does not
involve any time derivatives. The structure of these recursive
dependencies deduced from the Navier-Stokes equation and
the incompressibility constraint is summarized in Table II.

We understand that the general procedure is very recursive
but simple, and this motivates the use of abstract calculus
packages (such as Mathematica) to circumvent the complexity
of these tedious abstract computations.

(1) Initially from the lowest order of the constraints pC, C,
and θC [Eqs. (6.13)–(6.15)] we get p(0), v(1), and φ̇(1) at lowest
order in function of v(0) and φ̇(0), namely, (6.7)–(6.9).

TABLE II. Structure of dependencies for the constraints deduced
from the Navier-Stokes equation and the incompressibility constraint.

Equation Variable Dependence

D(n)
(6.17) v(n+1) p(n), v(m), m � n

◦
D(n) (6.18) φ̇(n+1) φ̇(m), v(m), m � n
DC(n) (6.19) p(n+1) p(n), v(m), φ̇(m), m � n

(2) Then, if we know the p(q), v(q), and φ̇(q) with 0 � q � n

up to order ε2m
R , then from (6.17)–(6.19) we can deduce p(n+1),

v(n+1), and φ̇(n+1) up to order ε2m
R as summarized in Table II.

(3) By using the constraints pC, C, and θC [Eqs. (6.13)–
(6.15)] we see that we can find p(0), v(1), and φ̇(1) up to order
ε2m
R if we know the p(q), v(q+1), and φ̇(q+1) up to order ε

2(m−q)
R ,

and this is summarized in Table I.
(4) From the second point, we see that if we know the p(0),

v(1), and φ̇(1) up to order ε2m
R , then we also know all p(q), v(q+1),

and φ̇(q+1) to the same order ε2m
R and from the third point this

is what we need to know the p(0), v(1), and φ̇(1) up to order
ε

2(m+1)
R , which validates this recursive method.

(5) Eventually, time derivatives on the fundamental vari-
ables v and φ̇ which appear in corrective terms can be replaced
by using their dynamical equations at a lower order and it is
thus possible to obtain the corrections to the lowest order model
up to any order only in terms of derivatives with respect to s.

Finally, the evolution of the radius is easily found up to any
given order in ε2n

R . Indeed, given that

∂t ln R =
∑
m

Å
1

2
u(m) − Hv(m)

ã
R2m, (6.20)

then in order to obtain the evolution up to ε2n
R corrections, we

need the u(m) and v(m) (with m � n) up to ε
2(n−m)
R corrections.

C. First corrections

Implementing the procedure described in the previous
section, we first get the constraints

p(1) = 1
2 φ̇2 − 3

8 (∂sv)2 − ν 1
4∂2

s K + 1
4∂3

s v + O
(
ε2
R

)
, (6.21a)

v(2) = 9
16H∂sH∂sv − 3

16H(∂sv)2 + 1
16 φ̇∂s φ̇

−ν 3
32H∂2

s K + 9
16H

2∂2
s v − 9

64∂sv∂2
s v

−ν 1
32∂3

s K + 9
32H∂3

s v + 3
64∂4

s v + O
(
ε2
R

)
, (6.21b)

φ̇(2) = − 1
32 φ̇∂sH∂sv + 1

12H∂sH∂sφ̇ − 1
48∂sφ̇∂2

s H

− 1
96Hφ̇∂2

s v + 1
12H

2∂2
s φ̇

− 1
24∂sH∂2

s φ̇ − 1
192 φ̇∂3

s v + O
(
ε2
R

)
. (6.21c)

We also find the corrections to the constrained quantities
which were already computed at lowest order when deriv-
ing the lowest order string model. Indeed, the expressions
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(6.7)–(6.9) need to be corrected with the terms

p(0) ⊃ R2[− 1
2 φ̇2 − 3H2∂sv − 9

4∂sH∂sv + 3
8 (∂sv)2

+ν 1
4∂2

s K − 9
4H∂2

s v − 5
8∂3

s v
]
, (6.22a)

v(1) ⊃ R2[ 3
2H

3∂sv + 3
2H∂sH∂sv + 3

8H(∂sv)2

− 1
8 φ̇∂s φ̇ + 3

16∂sv∂2
s H + ν 3

16H∂2
s K

+ 3
2H

2∂2
s v + 3

8∂sH∂2
s v + 9

32∂sv∂2
s v

+ν 1
16∂3

s K + 1
16H∂3

s v − 1
16∂4

s v
]
, (6.22b)

φ̇(1) ⊃ R2[ 1
16 φ̇∂sH∂sv + 1

12H∂sH∂sφ̇ + 1
24∂sφ̇∂2

s H

+ 1
48Hφ̇∂2

s v + 1
12H

2∂2
s φ̇ + 1

12∂sH∂2
s φ̇ + 1

96 φ̇∂3
s v

]
.

(6.22c)

Once replaced in Eq. (6.2), we finally get the corrections to
(6.10) which read as

∂tv ⊃ R2[Hφ̇2 + 12H3∂sv + 33
2 H∂sH∂sv

+ 3
4H(∂sv)2 + 1

2 φ̇∂s φ̇ + 3∂sv∂2
s H

+ν 1
4H∂2

s K + 27
2 H

2∂2
s v + 6∂sH∂2

s v

+ 3
8∂sv∂2

s v + 15
4 H∂3

s v + 3
8∂4

s v
]
, (6.23a)

∂t φ̇ ⊃ R2[ 1
2 φ̇∂sH∂sv + 2

3H∂sH∂sφ̇ + 1
3∂sφ̇∂2

s H

+ 1
6Hφ̇∂2

s v + 2
3H

2∂2
s φ̇ + 2

3∂sH∂2
s φ̇

+ 1
12 φ̇∂3

s v
]
, (6.23b)

∂t ln R ⊃ R2(− 3
2H

2∂sv − 3
8∂sH∂sv − 5

8H∂2
s v − 1

16∂3
s v

)
.

(6.23c)

We report in Appendix E the next order corrections which
are of order ε4

R . Note also that surface tension effects do
not enter explicitly the dynamical equation for axial rotation
(6.23b) nor the dynamical equation for the radius (6.23c), but
they still matter due to the couplings between v, φ̇, and R.

In general, if we keep terms of order ε2n
R in the expression

giving ∂tv, that is, if we consider the nth correction, then
it involves terms which have 2(n + 1) order derivatives in
the affine parameter s, typically from terms of the form
R2n∂2(n+1)

s v, and the differential complexity is increased. If
we consider for instance a steady regime in which all time
derivatives vanish, this can lead to a rather stiff differential
system as the coefficients in front of the highest derivatives are
typically the smallest.

D. Comparison with the Cosserat model

As shown by García and Castellanos [6], the Cosserat model
can be viewed as an averaged model. Indeed, given that the
longitudinal velocity is given by v(0) + r2v(1) + r4v(2) + · · · ,
it could be natural to consider an averaged velocity and derive
the dynamical equation for this variable and not for v(0)

which should be considered as a derived variable. The average

longitudinal velocity is simply defined as

v ≡ 2

R2

∫ R

0
V r dr = 2

R2

∫ R

0

∑
n

v(n)r2nr dr

=
∑

n

R2n

n + 1
v(n). (6.24)

We obtain that from (6.20) and (6.1) the kinematic equation
for the time evolution of the fiber radius reads as exactly [6]

∂t ln R = −Hv − 1
2∂sv. (6.25)

Obviously, the expression (6.24) needs to be truncated at a
given power of R which is the order at which the equations are
considered. Once truncated, we can invert it because from our
algorithm, the v(n) are expressed in terms of (the derivatives
of) v(0) and φ̇(0). After inverting, we obtain v = v(0) as a power
series in v and its derivatives. For instance, up to the first
corrections we get

v = v + R2

2

Å
3

2
H∂sv + 1

4
∂2
s v

ã
+ O

(
ε4
R

)
, (6.26a)

v = v − R2

2

Å
3

2
H∂sv + 1

4
∂2
s v

ã
+ O

(
ε4
R

)
. (6.26b)

At lowest order, the form of (6.10a) is the same if it is expressed
with v or with v because both velocities are equal at lowest
order. Differences appear only when including the first set of
corrections. Eventually, we find

∂tv + R2(− 1
2H∂t∂sv − 1

8∂t∂
2
s v

)
= g − ∂sP

(0)
ν + 6H∂sv − v∂sv + 3∂2

s v

+ R2(Hφ̇2 − 6H3∂sv − 1
4H(∂sv)2

+ 1
2 φ̇∂s φ̇ + 3

4∂sv∂2
s H − 3

2H
2∂2

s v

+ 1
2Hv∂2

s v + 3
4∂sH∂2

s v + 1
8v∂3

s v
)
, (6.27)

which we have written in a form which matches Eq. (55)
of García and Castellanos [6]. However, it does not match
the Cosserat equation (53) of García and Castellanos [6]
[which is also Eq. (74) of Eggers [3] derived with a Galerkin
approximation method]. As explained in details by García and
Castellanos [6], this is because some terms involving v(1) are
removed. In the case of the Cosserat model of Eggers [3], these
terms would probably be recovered when including higher
orders of the Galerkin method, given that at lowest order
in the Galerkin approximation the information that the next
corrections are parabolic in nature has not been put in. In a
sense, the lowest order of the Galerkin approximation also
amounts to ignoring some parabolic terms of the type v(1)r2.
In our method, the contributions v(1) and v(2) are taken into
account from the constraints (6.8) [corrected by (6.22b) and
(6.21b)].

Furthermore, our results are extended to include a possible
axial rotation from the inclusion of the φ̇(n). We find that when
including the first corrections to the viscous string approxi-
mations, the corrected dynamics of v couples with the lowest
order axial rotation φ̇ = φ̇(0) whose evolution needs then to be
computed from the lowest order dynamical equation (6.10b).
This interplay between longitudinal velocity and axial rotation
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which takes place when the first corrections are included has
already been described in Bechtel et al. [8], but our formalism
allows already for more compact and geometrically more
meaningful expressions. However, it is only when considering
curved fibers that our formalism based on STF multipoles
appears to be powerful as we shall now see in details in the
following section.

VII. APPLICATION TO CURVED FIBERS

A. Overview of curved fiber specificities

Whenever we consider curved fibers, we must take into
account the property that the FCL curvature κa does not vanish
anymore, nor does the rotation rate ωi of the orthonormal basis.
As stressed in Sec. IV J, even if we restrict to a stationary regime
for which all time derivatives vanish and thus ωa = 0, we can
still generically form STF products of the type

κ〈a1 . . . κa�〉 (7.1)

which might source the STF moments of order �. For instance,
terms proportional to κ〈aκb〉 would source the shear part of
the velocity field “Vab from the Navier-Stokes equation, and
this would in turn induce a deformation of the fiber shape
of the type Rab from the kinetic condition on the fiber side
(4.25). Since the lowest order description corresponds to a
string approximation for which the section size and shape
are irrelevant, these terms are expected to arise only when
including the first corrections. For instance, the combinations

κ〈aκb〉yayb or κ〈aκb〉R2 (7.2)

are of order ε2
R . For the lowest order description, one might

consider circular sections, but as soon as we consider refine-
ments to this description, we must abandon the circular shape
assumption. As we shall find in the remainder of this section,
the fundamental dynamical variables are the same as for the
axisymmetric case (v = v

(0)
∅

, φ̇ = φ̇
(0)
∅

, and R) on which we
add the various shape multipoles RL and also the position and
velocity of the FCL. If we consider a description up to order
n in powers of εR , then we shall find that we must include at
least the multipoles RL with � � n. As soon as we leave the
realm of straight fibers, we open Pandora’s box and we cannot
obtain all STF devils from constraints, as the shape multipoles
become dynamical.

This departure from circular fiber sections is even more ob-
vious when considering the motion in a steady rotating frame.
Indeed, the inertial forces will bring typical contributions of
the form �〈a�b〉, which are similar to tidal forces and induce
an elliptic elongation. Such contribution arises naturally in the
Navier-Stokes equation (5.11) as can be seen from the general
expression of the inertial forces (5.13), and they typically
source the velocity shear moments “V (n)

ab , which in turn source
the elliptic deformation Rab from the boundary kinematics
(4.25).

We first derive the lowest order viscous string model in the
curved case in Sec. VII B and discuss corrections in Sec. VII C.
In Sec. VII D we also consider the special case of straight but
nonaxisymmetric fibers with mild elliptic shapes.

B. Viscous string model

1. Incompressibility conditions

The incompressibility conditions on moments (4.5) are used
to replace the moments u

(n)
L . In particular, from [CE](0)

∅
, [CE](1)

∅
,

[CE](0)
a , [CE](1)

a , and [CE](0)
ab we obtain the general conditions

u
(1)
∅

= −“V (1)aκ̃a − 1
2 κ̃aÙV (0)

a − 1
2∂sv

(1)
∅

, (7.3a)

u(0)
a = − 4

3
“V (1)

a − 2
3
“V (0)

ab κ̃b − κ̃au
(0)
∅

− 2
3κaφ̇ − 2

3∂sv
(0)
a ,

(7.3b)

u(1)
a = − 8

5
“V (2)

a − 4
5
“V (1)

ab κ̃b − κ̃au
(1)
∅

− 1
2 κ̃bÙV (0)

ab

− 2
5κaφ̇

(1) − 2
5∂sv

(1)
a , (7.3c)

u
(0)
ab = −“V (1)

ab − “V (1)
〈a κ̃b〉 − κ̃〈aÙV (0)

b〉 − 1
2∂sv

(0)
ab − 1

2
“V (0)

abcκ̃
c,

(7.3d)

that are used extensively together with (4.6) throughout
Sec. VII.

2. Normal vector and curvature

At lowest order, the unit normal vector components are
simply “N3 = −HR + O

(
ε2
R

)
, (7.4a)“Na = na + O

(
ε2
R

)
, (7.4b)

and from (4.23) the scalar extrinsic curvature reads as

K = 1

R
+ κ̃an

a + O(εR). (7.5)

If we expand RH as in Eq. (5.7b), then [RK](0)
∅

= 1 and
[RK](0)

a = κ̃a . Note that we cannot separate the pressure
contribution from viscous and surface tension effects as in
Eq. (6.4). The scalar extrinsic curvature must be used directly
inside the boundary constraint (5.5).

3. Navier-Stokes equation

Using the components expression for the velocity gradient
(4.31), the velocity shear (4.36), and the velocity derivatives
(5.14), the lowest multipoles of the longitudinal and sectional
components of acceleration and of the volumic forces are
[reminding that we are using the notation (4.2) throughout]

A
(0)
∅

= (∂t + v∂s)v + ∂t Ū + Uaω̃a + I + 2Ua‹�a, (7.6a)

f
(0)
∅

= g + 4v(1) + v(0)
a κ̃a − κaωa − ∂sP

(0)
∅

−vκaκ
a + 2κ̃a∂s

“V (0)
a + “V (0)

a ∂s κ̃
a + ∂2

s v, (7.6b)

Â(0)
a = −v2κ̃a + 2‹Ua� + Ia − 2Ū‹�a − 2v‹�a

−Ū ω̃a − 2vω̃a + ∂tUa + ‹Uaω, (7.7a)

f̂ (0)
a = ga − P (0)

a + 8
3
“V (1)

a − 5
3κaφ̇

− 3
2 κ̃a∂sv − 2

3∂sv
(0)
a − v∂sκ̃a − ∂sω̃a, (7.7b)

◦
A(0) = −v(0)

a (�a + ωa + κav) − (φ̇ + �)∂sv + (∂t + v∂s)φ̇,

(7.8a)
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◦
f (0) = − 4

3
“V (1)

a κa − 7
6κaκ

aφ̇ + 8φ̇(1)

− 7
6κa∂sv

(0)
a − 1

2v(0)a∂sκa + 1
2vκ̃a∂sκ

a

+ 1
2ωa∂sκ̃a + κ̃a∂sω

a + ∂2
s φ̇. (7.8b)

In these expressions, we have defined the inertial force on the
FCL by

I ≡ � × (� × R). (7.9)

I and I a are as usual its longitudinal and sectional components.
Similarly, we recall that �a and ga are the sectional compo-
nents of the steady frame rotation (if any) and of long range
forces, whereas � and g are their longitudinal projections.
Since � and g are constant vectors, then from (2.15) their
components vary along the FCL according to

∂sg = −κ̃ag
a, ∂sg

a = κag, (7.10)

with similar expressions for the components of �. However, I
is not constant and we must use

∂sI = −�2 − κ̃aI
a, ∂sI

a = ��a + κ̃aI . (7.11)

In reality, the expressions (7.6)–(7.8a) are formally more
complex, as they also involve terms which contain “V (0)

a and“V (0)
ab . The former vanishes at lowest order from the gauge

condition (4.28), and when studying the structure of correc-
tions in Sec. VII C, we will show that from the orthoradial
boundary condition the latter vanishes as well at lowest order.
The missing terms are gathered in Sec. VII C 3.

From (7.6) we can infer the lowest moment of the longitu-
dinal part of Navier-Stokes equation, that is D(0)

∅
, which could

also be obtained from the longitudinal projection of a momen-
tum balance equation. From (7.7) we can infer the lowest order
multipoles of the sectional part of the Navier-Stokes equations
D(0)

a . It could also be obtained from the sectional projection
of the momentum balance equation. Finally, from (7.8), we

infer
◦
D(0) which governs the dynamics of the axial rotation

rate φ̇ = φ̇(0). In the axisymmetric case, it was not strictly
speaking part of the lowest order string description since axial
rotation decoupled at lowest order. For curved fibers, it seems
at first sight when examining (7.7) that axial rotation retroacts
on the dynamical equations for Ua . However, when including
the boundary constraints, it will appear that this is not the case.
As in the axisymmetric case, the dynamical equation for the
axial rotation is in fact already a first correction and not part
of the viscous string model.

In order to obtain closed dynamical equations from (7.6)–
(7.8), we need to find the lowest order expressions for v(0)

a ,
P (0) = P

(0)
∅

, v(1) = v
(1)
∅

, “V (1)
a , and φ̇(1), which as in the axisym-

metric case are going to be obtained from the lowest order of
the boundary condition (5.5).

4. Constraint equations

We recall the notation introduced in Sec. V B for the various
constraints obtained on the boundary and their multipole
expansions.

(i) First, from the lowest order monopole and dipole of the
longitudinal constraint, that is C(0)

∅
and C(0)

a , we get

v(1) = 3
2H∂sv + 1

4∂2
s v + O

(
ε2
R

)
, (7.12a)

v(0)
a = vκ̃a + ω̃a + O

(
ε2
R

)
. (7.12b)

The constraint (7.12a) is exactly the same as the one
obtained in the axisymmetric case (6.8) and we will find that the
effect of curvature appears only at higher orders. However, the
latter constraint (7.12b) deserves a thorough comment. From
the expression of the total velocity (4.1) and the decomposition
(3.10) for the relative velocity V , the velocity field on the FCL
(that is, when y1 = y2 = 0) is

VCen = U + vT + “V (0)
a da = U + vT + O

(
ε2
R

)
(7.13)

since from the gauge condition (4.28), “V (0)
a is only an order ε2

R

quantity. The rotation rate of the fluid on the central line is thus
approximately

ωa
Cen ≡ [T × ∂s(U + vT )]a = ωa + κav. (7.14)

Furthermore, the dipolar component v(0)
a corresponds to the

sectional part of the solid rotation of the fluid contained in a
fiber section. Indeed, if we focus on terms which are linear in ya

in the decomposition (3.10), and if we ignore radial infall (u(0)
∅

)
and axial rotation (φ̇(0)), we realize that the relative velocity V
contains

V ⊃ v(0)
a yaT = [

ωa
Secda × ybdb

]
, ωSec

a ≡ −ṽ(0)
a .

The constraint (7.12b) thus states that the solid rotation of the
fiber section ωa

Sec is equal to the rotation of the fluid on the
FCL ωa

Cen. It means that once the central line velocity Ua is
determined (together with the curvature and the longitudinal
lowest order velocity v), then the rotation of the fluid on the
FCL is determined, and the fiber section rotation must follow
exactly the same rotation rate. This fact can be rephrased more
rigorously by replacing the constraint (7.12b) in the expression
(4.37) for the vorticity, as we obtain

�a = ωa
Cen + O

(
ε2
R

) = ωa + κav + O
(
ε2
R

)
. (7.15)

It is yet another way to see that the rotation of the fluid in fiber
sections (vorticity) is guided by the rotation of the fluid on the
FCL.

The consequence is that the fluid contained in a given
section, which by construction is orthogonal to the tangential
direction T , remains always in a geometrically defined fiber
section. Or, said differently, the fluid particles belonging to
different fiber sections are not mixed by the fluid velocity. We
must stress again that this result is only valid at lowest order
in εR .

Hence, just by contemplating of (7.12b) we can understand
why the lowest order approximation is called a string approx-
imation. It is because the fiber sections are slaves of the FCL,
as they are determined from it without retroaction at lowest
order. Furthermore, and this is even more important, this type
of behavior also corresponds to a form of flexible rod model
since the fiber sections are not mixed and remain orthogonal to
the FCL. If there was no longitudinal velocity (v = 0), a good
analogy would be the spinal column with the vertebra being
the sections. If we want to consider a longitudinal velocity, a
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good analogy would be a collar made of beads. The beads have
a cylindrical hole through which the collar string is passed,
and if the beads can slide along the string of the collar, their
orientation with respect to the string tangential direction is
necessarily fixed thanks to the cylindrical hole. We understand
already at that point that it is hopeless to try to find consistently
the corrections of the string model if we start from a flexible
rod model since the lowest order description is already a form
of flexible rod model.

(ii) Second, from the lowest order monopole and dipole of
the orthoradial constraint, that is θC(1)

∅
and θC(0)

a , we obtain

φ̇(1) = 1
2 (Hκ̃aω

a + H∂sφ̇) + O
(
ε2
R

)
, (7.16a)“V (1)

a = 1
8 (2κaφ̇ − κ̃a∂sv + 2v∂sκ̃a + 2∂sω̃a) + O

(
ε2
R

)
.

(7.16b)

(iii)And, third, from the lowest order monopole and dipole
of the radial boundary constraint, that is from rC(0)

∅
and

rC(0)
a , and using the gauge condition (4.28) and the previous

constraints we get

P
(0)
∅

= ν

R
− ∂sv + O(εR), (7.17a)

P (0)
a = −κaφ̇ + 1

2
κ̃a∂sv − v∂sκ̃a − ∂sω̃a + νκ̃a

R
+ O(εR).

(7.17b)

5. Dynamics of the string model

Inserting the constraints of the previous section in the ex-
pressions (7.6)–(7.8), we finally obtain the system of equations

∂tv = −∂t Ū − Uaω̃a + g + νH
R

− v∂sv + 6H∂sv + 3∂2
s v + O(εR), (7.18a)

(∂tU )a = ga + v2κ̃a + 2vω̃a − 3κ̃a∂sv − νκ̃a

R
+ O(εR),

(7.18b)

∂t φ̇ = 4Hκ̃aωa + φ̇∂sv + ωa∂sκ̃a + 4H∂sφ̇ − v∂sφ̇

+ ∂2
s φ̇ + O

(
ε2
R

)
, (7.18c)

where using (2.25a) we used the compact expression

(∂tU )a = ∂tUa + ω‹Ua − Ū ω̃a. (7.19)

Note also that from (2.24a) we also get (∂tU )3 = ∂tU + ω̃aU
a

allowing to rewrite (7.18a) in a slightly more compact form
if desired. Finally, when surface tension effects are included,
we also need to determine the dynamics of the fiber radius as
it couples to (7.18b) and (7.18a), and at lowest order it reads
exactly as in the axisymmetric case, that is,

∂t ln R = −Hv − 1
2∂sv. (7.20)

Several comments are in order for this viscous string model.
(1) We can check that there is no retroaction of φ̇ on the

lowest order dynamical equations for v and Ua . The axial
rotation dynamical equation (7.18c) is in fact part of the first
corrections and not part of the lowest order string model.

(2) The equations are at most linear in the curvature κa even
though we have not linearized in this variable.

(3) To compare (7.18a) and (7.18b) with the result obtained
from a momentum balance equation by Arne et al. [20,21],
Ribe [22], and Ribe et al. [23], we must first use that the average
velocity inside a fiber is approximately the velocity on the FCL
given at lowest order by (7.13). Then, from the properties

(∂tVCen)3 = ∂tv + (∂tU )3, (7.21a)

(∂tVCen)a = (∂tU )a − vω̃a, (7.21b)

v(∂sVCen)3 = v∂sv, (7.21c)

v(∂sVCen)a = −v2κ̃a − vω̃a, (7.21d)

and defining a convective derivative by Dt ≡ ∂t + v∂s , the
string equations are simply recast as

(DtVCen)3 
 g + νH
R

+ 6H∂sv + 3∂2
s v, (7.22a)

(DtVCen)a 
 ga − 3κ̃a∂sv − νκ̃a

R
. (7.22b)

(4) We can in particular check that the contributions from
the surface tension are exactly those found in Eqs. (37), (49),
and (57) of Ribe et al. [23]. Since the vector κ̃a points toward
the exterior of the FCL curvature, the contribution −νκ̃a/R

tends to unfold the viscous jet as strongly curved region will
be accelerated toward the center of curvature.

(5) If we ignore the surface tension contributions, and using
the covariantization relations (2.26), Eq. (7.22) can be recast
in the compact form

DtVCen 
 g + 1

πR2
∂s F, (7.23)

F ≡ πR2F (0)
∅

T , F (0)
∅

= 3(∂sv), (7.24)

where the link with the momentum balance has now been made
obvious. The expression of the viscous force F which is purely
longitudinal has the same origin as in the axisymmetric case
[see Eq. (6.12)].

6. Rotating frame

If we now consider that the problem is studied in a steady
rotating frame, then Eqs. (7.18) need to be supplemented with
the contributions

∂tv ⊃ −I − 2Ua‹�a, (7.25a)

(∂tU )a ⊃ −2‹Ua� − Ia + 2(U + v)‹�a, (7.25b)

∂t φ̇ ⊃ −‹�a(ωa + vκa) + �∂sv. (7.25c)

The first two equations arise naturally from the longitudinal
and sectional components of the inertial and Coriolis forces.

7. Longitudinal central line velocity

We notice that the dynamical equation for v [Eq. (7.18a)]
contains ∂tU . However, we must remember that the longitu-
dinal velocity of the central line contains a remaining gauge
degree of freedom. Indeed, we have fixed the position of the
central line inside the fiber by asking that there should be no
shape dipole. However, as argued in Sec. IV I, we can still
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displace the fiber inside that curved central line, equivalent to
a reparametrization s → s + f (t) which changes the velocities
as U → U − ∂tf and v → v + ∂tf .

Equation (7.18a) is in fact an equation for ∂t (v + U ) and
we must find a unique way to determine U independently. Let
us fix the value of the central line longitudinal velocity U for
a given affine parameter (say s = 0 at a fiber boundary) at all
times. Typically, the fiber is attached at the boundary so we
choose simply U (s = 0) = 0. Then, from the condition (2.6)
we obtain

∂sU = κ̃aU
a (7.26)

and thus U must be determined everywhere on the fiber at all
times, effectively breaking the degeneracy in Eq. (7.18a).

8. Full set of equations for the string model

We are now in position to gather all the equations which are
required for the curved viscous string model. First, there are
a set of equations which are constraint equations and which
must be solved at a given initial time since they are ordinary
differential equations in s:

(1) Once R(s,t) is known at a given time, e.g. at initial
time, then the tangential direction of the FCL is obtained from
(2.2).

(2) The curvature κ of the FCL is then determined at that
same given time from its definition (2.7).

(3) The orthonormal basis di can be determined every-
where on the fiber at that same given time from (2.15), provided
some choice is made on a fiber boundary.

(4) With this orthonormal basis we can extract the compo-
nents κa of the curvature.

(5) When the FCL velocity components Ua and U are
known at a given time, and the curvature components κa as
well, then the rotation components ωi can be found from
(2.28) for the sectional component and from (2.23b) for the
longitudinal component at the same given time.

(6) The longitudinal part of the FCL velocity U is not
dynamical but it is instead constrained by (7.26).

Then, we have dynamical equations which give the time
evolution of variables from initial conditions, but they depend
on partial derivatives ∂s so they are partial differential equa-
tions:

(1) The position in space of the FCL R(s,t) is modified
due to the FCL velocity U , as seen in Eq. (2.4).

(2) The curvature components evolve in time thanks to
(2.23a).

(3) The orthonormal basis evolves in time with (2.16).
(4) The longitudinal velocity v of the fluid inside the fiber

evolves in time according to Eq. (7.18a).
(5) The sectional part of the FCL velocity Ua evolves

according to Eq. (7.18b).
(6) The fiber radius R evolves according to (7.20).
When considering corrections to the viscous string model,

this structure between constraints and dynamical equations is
preserved.

9. Covariant expressions

If we prefer to work fully in the Cartesian canonical basis,
that is, if for a vector we prefer using the covariant form X

than the Xi , then from (2.13) this is immediate. However,
we need to use the covariantization relations (2.26) to recast
the derivatives in the desired form ∂t X or ∂s X . The resulting
equations take a more transparent form if we separate all
vectors in sectional and longitudinal parts according to (2.39)
and write equations for these components. Since the longi-
tudinal and sectional projections involve only the tangential
direction T , then the dependence in the section basis da

disappears. The FA coordinates and the orthonormal basis
were introduced to perform all intermediary computations,
but the final results need not be expressed in this language.
This justifies a posteriori why we have chosen the special
choice (2.7) for the curvature and discarded the possibility
of having a nonvanishing longitudinal component for the FCL
curvature. Indeed, this would lead to the same final equations
when expressed in a covariant form. However, all intermediate
computations would be more involved because the expression
of the metric (2.35) would be much more complicated and
nondiagonal, and the Christoffels (2.44) would also be more
complex. In particular, as a consequence of this choice for
curvature, the partial derivatives with respect to s are easily
written in a covariant form since for any vector X we deduce
from (2.25b) the property

P⊥(∂s X⊥) = (∂sX
a)da. (7.27)

This allows to read the covariant form of a given equation
written in terms of sectional components nearly instantly.

We gather in covariant form the complete set of equations
described in Sec. VII B 8. First, the vectors ω and U are
decomposed in sectional parts and longitudinal parts as in
(2.39). The constraint equations are

∂s R = T , (7.28a)

∂s T = κ × T = −κ̃ ⇔ κ = T × ∂s T , (7.28b)

ω⊥ = T × ∂sU = ∂s
‹U + κU, (7.28c)

0 = T · ∂sω ⇔ ∂sω = −ω · κ̃, (7.28d)

0 = T · ∂sU ⇔ ∂sU = −U · κ̃ . (7.28e)

As for the dynamical equations, they are recast as

∂t R = U, (7.29a)

∂tκ = ∂sω + ω × κ ⇔ P⊥(∂tκ) = P⊥(∂sω⊥),

∂t T = ω × T , (7.29b)

∂t ln R = −Hv − 1
2∂sv, (7.29c)

∂tv = −∂tU − U · ω̃ + g + ν
H
R

− v∂sv

+ 6H∂sv + 3∂2
s v − I − 2(� × U) · T ,

(7.29d)

P⊥[∂t U⊥] = T ×
[
(U + 2v)ω +

(
v2 − 3∂sv − ν

R

)
κ
]

+ [g − I]⊥ + 2T × [(v + U )� − �U],

(7.29e)
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where we should use that for any vector

∂t X⊥ = P⊥[∂t X⊥] + (X⊥ · ω̃)T , (7.30a)

∂s X⊥ = P⊥[∂s X⊥] + (X⊥ · κ̃)T . (7.30b)

10. Stationary regime

In the stationary regime, all partial time derivatives vanish
and the viscous fiber model takes a simpler form. The velocity
of the fiber center also necessarily vanishes and Ua = U = 0
as well as the rotation (ωi = 0). In that case, it becomes an
ordinary differential equation in the FCL parameter s. For
completeness, we report here the set of stationary equations,
and they read as

∂s R = T , (7.31a)

∂s ln R 
 −1

2
∂s ln v, (7.31b)

3∂2
s v + 6H∂sv − v∂sv 
 −νH

R
+ I − g, (7.31c)

κ̃a

(
v2 − ν

R
− 3∂sv

)

 Ia − ga − 2v‹�a, (7.31d)

∂s di = κ × di . (7.31e)

Equation (7.31d) is used to determine the curvature κa (but
it can become singular) and (7.31c) is used to integrate v along
the FCL. Equation (7.31b) is the statement that vR2 is constant
in a stationary regime, due to incompressibility.

If written in covariant form, the last three equations of (7.31)
read as

3∂2
s v + 6H∂sv − v∂sv 
 −νH

R
+ T · (I − g), (7.32a)

κ
(
v2 − ν

R
− 3∂sv

)

 T × [g − I] − 2v�, (7.32b)

∂s T = κ × T = −κ̃, (7.32c)

which is the standard form for the stationary curved string
model in the literature.

C. Beyond the string model

1. Limitations of the string model

Apart for surface tension effects, the spatial extension of
sections, that is the radius R, does not play any role in the
dynamical equations, meaning that the internal structure of the
fiber has no impact on the dynamics. Furthermore, at lowest
order the sectional part of the viscous forces which reduces to
the components “F (0)

a vanishes. The viscous forces are purely
longitudinal, as would be the case in a string, thus justifying
the name of the approximation. If we want to consider a model
for viscous fibers in which the size of spatial sections plays a
role, we must necessarily consider higher order terms in the
parameter εR .

Since fiber sections rotate at the same angular velocity as
the fluid located on the FCL [see Eq. (7.15)], it means also
that a rod model in which sections are not mixed and remain
orthogonal to the fiber tangential direction cannot be part of this
higher order model. Hence, when considering the lowest order

of the angular momentum balance equation, we do not obtain
a dynamical equation which gives the time evolution of the
fiber section rotation as a function of viscous forces, but rather
obtain a constraint on the viscous forces (more precisely on
their sectional component) given that the fiber section rotation
is already determined by the string model.

For higher order models, the corrections of order ε2
R in

Eq. (7.15) will imply that fluid particles of different sections
will be mixed as a result of time evolution. Higher order models
must also necessarily take into account that the velocity of the
fluid on the central line is not exactly the velocity of the central
line. Indeed, Eq. (4.28) implies that there is a tiny shift between
the two, which is an order ε2

R correction.
Finally, terms of the type (7.2) typically source the shape

quadrupole Rab and a model restricted to circular sections
cannot be sufficient when considering corrections to the string
limit. As we shall explain in this section, when including order
εn
R effect, we must include all multipolesRL with � � n. Since

we are interested in the first corrections which are of order ε2
R ,

we consider quadrupolar shape moments thereafter.

2. Normal vector and extrinsic curvature

When including a first set of corrections, the components of
the normal vector and the unit normal vector are approximately
given by

N3 = −HR + HR2(naκ̃
a) + O

(
ε3
R

)
, (7.33a)

Na = na − 2R2 ⊥b
a Rbcn

c − 3R3 ⊥b
a Rbcdn

cnd + O
(
ε4
R

)
,

(7.33b)“N3 = −HR + HR2(naκ̃
a) + O

(
ε3
R

)
, (7.33c)

“Na = na − R2

Ç
H2

2
na − 2 ⊥b

a Rbcn
c

å
+R3(−3 ⊥b

a Rbcdn
cnd + H2nanbκ̃

b
) + O

(
ε4
R

)
.

(7.33d)

From (4.23), the extrinsic curvature can then be obtained.
Expanding RK in moments as in Eq. (5.7a), the first moments
which are used to compute the first set of corrections to the
string model are

[RK]∅ = 1 − R2( 3
2H

2 + 1
2κaκ

a + ∂sH
) + O

(
ε4
R

)
, (7.34a)

[RK]a = κ̃a

[
1 + R2( 7

2H
2 + 3

4κbκ
b + 2∂sH

)]
+ R2(H∂sκ̃a − Rabκ̃

b) + O
(
ε4
R

)
, (7.34b)

[RK]ab = 3Rab + κ〈aκb〉 + O
(
ε2
R

)
. (7.34c)

3. Fundamental dynamical equations

The general method to build higher order corrections is sim-
ilar to the axisymmetric case. The only difference is that now a
given equation will not just give a constraint on the monopole
but also on other moments. As we restrict to second order, we
shall need to consider the monopole, dipole, and quadrupole of
equations only. The incompressibility conditions (7.3) are also
used throughout to express any dependence in multipoles u

(n)
L

in terms of other types of multipoles.

043115-21



CYRIL PITROU PHYSICAL REVIEW E 97, 043115 (2018)

TABLE III. Fundamental dynamical equations, with the corre-
sponding variables and the main variables on which their evolution
depends. The dependencies for the last two equations giving the
evolution of radius and shape quadrupole are given only when order
ε2
R terms are included.

Equation Variable Essential dependence

D(0)
∅

(7.6) and (7.35) ∂tv
(0) v

(1)
∅

, P
(0)
∅

, v(0)
a , V̂ (0)

a

D̂(0)
a (7.7) and (7.36) ∂tUa V̂ (1)

a , P (0)
a , v(0)

a , V̂ (0)
a , V̂

(0)
ab

RE (�2)
∅

(4.25) ∂tR v(0)
a , V̂ (1)

a , v
(0)
∅

, v
(1)
∅

R2

RE (�2)
ab (4.25) ∂tRab V̂

(0)
ab , V̂

(1)
ab

We start from lowest moments of the Navier-Stokes equa-
tion components (D(0)

∅
, “D(0)

a ), which give the fundamental

dynamical equations for the longitudinal velocity v = v
(0)
∅

,
and the FCL sectional velocity Ua . The evolution of the axial
rotation φ̇ = φ̇(0) has already been found in Eq. (7.18c) and
we have argued that it should be considered as part of the
first corrections. Equations (7.6) and (7.7) were not given in
full generality as we had removed the contributions from “V (0)

a

and “V (0)
ab which are order ε2

R quantities. The Navier-Stokes
components (7.6) and (7.7) must be supplemented by the
contributions

A
(0)
∅

⊃ “V (0)
a (2‹�a + ω̃a + vκ̃a + v(0)a), (7.35a)

f
(0)
∅

⊃ 2κ̃a∂s
“V (0)

a + “V (0)
a ∂s κ̃

a, (7.35b)

Â(0)
a ⊃ “V (0)b“V (0)

ab − 1
2
“V (0)

a

(
∂sv + “V (0)

b κ̃b
) + v∂s

“V (0)
a

− εa
b“V (0)

b (φ̇ + ω̄ − 2�) + ∂t
“V (0)

a , (7.36a)

f̂ (0)
a ⊃ 1

2
“V (0)

b κaκ
b − 1

2
“V (0)

a κbκ
b + 1

3
“V (0)

ab κ̃b + ∂2
s
“V (0)

a

(7.36b)

to be fully general.
We also need to consider the dynamics of the shape. As

in the string model, we need to consider the monopole of the
boundary kinematics (4.25) to determine the evolution of the
radius. The dipole of this equation has already been considered
in Eq. (4.28) to fix the gauge and determine “V (0)

a . Furthermore,
we also need to consider the quadrupole of the boundary
kinematics equation (4.25) so as to determine the evolution
of Rab. These dynamical equations need to be truncated at
the required order. In Table III, we summarize the essential
dependencies of the fundamental dynamical equations which
need to be determined from constraints.

4. General structure of constraint equations

The method follows essentially the same steps as in the
axisymmetric case. The constraints which were obtained at
lowest order in Sec. VII B 4 need to be extended to include
order ε2

R corrections, so as to be replaced in the fundamental
dynamical equations. We follow the same procedure except
that all constraints are considered up to a higher order. For
instance, when deriving the string model we considered the
monopole of the radial constraint at lowest order rC(0)

∅
to

TABLE IV. Structure of boundary constraints. Each multipole of
each constraint is used to determine a variable as a function of other
variables. In each case, we specify which variable is determined and
report the essential variables on which it depends to emphasize the
structure of the recursive method. All these constraints need to be
truncated at a given power of R.

Equation Variable Essential dependence

rC∅ P (0) v(0) and P (1)R2, P (2)R4 . . .
rCa P (0)

a v(0)
a and P (1)

a R2, P (2)
a R4 . . .

rCab P
(0)
ab v

(0)
ab and P

(1)
ab R2, P

(2)
ab R4 . . .

C∅ v(1) v(0) and v(2)R2, v(3)R4 . . .

Ca v(0)
a v(1)

a R2, v(2)
a R4 . . .

Cab v
(0)
ab v

(1)
ab R2, v

(2)
ab R4 . . .

θC∅ φ̇(1) φ̇(0) and φ̇(2)R2, φ̇(3)R4 . . .

θCa V̂ (1)
a V̂ (2)

a R2, V̂ (3)
a R4 . . .

θCab V̂
(0)
ab V̂

(1)
ab R2 and V̂

(2)
ab R4 . . .

Gauge fixing V̂ (0)
a v(0)

a , V̂ (1)
a , v(0) . . .

constrain P
(0)
∅

, and now we must consider rC(1)
∅

. However, just
like when finding the corrections of the axisymmetric case,
the price to pay is that we introduce new dependencies. For
instance, from rC(1)

∅
we can obtain corrections for the constraint

which determines P
(0)
∅

, but it involves P
(0)
∅

R2. This set of
dependencies is summarized in Table IV.

The solution to this problem follows exactly the method
used in the axisymmetric case. We use the higher order mo-
ments of the Navier-Stokes, which we consider as constraints
and not dynamical equations, together with the incompress-
ibility constraint (5.15) to remove these newly introduced
variables. This is made possible since, as in the axisymmetric
case, these equations have Laplacians which allow us to use
the property (6.16).

We thus need to follow a recursive algorithm which is
very similar to the one used in the axisymmetric case, but
which is more involved since it involves the �th order STF
moments when considering order ε�

R corrections. Furthermore,
the structure of the recursive algorithm is slightly different for
the dipole components since (i) the gauge constraint already
determines one dipolar moment (“V (0)

a ) and (ii) one equation is
used to determine the external variable Ua . The corresponding
set of dependencies is summarized in Table V.

5. Quadrupoles of constraints

Let us first examine the quadrupoles of the constraints for
which we need only the lowest order expressions. From the
quadrupole of the orthoradial constraint at lowest order, that
is, from θC(0)

ab we get that“V (0)
ab = R2

î
− 3

2
“V (1)

ab − 3
8κ〈aκ̃b〉φ̇

− 3
16κ〈aκb〉∂sv + 3

8κ〈a(v∂sκb〉 + ∂sωb〉)
] + O(εR),

(7.37)

where we recall that the notation 〈a1 . . . an〉 means the STF part
and the notation (a1 . . . an) means the symmetric part. Actually,

043115-22



ONE-DIMENSIONAL REDUCTION OF … . I. THEORY PHYSICAL REVIEW E 97, 043115 (2018)

TABLE V. Structure of dependence for the constraints obtained
either from the higher moments of the Navier-Stokes equation or
from the incompressibility constraint. We have indicated only the
essential dependence, so as to emphasize clearly the structure of the
recursive method, but it depends in general on the full set of lower
order variables.

Equation Variable Essential dependence

D(n+1)
∅

v
(n+2)
∅

P
(n+1)
∅

, v
(n+1)
∅

D(n)
a v(n+1)

a v(n)
a , P (n)

a

D(n)
ab v

(n+1)
ab v

(n)
ab , P

(n)
ab

◦
D(n+1) φ̇(n+1) P

(n+1)
∅

, φ̇(n)

D̂(n+1)
a V̂ (n+2)

a V̂ (n+1)
a

D̂(n)
ab V̂

(n+1)
ab V̂

(n)
ab

DC(n)
∅

P
(n+1)
∅

P
(n)
∅

DC(n)
a P (n+1)

a P (n)
a

DC(n)
ab P

(n+1)
ab P

(n)
ab

the property that surface tension terms start at order εR and
viscous terms start at order ε2

R arises for all “V (0)
L with � � 2.

This property is fortunate since conversely from the lowest
order of the quadrupole of the radial constraint rC(0)

ab we find that
P

(0)
ab depends on “V (0)

ab /R2. Once this dependence is replaced,
we get

P
(0)
ab = ν

R

(
3Rab + κ〈aκb〉

) + 3

2
κ〈aκ̃b〉φ̇

+ 3

4
κ〈aκb〉∂sv − 3

2
κ〈a(v∂sκb〉 + ∂sωb〉) + O(εR).

(7.38)

Finally, from the quadrupole of the longitudinal constraint C(0)
ab

we get

v
(0)
ab = 0 + O

(
ε2
R

)
. (7.39)

6. Monopoles and dipoles of constraints

We now examine the monopoles and dipoles of the
constraints. The lowest orders have been found already in
Sec. VII B 4 when deriving the viscous string model, and they
need to be used to replace variables appearing in the order ε2

R

terms. Once this is done, then from the constraints C(�1)
∅

and

C(�1)
a we get that the constraints (7.12) should be supplemented

by

v(1) ⊃ 1
32R2[−64v(2) − 16v(1)

a κ̃a + 6Hκaκ
a∂sv

+ 84H∂sH∂sv − 12Hvκa∂sκa − 12Hκa∂sωa

+ 6∂sv∂2
s H + 84H2∂2

s v + 12∂sH∂2
s v

+ 48H3∂sv + 20H∂3
s v + ∂4

s v
]
, (7.40a)

v(0)
a ⊃ 1

4R2[−12v(1)
a + 10Hκaφ̇ − 11Hκ̃a∂sv

+ 10Hv∂sκ̃a + 10H∂sω̃a − κ̃a∂
2
s v

]
. (7.40b)

From the constraint θC(�1)
∅

we get an expression for φ̇(1) but
we do not need any higher order contribution since the dy-
namical equation for φ̇ [Eq. (7.18c)] is already part of the first
corrections. However, from θC(�1)

a we get the first corrections
for the constraint on “V (1)

a . Finally, from the constraints rC(�1)
∅

and rC(�1)
a , we obtain the corrections on the constraints for P

(0)
∅

and P (0)
a . These are rather large expressions, and we gathered

them in Appendix F.
As in the symmetric case, the constraint for v(1) now

depends on v(2) when including order ε2
R corrections, and

we shall thus need another constraint to replace it. In fact,
we also need constraints for v(1)

a , “V (2)
a , and “V (1)

ab . As in the
axisymmetric case, these additional constraints will come from
higher moments of the Navier-Stokes equations and the in-
compressibility constraint (see Table V). Since the expressions
of these constraints can be rather large, we report them in
Appendix F.

7. Corrections for dynamical equations

The evolution of the radius with the first corrections in-
cluded is given by

∂t ln R ⊃ R2(− 3
2H

2∂sv − 3
8∂sH∂sv − 5

8H∂2
s v − 1

16∂3
s v

)
.

(7.41)

It is striking that once all the constraints are properly replaced,
we reach the same expression as in the axisymmetric case
(6.23c), even though the original expression deduced from the
monopole of (4.25) is formally more complex. In principle,
we could apply the same method as in Sec. VI D and use the
average longitudinal velocity instead of v(0), thus changing the
fundamental variable.

Concerning the corrections of the dynamical equations
for v and Ua , we report them in Appendix G. They are
obtained from the replacement of all constraints, and then the
replacement of the lowest order dynamical equation to remove
the time derivatives appearing in the corrective terms. Several
comments are in order here.

(i) As for the lowest order string model, these equa-
tions could be recast in a covariant form, that is, using the
canonical Cartesian basis, following the method described in
Sec. VII B 9. This is especially straightforward when using the
property (7.27), so we do not write it explicitly.

(ii) Odd powers of R correspond to surface tension effects
(R−1 for the lowest order and R for the corrections), whereas
even powers of R correspond to inertial and viscous effects
(R0 for the lowest order and R2 for the first corrections).

(iii) We remark that the quadrupoles of shape Rab which
appear from surface tension effects do not retroact on the
dynamical equations for v and Ua .

(iv) In practice, it proves easier to multiply the equations
considered [e.g., boundary constraint (5.5) or Navier-Stokes
(5.11)] by h or h2, so as to avoid unnecessary factors h−1 =
1/(1 + κ̃ay

a) or h−2 which would need to be expanded in an
infinite series in κ̃ay

a . For instance, K given by (4.23) involves
h−1, but it is not the case for hK. All products of tensors
fully contracted with vectors ya are then handled thanks to
(A13). Hence, it is in principle possible to find very general

043115-23



CYRIL PITROU PHYSICAL REVIEW E 97, 043115 (2018)

relations between multipoles, as we did for instance with the
incompressibility condition (4.5).

Note that the dynamical evolution of φ̇ needs to be obtained
from Eq. (7.18c). Similarly, the dynamical evolution of the
quadrupole now needs to be determined independently. From
the quadrupole of (4.25) and using the constraint (7.37), we
find the simple lowest order dynamical equation

(∂t + v∂s)Rab = −“V (1)
ab + Rab∂sv − 2εc

(aRb)c(φ̇ − ω),

(7.42)

in which one should replace the constraint (F7).
Note that since the evolution of Rab is sourced by “V (1)

ab ,
then from (F7) we see that it contains typical terms of the
type κ〈aκb〉∂sv. If we were to consider the dynamics of higher
multipoles such as RL, it would be sourced by terms of the
type κ〈a1 . . . κa�〉∂sv among other terms. For comparison, from
(7.20) we see that ln R is typically sourced by ∂sv. Hence, the
higher the shape multipole is, the more spatial derivatives are
involved in its dynamics. This justifies why when considering
corrections of order εn

R we need only to consider the multipoles
RL with � � n. It also justifies a posteriori why we are
working with the shape multipoles RL (more precisely their
dimensionally reduced variables RL) as defined in Eq. (4.12)
and not the “RL of (4.13), which are better suited to describe
relative shape perturbations.

D. Straight fibers with elliptic sections

It is now easy to consider the case of straight fibers but
with noncircular sections. We need only to consider the special
case κa = ωa = ω = Ua = U = 0. We recover immediately
the dynamical equations found in the axisymmetric case with
the first corrections included [(6.10), (6.23c), and corrections
(6.23a)]. However, we also obtain the dynamical evolution
of the shape quadrupole, which evolves as an independent
equation. Indeed, to retroact on the dynamics of v we would
need terms of the type RabRab which would appear only when
corrections of order ε4

R are included.
Equation (7.42) restricted to straight fibers takes formally

the same form, except that the constraint (F7) now needs
to be also considered in that restriction when replaced. The
last term of Eq. (7.42) is expected, as it just states that axial
rotation φ̇ will rotate the ellipticity, but the sectional rotation
of the orthonormal basis (ω) must also be taken into account
and subtracted. However, it is only really an effect of the
choice of basis to measure components. Indeed, we can rewrite
it in a manifestly covariant form following the method of
Sec. VII B 9. Defining Rμν ≡ Rabd

a
μdb

ν , the shape quadrupole
evolution is given by

P⊥α
μP⊥β

ν [(∂t + v∂s)Rαβ]

= −“V (1)
ab da

μdb
ν + Rμν∂sv − 2φ̇T βεα

β(μRν)α, (7.43)

and we can check that the contribution from the orthonormal
basis rotation ω has disappeared.

Let us now compute the evolution of the relative ellipticity,
that is, the evolution of the dimensionless moments “Rab =
R2Rab. By using the lowest order of the fiber radius evolution
(7.41), we finally find that the dimensionless quadrupole

evolves according to

(∂t + v∂s)“Rab = − ν

R
“Rab − 2Hv“Rab − 2εc

(a
“Rb)c(φ̇ − ω).

(7.44)

In a stationary regime (∂t
“Rab = 0) we see that there is a

competition between surface tension effects which tend to
decrease ellipticity and stretching (H � 0) which tends to
increase the relative contribution of ellipticity. Indeed, if
we assess the evolution of Q2 ≡ “Rab

“Rab from the previous
equation, its second line which is a purely rotational effect
does not contribute since εc

a
“Rcb

“Rba = 0, and we get simply

(∂t + v∂s)Q = − ν

R
Q − 2HvQ. (7.45)

If it is true that stretching increases the ellipticity, the surface
tension effects encompassed in the first term on the right-hand
side would eventually dominate and damp ellipticity, as R is
reduced by stretching.

E. Alternative method for rotating frames

In our formalism we have allowed for the possibility to
be working in a rotating frame. This was taken into account
in the Navier-Stokes equation, by adding the fictitious forces
term (5.13). There is, however, a simpler method to recover
all expressions in a rotating frame. First, we derive the results
in a nonrotating frame, allowing to cut by approximately half
the number of terms in the final results, and then we relate all
variables in the nonrotating frame with their counterparts in
the rotating frame. We denote by Gω

i the components of the
rotation rate of the orthonormal basis [defined by (2.16)] in the
nonrotating frame, and by Rω

i its counterpart in the rotating
frame. Similarly, we define GV i and RV i as the velocity in the
nonrotating frame and rotating frame, respectively, and adopt
a similar notation for the FCL velocity components Ui . These
quantities are related by

GV i = RV i + [� × x]i , (7.46a)

GU
i = RU

i + [� × R]i , (7.46b)

Gω
i = Rω

i + �i, (7.46c)

where we recall that the wedge products are performed ac-
cording to (2.14). In particular, when considering the relative
velocity with respect to the FCL [V μ defined in Eq. (4.1)], we
note that the previous relations imply that the moments of its
longitudinal and sectional parts are unchanged except for

Gφ̇(0) = Rφ̇(0) + �, Gv
(0)
a = Rv

(0)
a + ‹�a. (7.47)

In order to replace all variables referring to the nonrotating
frame in terms of the variables referring to the rotating frame,
we also need to be able to relate the time derivatives of the FCL
velocity components. Specifically, we need

∂t
GU

i = ∂t
RU

i − [Rω × (� × R)]i + [� × RU ]i , (7.48a)

∂t�
i = [� × Rω]i , (7.48b)

where we emphasize that in these expressions, we are con-
sidering time derivatives of components. The relation (7.48a)
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is obtained from the definition (2.4) (which reads as here
∂tR

μ = GU
μ) and (7.46b), by using the definition [� × R]i ≡

d
i
μ(� × R)μ and the property (2.16). The relation (7.48b)

is obtained from the definition �i ≡ d
i
μ�μ and the property

(2.16). Finally, we also need the derivatives

∂s([� × R]i) = −‹�i − [κ × (� × R)]i . (7.49)

Using (7.46)–(7.48), we were able to check that starting from
the expressions found in a nonrotating frame (�a = � = 0),
we recover the expressions valid in a rotating frame, for all
constraints and all dynamical equations. It is thus a healthy
consistency check for the validity and correctness of the
method.

F. Physical insights on constraints

In this section we give physical interpretations for the
various velocity components. For simplicity, we neglect the
effect of curvature, so as to emphasize the physical effects
more clearly.

1. Pressure constraint and the Trouton ratio

Let us first analyze how the constraint for v(1) [Eq. (7.12)]
arises at lowest order. If we have a longitudinal velocity
gradient (∂sv �= 0), then we have a radial infall which is
constrained by incompressibility as we get u = −∂sv from
(4.6). As the radial infall is proportional to the radial distance
V a ⊃ uya/2, there is a radial gradient in this radial velocity.
Thanks to viscous forces, this creates a component τ

(μ)
ab ∝

μδabu. From the boundary condition (where we ignore surface
tension for simplicity), there is necessarily a pressure appearing
to compensate for this, P 
 μu. Hence, on the fiber section, the
longitudinal force per unit area is F = τ33 = 2μ∂sv − μu =
3μ∂sv, and we recover the standard Trouton enhancement
ratio [36] 3/2. Indeed, in the end we get a factor 3 instead
of the factor 2 that would have been found if we had forgotten
the pressure contribution. To summarize, in order to satisfy the
boundary constraint, a pressure must appear when we have a
gradient in the longitudinal velocity, and it transforms a 2 into
a 3 in the longitudinal viscous forces because this pressure also
acts on the sections.

2. Hagen-Poiseuille profile

If we now consider a gradient in the gradient of the
longitudinal velocity (∂2

s v �= 0), it will induce a gradient
of radial infall (∂su = −∂2

s v). This gradient of radial infall
induces viscous forces per unit area applied on fiber sections,
of the form Fa = τ 3a 
 μ(∂su/2)ya . We must realize that the
component τ 3a gives the sectional components of the force per
unit area applied onto the fiber sections, but τ3an

a gives also
the longitudinal forces applied on the boundary. A way to have
a longitudinal component of viscous forces on the fiber side
is to have a HP profile, that is, a parabolic profile. Indeed, a
velocity profile V = v(1)r2 creates τ3a 
 μ2v(1)ya and if v(1) =
−∂su/4 = ∂2

s v/4, then the boundary constraint is satisfied. If
the fiber radius is not constant along the fiber (H �= 0), this
reasoning is slightly altered, thus explaining the corresponding
contribution in Eq. (7.12). To summarize, when we have a
gradient of stretching, then we have a gradient of infall velocity

which creates a component τ3a on the fiber side, which in
turn needs to be canceled by a HP profile so as to satisfy the
boundary conditions, and eventually when everything is taken
into account, there is no sectional component for the forces per
unit area on sections (Fa 
 0).

3. Dipolar longitudinal velocity

Let us consider a simple case in which there is no lon-
gitudinal velocity v = v

(0)
∅

, but we allow for a gradient in
the sectional components of the FCL velocity (∂sUa �= 0).
This induces a force per unit area applied on sections of the
form Fa = τ 3a 
 μ∂sUa . Following the same reasoning as
in the previous section, we realize that the flow must adapt
in a way which creates an additional contribution for τ 3a

in order to satisfy the boundary constraint. If we consider a
dipolar modulation of the longitudinal velocity V = v(0)

a ya ,
then it creates a stress τ 3a = μv(0)

a . If v(0)
a = −∂sUa , then

the boundary constraint is satisfied, and given that we have
considered v = v

(0)
∅

= 0, this is equivalent to the constraint
(7.12b) once we use (2.28). Physically, if neighbor sections
slide along each other (that is, if they have a relative velocity
which is sectional), the viscous forces force them to rotate
so that they do not slide along each other. To conclude, we
might think that a gradient in the sectional velocity would
create a sectional force per unit area on sections, but in fact
the boundary condition would ensure that this is not the case,
just like in the previous section. Only when considering higher
order constraints will there be a sectional viscous force per
unit area on sections, and this is why the lowest order model
is a string model where viscous forces per area are necessarily
longitudinal.

4. Dipolar pressure constraint

If we have a dipole modulation of the radial infall (u(0)
a �= 0),

then following the reasoning of Sec. VII F 1, it will induce a
dipole in the pressure so as to satisfy boundary constraints.
Indeed, the sectional velocity contains V a = ya/2(u(0)

b yb) and,
thus, τab ⊃ μδab(u(0)

c yc). In order to compensate for this com-
ponent, we need a pressure gradient P (0)

a = μu(0)
a , which once

all other constraints are used gives (7.17b). To be fully correct,
we should also mention that u(0)

a also contributes as τab ⊃
μy(au

(0)
b) , but there is also a parabolic sectional component

Va = “V (1)
a r2 which contributes as τab ⊃ 4μy(a“V (1)

b) , and from
the orthoradial constraint they must cancel. Again, the bottom
line is that at lowest order the system adapts so that τ3a 
 0, but
this property also implies that there is no sectional component
for the viscous forces per unit area on sections.

G. Comparison with rod models

The methods based on rod models follow a slightly different
logical route in order to obtain a one-dimensional reduction.
Indeed, in our method we solve for the constraints and then
use them to obtain the volumic forces. In rod models, we
solve instead only some of the boundary constraints, those
needed to get the pressure moments, and then we use them
to compute the forces per unit area applied on fiber sections.
These are then integrated to get total forces and total torques
applied on sections, allowing to establish a momentum balance
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equation and an angular momentum balance equation on a slice
of fluid contained between two infinitesimally close sections.
The information of the boundary constraints which was not
used explicitly is then used implicitly because we use that no
force is applied on the sides of the infinitesimal slice, so the
balance equations involve only the forces and torques on the
fiber sections. If surface tension effects are considered, then
they are of course added to the side of the infinitesimal slice.
In this section, we collect the expressions for forces and torques
that we find with our formalism, so as to facilitate comparisons
with existing literature using rod models.

1. Viscous forces

The total force on sections is

F 

∫ r=R

r=0
Fr dr dθ, (7.50)

where we recall the definition (5.4) for the forces per unit
area on sections. This relation is approximate because we have
neglected the effect of noncircular sections. If we were to take
into account correctly the effect of a noncircular shape, then we
would need to perform a change of variables as in Appendix B.
At lowest order the total longitudinal force is given by

F 
 πR2F (0)
∅

= πR2
(
− ν

R
+ 3μ∂sv

)
. (7.51)

Note that in order to write a momentum balance equation on
an infinitesimal slice, we should also consider (i) long distance
forces g in the bulk of the slice, and (ii) the effect of surface
tension on the side of the slice [e.g., Eq. (49) of Ribe et al. [23]].
This can also be computed by integrating all the volumic forces
on the infinitesimal slice, as the total lineic force is obtained
from

d F
ds

tot

≡
∫ r=R

r=0
f hr dr dθ, (7.52)

where we recall that the total volumic forces are given by (5.9).
The factor h, which mathematically is

√
gij with the metric

(2.35), takes into account the fact that if the fiber is curved,
then for an infinitesimal slice there is more fluid in the exterior
of curvature and less in the interior of curvature. At lowest
order we get simply

d F
ds

tot

= πR2 g + 2∂s(πνRT ) + ∂s(F T ). (7.53)

The first term is the effect of gravity, the second is the effect
of surface tension on the side of the infinitesimal slice, and the
last is the net effect of viscous forces on sections. Using (7.51),
the total lineic force is simply

d F
ds

tot

= πR2 g + ∂s(πνRT ) + 3μ∂s(πR2∂svT ), (7.54)

in agreement with the right-hand side of (7.22). If we had
ignored the effect due to the induced pressure on the sections
[given by the first term of (7.51)], we would have overestimated
the total lineic force by a factor 2 as seen when comparing
(7.54) with (7.53). So, we can state that if for viscous forces
the effect of the constrained pressured is to enhance by a factor
3
2 the total forces, then for surface tension the effect of the
constrained pressure is a reduction by a factor 2.

2. Viscous torques

Still neglecting the effect of noncircular sections, the total
torque applied on a fiber section is given by

� 

∫ r=R

r=0
(yada) × F dθ rdr (7.55)

or in components (that is, using � = 
ada + 
T )


a 
 −
∫ r=R

r=0
ỹaF dθ r dr, (7.56)


 

∫ r=R

r=0
ỹbFbdθ r dr. (7.57)

In order to obtain the lowest order expressions for the torque,
we only need to keep contributions which are linear in ya in
the components of F , and we find


a 
 πR4

4
εb
aF

(0)
b = −πR4

4
‹F (0)

a , 
 
 πR4

2

◦
F (0). (7.58)

Note that “V (0)
ab does not contribute to the torque as it corresponds

to a shear flow inside the section.
The expression of torques takes a simple form when

expressed in terms of fluid vorticity. At lowest order, the
vorticity components obtained from (4.37) with the lowest
order constraints replaced are given by

� 3 = φ̇ + O
(
ε2
R

)
, (7.59a)

�a = ωa + κav + O
(
ε2
R

)
. (7.59b)

The longitudinal component of the torque is then found
from

◦
F (0) 
 μ

[
∂sφ̇ − 1

2κa
(
ω̃a + v(0)

a

)] = μ
(
∂sφ̇ + κ̃aω

a
)

= μ(∂s� )3, (7.60)

where in the second equality we have used the lowest order
constraint (7.12b) and in the third we used the property
(2.24b). This component of the torque is induced by twisting
(longitudinal difference of vorticity) and its physical origin is
thus obvious.

The sectional torque is found from

−‹F (0)

a 
 − ν

R
κa + 3μ

ï
∂s(ωa + κav) − 3

2
κa∂sv − φ̇κ̃a

ò
= − ν

R
κa + 3μ(∂s� )a − 9

2
μκa∂sv. (7.61)

The physical origin of the second term is simple. The sectional
component of vorticity corresponds to a rotation around a
sectional axis. If we consider two neighbor sections which
have different sectional vorticities, as would happen if the fiber
is bent, then the fluid located inside will be squeezed on one
side and stretched on the other side, that is, there will appear
a dipole of stretching. Then, from the viscous forces induced,
this creates a sectional torque. With this naive view we would
get a factor 2 and not a factor 3, but as in Sec. VII F 1, there is
also a dipolar pressure which is induced to satisfy the boundary
conditions, and it implies again the appearance of the Trouton
factor enhancement 3

2 .
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The last term of (7.61) is more subtle and it has been ignored
in Ribe [22] and Ribe et al. [23]. Indeed, stretching implies the
viscous force (7.51), twisting implies the longitudinal torque
(7.60), and bending induces the second term of the sectional
torque (7.61), and these geometries have been considered
separately in these references even though they can have mixed
effects. However, the coupling of stretching with curvature has
been ignored, and it happens to have an effect on the torque
which is contained in the last term in Eq. (7.61). We stress
that this effect arises at the same order, and is not an order ε2

R

correction.
In a simple case, the physical origin of this last term can

also be understood. Let us ignore surface tension and consider
a stationary regime with no axial rotation (ωa = φ̇ = 0) and
constant curvature (∂sκ

a = 0). The expression of the sectional
force (7.61) is simply

−‹F (0)

a 
 − 3
2μκa∂sv. (7.62)

As the fiber is stretched (∂sv > 0), there is a radial infall
since u = −∂sv. Since the fiber is curved, the particles in the
exterior of curvature (κ̃ay

a > 0) are compressed while they
move closer to the FCL, and conversely the particles in the
interior of curvature (κ̃ay

a < 0) are stretched while they move
toward the FCL. As a result of viscous forces, this creates a
contribution to the sectional torque. And, as usual, we get a
factor 3/2 enhancement, the Trouton ratio, exactly like for the
other contribution to the bending torque.

The first term of (7.61) comes from surface tension effects.
If the FCL is curved, then κ̃a points in the exterior of curvature
(or −κ̃a points toward the center of curvature of the FCL).
This means that extrinsic curvature is increased in the exterior
(for points such that κ̃ay

a > 0) and decreased in the interior
(for points such that κ̃ay

a < 0). From Young-Laplace law, this
induces a dipole in pressure, with more pressure in the outside
than in the inside as can be seen on the constraint (7.17b). This
dipolar pressure distribution creates in turn a sectional torque.

However, if we perform an angular momentum balance
equation on an infinitesimal slice, one should also add (i)
the torque of long distance forces g in the bulk of the slice
and (ii) the contribution of surface tension on the side of the
slice which also creates a torque [e.g., Eq. (50) of Ribe et al.
[23]]. Just as for the momentum balance equation, the angular
momentum balance equation is best computed by integrating
the torques of volumic forces on the infinitesimal slice, as the
total lineic torque is obtained from

d�

ds

tot

≡
∫ r=R

r=0
(yada) × f h dθ r dr. (7.63)

We find that it can be expressed as

d�

ds

tot

= T × F + dγ

ds
, (7.64)

where the first term involves the sectional part of the total
viscous forces defined in Eq. (7.50), and the second term is
given at lowest order by

dγ

ds

 ∂s� + πR4

4

(
κ̃ × g + 4

ν

R
Hκ

)
. (7.65)

It appears clearly that the last term on the right-hand side comes
from surface tension effects on the side of the infinitesimal

slice, whereas the first term is the net effect of torques applied
on the sections of the infinitesimal slice. The middle term is the
torque induced by gravity, which comes from the fact that when
the fiber is curved, then the center of mass of an infinitesimal
slice is not exactly on the FCL, but is instead offset by R2κ̃/4.
In components (7.65) reads as simplyï

dγ

ds

òa


 ∂s

a − κ̃a
 + νπR3Hκa, (7.66a)ï

dγ

ds

ò3


 ∂s
 + κ̃a
a, (7.66b)

where the expressions of the torques applied on fiber sections
are given by (7.58) with (7.60) and (7.61). For completeness,
we report the explicit result which isï

dγ

ds

òa


 πR4

4

Å
gκa + νHκa

R
− 12μHκ̃aφ̇ − 2μκbκ

bωa

+ 2μκaκ
bωb−6μHκa∂sv− ν∂sκa

R
+12μHv∂sκa

+ 3

2
μ∂sv∂sκa−3μφ̇∂sκ̃a−5μκ̃a∂sφ̇+12μH∂sωa

− 3

2
μκa∂

2
s v + 3μv∂2

s κa + 3μ∂2
s ωa

ã
, (7.67)ï

dγ

ds

ò3


 πR4

4

(−gaκa − 3μκaκ
aφ̇ + 8μHκ̃aωa

+ 3μvκ̃a∂sκa + 2μωa∂sκ̃a + 8μH∂sφ̇

+ 5μκ̃a∂sωa + 2μ∂2
s φ̇

)
. (7.68)

3. Sectional forces and dipolar HP profile

The component of the longitudinal velocity v
(1)
b r2yb can be

considered as a dipolar HP profile, as it is a parabolic profile
with a dipolar modulation. This velocity component induces a
force per area on sectionsFa = τ 3a 
 μ2ya(v(1)

b yb) + μv(1)
a r2

and it remains undetermined by the boundary constraints.
When averaged over directions, it contributes to the forces
per unit area as Fa 
 2μv(1)

a r2, and after integration over the
whole section, it contributes to the sectional part of the total
viscous force. Indeed, the sectional components of the total
viscous force applied on sections [defined in Eq. (7.50)] are

Fa 
 πR4(−2μv(1)
a + 3μHκaφ̇ + 1

4μκbκ̃aωb

− 15
4 μHκ̃a∂sv + 1

4μφ̇∂sκa + 3μHv∂sκ̃a

+ 1
8μ∂sv∂s κ̃a + 1

2μκa∂sφ̇ + 3μH∂sω̃a

− 3
8μκ̃a∂

2
s v + 1

4μv∂2
s κ̃a − 1

4μκbκ
bω̃a + 1

4μ∂2
s ω̃a

)
.

(7.69)

As the rotation of sections is constrained by (7.12b), then an
angular momentum balance equation would in fact determine
the value of v(1)

a because part of the torque balance equation
(7.64) comes from T × F. In our method, it is determined from
D(0)

a (see Table V), that is, from the dipole of the longitudinal
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part of the Navier-Stokes equation. Indeed, it determines the
rate of change of the local dipolar longitudinal velocity v(0)

a

which is related to the vorticity and the local rotation rate of the
fluid on the FCL [see the discussion which follows (7.12)], and
it thus contains the same information as the angular momentum
balance equation used in rod models. The expression obtained
for v(1)

a is reported in Appendix F, and once replaced in
Eq. (7.69), the sectional components of the total viscous force
applied on sections read as

Fa 
 πR4
Å

− ν

2R
∂sκ̃a + 3μHκaφ̇ + 3

4
μκbκ̃aωb

−9

2
μHκ̃a∂sv + 3

4
μφ̇∂sκa + 3μHv∂sκ̃a

−3

8
μ∂sv∂s κ̃a + 5

4
μκa∂sφ̇ + 3μH∂sω̃a − 1

2
vφ̇κa

−21

8
μκ̃a∂

2
s v + 3

4
μv∂2

s κ̃a − 3

4
μκbκ

bω̃a + 3

4
μ∂2

s ω̃a

−1

2
φ̇ωa − 1

4
μκ̃bω

bκa + 3

4
κ̃av∂sv + 3

4
ω̃a∂sv

ã
.

(7.70)

4. Rod models and their validity

As explained in the previous sections, the constitutive
relations of rod models are based on the determination of
forces per unit area on fiber sections, and boundary constraints
are only used explicitly to determine the pressure profile.
The boundary constraints are then used implicitly in balance
equations.

At lowest order, only the momentum balance equation is
used, and we find (7.23) which is also exactly what is found in
the viscous string model. This equation determines the motion
of the FCL, and thus the rotation rate ωa can be inferred from
it. Given that the fiber vorticity is constrained to match the
rotation rate of the fluid located on the FCL (see Sec. VII B 4),
the angular momentum balance equation is in fact used to
determine the sectional components of the viscous forces per
unit area Fa , as explained in the previous section, and it
corresponds to the addition of an order ε2

R correction.
To summarize, the rod model amounts to using Eq. (7.23),

formally exactly like the viscous string model, but it differs
from it in the expression of the force used on the right-hand
side which has sectional components. Hence, the rod model
corresponds to

DtVCen 
 g + 1

πR2
∂s F, (7.71)

with the force given by

F ≡ (πR23∂sv + νπR)T + Fada, (7.72)

and where we recall the definition of the convective deriva-
tive Dt ≡ ∂t + v∂s . The components of the left-hand side
of Eq. (7.71) are obtained from Eqs. (7.21) exactly like for
the string model. The components of the first term on the
right-hand side are obtained from Eqs. (7.22) as in the string
model. However, the rod model differs from the string model
thanks to the sectional components of the total viscous force
which are reported in Eq. (7.70). Note that from the relations

of Sec. II D we must use

∂s(F
ada) = ∂sF

ada + T κ̃aF
a (7.73)

so as to evaluate the last term in Eq. (7.71). Furthermore, the
dynamics of φ̇ is given by the lowest order dynamical equation
(7.18c) as in our model, and it is required since φ̇ appears in
Eq. (7.70). In the rod model of Ref. [23], this is equivalently
found from the longitudinal part of the momentum balance
equation, even though it does not appear so explicitly as the
physical case studied is stationary.

Finally, we already mentioned that for straight fibers the
model is improved by considering the full expression of the
boundary curvature [7] given by Eq. (6.11) instead of the lowest
order 1/R. We can use a similar ansatz for curved fibers by
noting that in Eq. (7.72), the term νπR is in fact νπK∅R2 at
lowest order in εR . Hence, from Eq. (7.34a) an improved rod
model is obtained by the replacement

νπR → νπR
[
1 − R2( 3

2H
2 + 1

2κaκ
a + ∂sH

)]
(7.74)

in Eq. (7.72). This improved rod model is necessary to compute
in Ref. [28] the Rayleigh-Plateau instability of a viscous fiber.

The validity of rod models is limited by the fact that we
are considering one correction while discarding other sources
of corrections, whereas in our approach we systematically
consider all corrections of order ε2

R . Among the effects ignored
there are the following:

(i) the difference between the velocity of the central line
and the velocity of the fluid on the central line (see Sec. IV I);

(ii) the HP profile induced by the constraint (7.12a) which
mixes the fluid particles belonging to neighboring sections;

(iii) the shape moments which are sourced and invalidate
the assumption that the sections remain circular.

Furthermore, even though it is computationally involved,
our approach allows to find the corrections up to any order
when rod models would fail because of the impossibility to deal
with the mixing sections. In principle, we have a clear recursive
algorithm made of constraints replacements in fundamental
dynamical equations.

However, there are cases in which rod models capture the
essential corrections. First, shape moments appear in all inter-
mediary expressions but do not appear in the final dynamical
equations (G3) and (G4), hence, if we are not interested in the
fiber sections shape but only on the central line, they can be
ignored. Furthermore, if we are considering the steady motion
in a rotating frame, and if the Rosby number is very small, that
is, for high rotation rates, then it does not matter if we have
ignored most of the corrective effects. Indeed, the boundary
constraints do not involve the frame rotation, and frame rotation
enters essentially only in the determination of v(1)

a fromD(0)
a , or

equivalently in the determination of the total sectional forces
since it is related through (7.69). In this regime, the fast rotation
induces a sectional force and its expression should be captured
correctly by an angular momentum balance equation thanks to
(7.64), provided the last term in (7.61) is correctly included.
In the end, rod models take only some corrective terms, but if
the system is considered in a fast-rotating frame, these retained
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corrective terms should also be the most important ones, and
rod models should lead to a reliable extension of the viscous
string model.

VIII. CONCLUSION

We have developed all the theoretical tools which are
required to obtain a general one-dimensional description of
curved fibers. A concrete application for toroidal viscous fibers
is presented separately in Pitrou [28]. From a theoretical
point of view, our 2 + 1 splitting, our use of fiber adapted
coordinates, and more importantly our parametrization of
the velocity field in terms of STF tensors allow for a clear
discussion about constraints and dynamical equations. It avoids
the cluttered component by component expressions which are
usual in such context [18], and it bears a more transparent
geometrical meaning since all quantities are analyzed in
terms of their monopole, dipole, quadrupole, and higher order
multipoles. We find that it is the natural language which allows
to overcome the complexity of equations for curved viscous
fibers. Indeed, the use of an adapted formalism is the key
to understand in depth apparently complex problems. From
a practical or computational point of view, this STF based
approach is very powerful as it is possible to handle tensors
with appropriate abstract tensor packages, and to this end we
used xAct [35]. The corresponding notebooks are available
upon request from the author.

The main results of this article are the following:
(i) We have recovered the standard results of axisymmetric

fibers at lowest order in Eqs. (6.3) and (6.10), including also
axial rotation.

(ii) The first corrections for this model are collected in
Eq. (6.23).

(iii) We extended these results to include a second set of
corrections and these can be found in Appendix E.

(iv) The main purpose of this article was to develop a
formalism for curved fibers and we first rederived the viscous
string model whose central equations are (7.18), (7.25), and
(7.20). Its covariant formulation is summarized in Eqs. (7.28)
and (7.29).

(v) We found the first corrections for curved fibers in full
generality in Eqs. (G3), (G4), and (7.41), and these are relevant
when εR is not so small since they are of order ε2

R .
(vi) Elliptic shape perturbations are sourced at that order

and their dynamics is governed at that order by (7.42) with
(F7) replaced.

(vii) In particular, when restricting to straight fibers, the
dynamical equation for the evolution of elliptic shape pertur-
bations takes the simple form (7.44).

(viii) Finally, when comparing with rod models methods,
we have exhibited a missing term in the expression (7.61) for
the torque applied on fiber sections.
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APPENDIX A: STF FORMALISM

1. Extraction of STF tensors

Integrals on directions are simply∫
dθ

2π
na1 . . . na2n = (2n − 1)!!

(2n)!!
δ(a1a2 . . . δa2n−1a2n),∫

dθ

2π
na1 . . . na2n+1 = 0. (A1)

Here, δ(a1a2 . . . δa2n−1a2n) means that the indices need to be fully
symmetrized among the (2n − 1)!! possible permutations. The
lowest nonvanishing integrals are∫

dθ

2π
nanb = 1

2
δab, (A2)∫

dθ

2π
nanbncnd = 1

8
(δabδcd + δacδbd + δadδbc). (A3)

We recall that in general for STF tensors, we can use the
multi-index notation K ≡ a1 . . . ak or L ≡ b1 . . . b�. However,
in order to avoid confusion on multi-indices in this section
and the next one, we use the weaker multi-index notation
aK ≡ a1 . . . ak or bL ≡ b1 . . . b�. Let us define

I
aL

bL
≡ δ

a1
〈b1

. . . δ
a�

b�〉, J
aL

bL
≡ εa1 〈b1δ

a2
b2

. . . δ
a�

b�〉, (A4)

where we recall that when indices are enclosed in 〈. . . 〉we must
take the symmetric trace-free part. Clearly, these quantities are
just related by

εa1
c I

caL−1
bL

= J
aL

bL
, εa1

c J
caL−1
bL

= −I
aL

bL
. (A5)

They have the interesting properties

I
caL−1
cbL−1

= I
aL−1
bL−1

, I a
a = 2, I a

b εb
a = 0, (A6a)

J
caL−1
cbL−1

= J
aL−1
bL−1

, J a
a = 0, J a

b εb
a = 2, (A6b)

I
aL

bL
I bL

aL
= 2, J

aL

bL
J bL

aL
= 2, I

aL

bL
J bL

aL
= 0. (A7)

The tensors (A4) are used when computing the following
integrals on direction vectors:

2�

∫
dθ

2π
naLn〈bK 〉 = δ�

k I
aL

bL
, (A8a)

2�

∫
dθ

2π
εa
c ncnaL−1n〈bK 〉 = δ�

k J
aL

bL
. (A8b)

It is then immediate to show that for a scalar function
expanded in STF tensors as

S =
∑

�

SLn〈L〉, (A9)

then the STF moments can be extracted through

SL = 2−�

∫
dθ

2π
n〈L〉S. (A10)
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This type of integral is very well suited for a tensor computer
algebra system such as xAct [35] since we need only to
implement the rules (A1).

2. Products of STF tensor

As explained in Sec. III B, STF tensors in two dimensions
are irreducible representations of SO(2). If the tensor has �

indices, then it is in the representation D�. When we have
a product of two STF tensors of rank � and �′, it means we
have the tensor product of the representations D� ⊗ D�′ . This
is not irreducible, but it can be decomposed in irreducible
representations. Given that the dimension of D� is 2 (except
for D0 for which the dimension is 1), then this tensor product
is of dimension 2 × 2 = 4. When decomposed in irreducible
representations, it is either of the formD|�−�′| ⊕ D�+�′ if � �= �′,
or D�+�′ ⊕ D0 ⊕ D0 if � = �′. When counting the dimensions,
it is the statement that 2 × 2 = 2 + 2 in the former case, and
2 × 2 = 2 + 1 + 1 in the latter case.

In order to see in practice how this decomposition is
performed, let us consider two STF tensors AK and BL. If
we assume first that k < �, then

AaK
BbL

= A〈aK
BbL〉 + AcK BcK 〈bL−K

I
aK

bK 〉. (A11)

Under this form, we have indeed decomposed the product into
two irreducible parts D|k−�| and D|k+�| (that is, 2 × 2 = 2 +
2), which are respectively the STF tensors AcK BcK 〈bL−K 〉 and
A〈aK

BbL〉.
However, if the tensors are of equal rank (k = �), this gets

slightly different since

AaL
BbL

= A〈aL
BbL〉 + 1

2AcLBcL
I

aL

bL
+ 1

2εc
dAccL−1B

dcL−1J
aL

bL
.

(A12)

In that case, we have decomposed the product as a sum of
two scalar functions (both corresponding to the representation
D0) and an element of D2� (that is, 2 × 2 = 2 + 1 + 1) which
are, respectively, AcLBcL

, εc
dAccL−1B

dcL−1 and the STF tensor
A〈aL

BbL〉.
In both cases we get (with k � �)

AKBLyKyL = A〈KBL〉yKyL + r2k

2k
AKBKcL−K

ycL−K . (A13)

If we consider the expansion (3.2), we can first remove the
traces in the L indices to recast the expansion as

Va(yi,t) =
∞∑

�=0

∞∑
n=0

V
(n)
a〈L〉(s,t)y

Lr2n. (A14)

Each V
(n)
a〈L〉 can be handled exactly as a product of tensors Aa

and BL. If � > 1, we can use the decomposition (A11), but if
� = 1, we must use (A12). Combining all the terms in the sum
(3.2), we finally conclude that the decomposition of a 2-vector
field in terms of irreps is necessarily of the form (3.10).

APPENDIX B: ALTERNATE SHAPE REPRESENTATION

We can consider the following STF moments:

ML ≡ 2�

∫
y〈L〉ρ̄(yb)d2yb, (B1)

which are integrals on the fiber section which should capture
its shape. ρ̄ is a step function which is unity if there is a fluid
particle and vanishes otherwise. These moments are built just
like the material moments of constant density extended objects,
or like the electric moments of uniformly charged extended
objects [37]. These moments can be related to the moments
of radial dimensions RL defined in Eq. (4.12), but the relation
is nonlinear. To see this, let us change variables and define
rescaled coordinates

za ≡ ya

1 + “RLnL
, ya = za(1 + “RLnL). (B2)

The Jacobian of the transformation is

d2yb = Jd2zb, J = (1 + “RLnL)2 (B3)

and the integrals (B1) are recast as

ML = 2� 2πR�+2

� + 2

∫
(1 + “RMnM )�+2n〈L〉

dθ

2π
. (B4)

For the monopole we obtain

M∅ = πR2

(
1 +

∞∑
�=1

2−�“RL
“RL

)

 πR2, (B5)

which is just the area of the section. If � > 0, then the other
geometric multipoles are simply approximated by (keeping
only linear terms)

ML 
 2πR�+2 “RL = 2πR2(�+1)RL, (B6)

where (A8) was used to compute the integral (B4).
The kinematic equation, giving the evolution in time of

these moments, is found from the conservation equation of
the density function ρ̄:

∂t ρ̄ + V i
R∂i ρ̄ = ∂t ρ̄ + V3

R∂sρ̄ + Va
R∂aρ̄ = 0. (B7)

Indeed, integrating over directions as in Eq. (B1), and after
integrations by parts, we get simply

∂tML = −
∫

y〈L〉(V3
R∂sρ̄ − ρ̄∂aVa

R

)
d2y

+ �

∫
y〈aL−1Va�〉

R ρ̄ d2y. (B8)

Va
R needs to be expressed in terms of its multipoles. To this end,

we first express it in terms of V a from the relation (4.10b), and
then use the expansion (3.10) for V a . As for V3

R , we should

first use that V3
R = V3

R/h, expand 1/h = 1/(1 + κ̃ay
a) which

brings increasing powers of κ̃ay
a , and then we should relate

it to V from (4.10b) so as to use the expansion (3.9) for
V . The angular integrals can then be performed with (A8).
The resulting dynamical equations for these shape multipoles
ML are rather complicated because of the high powers in the
curvature vector κa , but they are linear in both the velocity
multipoles and the shape multipoles ML. Instead, the dynam-
ical equation (4.25) was still linear in velocity multipoles, but
extremely nonlinear in the shape multipoles RL. Hence, it
is not surprising that the relation between the two types of
multipoles (B4) is very nonlinear. Since the normal vector and
thus the extrinsic curvature are more easily expressed with the
multipoles RL as seen on (4.21), we chose to work with these
multipoles so as to be able to include surface tension effects.
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APPENDIX C: VELOCITY OF THE COINCIDENT POINT

Let us define the space-time Cartesian coordinates Xμ̂ =
(t,xμ) with μ̂ = 0,1,2,3 and the space-time fiber adapted co-
ordinates Y ı̂ = (t,yı̂) with ı̂ = 0,1,2,3. Then, each coordinate
system is a function of the other one, that is, we have the
functions Xμ̂(Y ı̂) and Y ı̂(Xμ̂) which are related by

∂Xμ̂

∂Y ı̂

∂Y ı̂

∂Xν̂
= δ

μ̂
ν̂ ,

∂Y ı̂

∂Xμ̂

∂Xμ̂

∂Y ĵ
= δı̂

ĵ . (C1)

In particular, using the first relation for μ̂ = μ and ν̂ = 0, and
the second relation with ı̂ = i and ĵ = 0 we get

0 = ∂xμ

∂t

∣∣∣∣
y

+ ∂xμ

∂y

∂yi

∂t

∣∣∣∣
x

= ∂xμ

∂t

∣∣∣∣
y

+ d
μ
i

∂yi

∂t

∣∣∣∣
x

, (C2a)

0 = ∂yi

∂t

∣∣∣∣
x

+ ∂yi

∂xμ

∂xμ

∂t

∣∣∣∣
y

= ∂yi

∂t

∣∣∣∣
x

+ di
μ

∂xμ

∂t

∣∣∣∣
y

(C2b)

and we recover (4.7).

APPENDIX D: CARTAN STRUCTURE RELATION

In this Appendix, we build on the four-dimensional per-
spective of the previous section. Let us define the space-time
tetrad

dı̂ = (d0,di). (D1)

It is made from the spatial orthonormal basis on which we have
added a time directed vector

d
μ̂
0 = δ

μ̂
0 ⇒ ∂sd0 = ∂td0 = 0. (D2)

Let us define the infinitesimal rotation matrices

[Ji]jk ≡ ηijk ⇒ [Ji,Jj ] = −ηijkJk, (D3)

where ηijk is the permutation symbol with η123 = 1 and where
the sum on the index k is implied. We can define an operator
valued (rotation valued) one-form in the four-dimensional

classical space-time by

� ≡ κiJi ds + ωiJi dt. (D4)

The components of this form in the Cartesian canonical basis
are

� = �μ̂dxμ̂, �μ̂ ≡ κiJiδ
3
μ̂ + ωiJiδ

0
μ̂. (D5)

This form is clearly the connection form of the Cartan formal-
ism since (still with the sum on k implied)

∂sdj = [�3]jkdk ⇔ ∂sdj = κi[Ji]jkdk ⇔ ∂sdj = κ × dj ,

∂tdj = [�0]jkdk ⇔ ∂tdj = ωi[Ji]jkdk ⇔ ∂tdj = ω × dj ,

which in a four-dimensional perspective reads exactly as the
first Cartan structure equation

∂μ̂dĵ = [�μ̂]ĵ k̂dk̂ . (D6)

Then, since the classical space-time is flat, the second Cartan
structure equation reads as [38]

d� + � ∧ � = 0. (D7)
Expressed explicitly in a basis of two-forms dyı̂ ∧ dyĵ =
dyı̂ ⊗ dyĵ − dyĵ ⊗ dyı̂ , the terms of this equation read as

d� = 1
2 [∂tκ

i − ∂sω
i]Ji dt ∧ ds,

� ∧ � = 1
2ωiκ

j [Ji,Jj ]dt ∧ ds = 1
2 [κ × ω]iJi dt ∧ ds

and therefore we recover the structure relation (2.18).

APPENDIX E: SECOND SET OF CORRECTIONS
FOR AXISYMMETRIC VISCOUS FIBERS

As discussed in Sec. VI A, the dynamical equation (6.10b)
is part of the first set of corrections, implying that (6.23b) is in
fact part of the second set of corrections, so we only report the
second corrections for ∂tv and ∂t ln R. The second corrections
to the dynamical equation for v are

∂tv ⊃R4[− 1
2H

3φ̇2 − 1
4Hφ̇2∂sH + 48H5∂sv + 543

4 H3∂sH∂sv + 453
8 H(∂sH)2∂sv

+ 117
8 H3(∂sv)2 + 147

16 H∂sH(∂sv)2 + 1
2H(∂sv)3 − 11

4 H
2φ̇∂s φ̇ − 1

6 φ̇∂sH∂sφ̇

− 7
6H(∂sφ̇)2 + 315

8 H2∂sv∂2
s H + 12∂sH∂sv∂2

s H + 5
16 (∂sv)2∂2

s H + 321
4 H4∂2

s v

+ 1
24 φ̇2∂2

s v + 951
8 H2∂sH∂2

s v + 33
2 (∂sH)2∂2

s v + 327
16 H

2∂sv∂2
s v + 45

16∂sH∂sv∂2
s v

+ 17
32 (∂sv)2∂2

s v + 339
16 H∂2

s H∂2
s v + 67

16H(∂2
s v)2 − 7

6Hφ̇∂2
s φ̇ − 19

48∂sφ̇∂2
s φ̇

+ 93
16H∂sv∂3

s H + 15
8 ∂2

s v∂3
s H + 135

4 H3∂3
s v + 207

8 H∂sH∂3
s v + 7

2H∂sv∂3
s v

+ 47
16∂2

s H∂3
s v + 33

64∂2
s v∂3

s v − 5
48 φ̇∂3

s φ̇ + 15
32∂sv∂4

s H + 63
16H

2∂4
s v

+ 15
8 ∂sH∂4

s v − 3
64∂sv∂4

s v + 1
48∂6

s v

+ ν
(

41
8 H

3∂2
s K + 53

16H∂sH∂2
s K + 3

8H∂sv∂2
s K + 1

4∂2
s H∂2

s K + 1
8∂2

s v∂2
s K

+ 65
16H

2∂3
s K − 1

16Hv∂3
s K + 3

4∂sH∂3
s K + 11

96∂sv∂3
s K − 1

16H∂t∂
2
s K

+ 29
32H∂4

s K − 1
48v∂4

s K − 1
48∂t∂

3
s K + 3

64∂5
s K

)]
. (E1)
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As for the radius evolution, it should be corrected at that order by

∂t ln R ⊃R4[− 9
4H

4∂sv − 63
16H

2∂sH∂sv − 15
32 (∂sH)2∂sv − 3

8H
2(∂sv)2 − 1

16∂sH(∂sv)2

+ 1
8Hφ̇∂s φ̇ + 1

48 (∂sφ̇)2 − 3
4H∂sv∂2

s H − 51
16H

3∂2
s v − 63

32H∂sH∂2
s v

− 13
32H∂sv∂2

s v − 9
64∂2

s H∂2
s v − 3

64 (∂2
s v)2 + 1

48 φ̇∂2
s φ̇ − 3

64∂sv∂3
s H

− 27
32H

2∂3
s v − 5

32∂sH∂3
s v − 3

64∂sv∂3
s v − 1

64H∂4
s v + 1

128∂5
s v

− ν
(

3
16H

2∂2
s K + 1

32∂sH∂2
s K + 3

32H∂3
s K + 1

96∂4
s K

)]
. (E2)

APPENDIX F: HIGHER ORDER CONSTRAINTS FOR CURVED FIBERS

From the boundary constraint (5.5) we get the additional contributions

“V (1)
a ⊃ R2(− 12

5
“V (2)

a − 3Hv(1)
a − 21

80εa
c“V (1)

bc κb + 7
2H

2κaφ̇ + 3
128κaκbκ

bφ̇

+ 63
40Hκbκ̃aωb − 63

40Hκbκ
bω̃a + 5

8κaφ̇∂sH − 19
4 H

2κ̃a∂sv − 3
256κbκ

bκ̃a∂sv

− 31
32 κ̃a∂sH∂sv − 3

5∂sv
(1)
a + Hφ̇∂sκa + 7

2H
2v∂sκ̃a + 3

128vκbκ
b∂s κ̃a

+ 5
8v∂sH∂s κ̃a + 1

8H∂sv∂s κ̃a + 103
40 Hκa∂sφ̇ + 7

2H
2∂sω̃a + 3

128κbκ
b∂sω̃a

+ 5
8∂sH∂sω̃a − 1

16∂s κ̃a∂
2
s v + Hv∂2

s κ̃a + H∂2
s ω̃a − 53

32Hκ̃a∂
2
s v − 7

64 κ̃a∂
3
s v

)
, (F1)

P
(0)
∅
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From the higher order of the Navier-Stokes equation that we consider as constraints, we get
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From the incompressibility constraint (5.15) we also obtain
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APPENDIX G: HIGHER ORDER CORRECTIONS FOR CURVED FIBERS

Once the boundary constraints of Sec. VII C 6 and Appendix F are replaced, the dynamical evolution for the longitudinal
velocity and the FCL velocity are given by
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If the higher moments of Navier-Stokes equation and the incompressibility constraint are then used to replace the unknown
variables as summarized in Table V, and also if time derivatives in corrective terms are replaced using the lower order dynamical
equations, we obtain the closed and final results with order ε2

R corrections included:
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(
ε3
R

)
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