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Dynamics of deformation and pinch-off of a migrating compound droplet in a tube
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A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound
droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-
Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked
employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics
are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations
uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube,
initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach
a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady
regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an)
prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found
to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity
of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces,
the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off
of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off.
Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a
swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to
the uncommon breakup of the migrating compound droplets.
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I. INTRODUCTION

The controlled production of monodisperse droplets using
microchannels or capillary tubes has become an important
process of late owing to their frequent appearance in cutting-
edge applications such as the aerosol detection [1], spray
atomizers [2], single cell analysis [3,4], PCR studies [5,6],
microreactors [7,8], and emulsifiers [9], among others. In
particular, the production of stable compound droplets or
double emulsions has become one of the major areas of
research, owing to their capacity in the continual release
of active ingredients in the various products and processes
such as the cosmetics, food, agriculture, and pharmaceuticals
[10,11]. The compound droplets are, in general, composed
of a primary large droplet impregnated with a single or a
collection of smaller droplets. The configuration ensures that
the smaller liquid droplets can be loaded with a specialty
chemical inside the encapsulating larger droplet and kept
isolated from the surroundings with the help of the wrapping
of the outer immiscible fluid [12]. The size of the compound
droplets vary typically in the range from a few micrometers to
a few millimeters [13]. In general, a large collection of such
droplets are synthesized inside fluidic medium through various
emulsification processes [14–18]. Recent studies suggest that
these droplets can be employed for next-generation targeted
drug delivery [10,19], advanced materials processing [20,21],
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phase separation [22,23], handling of hazardous materials [24],
among others.

The prior art indicates that while in some of the appli-
cations the breakup of the compound droplet decides their
performance, in other applications the stability of them ensure
the viability. It is thus of paramount importance to understand
the spatiotemporal hydrodynamic behavior of the compound
droplets moving inside a tube to track and control the de-
formation and subsequent breakup of them. Importantly, the
formation and breakup of compound droplets can be very
different from the same of the single droplets flowing inside
a cylindrical tube. For example, a number of previous theo-
retical [25–27], numerical [28–34], and experimental [35–37]
investigations show the various deformation and break up
features of the single droplet flows inside a tube. These
behaviors are found to be very different from the response of the
compound droplets under a variety of flow conditions [14–18].
In particular, the uniqueness of the interfacial deformations and
subsequent pinch-off mechanisms during the extensional and
shear flows [38–43], spreading [44–50], under the effects of
surfactants [51,52] and constrictions [53,54], and also under
confinement [53,54] have been explored so far in a greater
detail. Importantly, while most of the afore stated studies have
explored the concentric compound drops, a handful of studies
have also focused on the dynamics of eccentric compound
droplets [55–57].

However, there are hardly any studies that explore the
transient evolution and the subsequent hydrodynamics of
compound drops moving inside a capillary tube. In such a
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FIG. 1. Schematic diagram showing the computational domain
(not to scale) and boundary conditions in cylindrical coordinates
system (r,z,θ ).

scenario, the physics associated with the interplay between
the surface tension forces at the deforming interfaces along-
side the frictional influence of the fluids inside and of the
deforming compound droplet can be an interesting subject
for fundamental study. A recent work [58] has attempted to
provide an analytical solution for the motion of a compound
drop in a long circular tube in the Stokes flow limit at the
low Reynolds number. However, the detailed spatiotemporal
dynamics of the coupled twin-deformable interface of the
compound drops translating inside a tube is yet to be explored
in detail. In the present work, we make an attempt to uncover
the spatiotemporal dynamics of a compound droplet migrating
inside a tube. We employ the computational fluid dynamic
framework to solve the axisymmetric Navier-Stokes equations
and unveil the influence of the various thermodynamic and
kinetic parameters on the deformation and breakup of such
droplets. In particular, starting with a configuration shown in
the Fig. 1 , we focus on the positions of the inner and outer
droplets in the unsteady and steady regimes of the dynamics,
which helps in predicting the kinetics of the deformation of the
interfaces and the conditions for the pinching off of the outer
shell of the droplet. Interestingly, the kinetics of the thinning
of outer droplet is found follow distinct power-law regimes
in which the onset is associated with a swiftly thinning stage
followed by a rate limiting stage before pinch-off. The study
shows that controlling of the later stage decides the formation
of stable or unstable compound droplets wherein the inner drop
is either protected or exposed to the surroundings. The results
reported can be of significance for the microfluidic prototypes
that targets using stable or unstable compound droplets useful
for drug delivery, microreactor, cosmetic, and pharmaceutical
applications.

The rest of the study is organized as follows. In Sec. II
we outline the formulation of the problem, and in Sec. III
we discuss the validation of the present numerical solver. The
results are presented in Sec. IV, and concluding remarks have
been drawn in Sec. V.

II. FORMULATION OF THE PROBLEM

A representative diagram of the computational domain
adopted is presented in Fig. 1. We consider a two-component
compound droplet placed inside a capillary tube of radius R

and length L. The inner drop fluid and the ambient fluid are
considered to be the same, thereby simplifying the dynamics
to a two-phase interfacial flow system. This configuration

typically represents water-oil-water (W/O/W) or oil-water-
oil (O/W/O) compound droplets [59,60]. Initially, the outer
and inner interfaces are considered as concentric spheres of
radius R1 and R2, respectively. The fluids are considered
Newtonian, incompressible, and mutually immiscible. A fully
developed inflow of the ambient fluid is imposed at the inlet of
the capillary tube. A cylindrical coordinate system (r,z,θ ) is
adopted considering the dynamics to be axisymmetric so that
the problem is independent of θ , where (r,z,θ ) are the radial
coordinate, axial coordinate, and azimuthal angle, respectively.
The length of the computational domain is taken as 30R in the
axial direction so as to ensure that the results are not influenced
by outflow boundary conditions.

A. Governing equations

The governing equations of the problem correspond to the
conservation of mass and momentum, respectively, as

∇ · �V = 0, (1)

ρ[∂ �V/∂t + ( �V · ∇) �V] = −∇P + σκnδ + ∇ · [μ(∇ �V
+∇ �VT )], (2)

and the following advection equation for volume fraction,
α of fluid A:

∂α/∂t + ∇ · ( �Vα) = 0. (3)

In the above equations, �V = (u,v) represents the velocity
field with components u,v along z and r axis, respectively.
The pressure field is denoted by p and α represents the volume
fraction of fluid A, σ represents the interfacial tension, which
is assumed to be spatially uniform and constant with time, δ is
the Dirac δ function, and κ = ∇ · n is the interfacial curvature,
in which n is the outward pointing unit normal to the interface.

The density and viscosity are computed on the basis of
volume fraction of the fluids as

ρ = αρ1 + (1 − α)ρ2, (4)

μ = αμ1 + (1 − α)μ2, (5)

where ρ1 and μ1 are the density and viscosity of the shell fluid,
whereas ρ2 and μ2 are the corresponding density and viscosity
of the ambient (and core) fluid.

B. Numerical procedure

We solve the axisymmetric incompressible Navier-Stokes
equations using an open source code Basilisk [61]. Basilisk
is a successor to the popular open source solver Gerris [62]
and has been extensively benchmarked on a wide range of
problems involving interfaces [63–65]. It features an incom-
pressible Navier-Stokes solver that is second-order accurate
in both time and space. The discretization of the governing
equations are handled using the finite volume technique. The
Bell-Colella-Glaz [66] scheme is employed for treating the
advection terms and the pressure-correction method is used
for velocity-pressure coupling. The interface between these
two phases is tracked with a volume-of-fluid method [67].
A consistent and precise description of the surface forces
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FIG. 2. Comparison of experimental results of Olbritch and Kung [71] with present computations (blue line) for steady shapes of a droplet
migrating inside a capillary tube at (a) Ca = 0.05, (b) Ca = 0.10, and (c) Ca = 0.16. The operating parameters are η = 1.01 and a = 0.95.
(d) Temporal evolution of droplet shapes obtained by Tsai and Miksis [29]. (e) The shapes obtained from the present computations using the
same configuration of Tsai and Miksis [29]. The corresponding time instants are t∗ = 0,2,4, and 6.

is implemented with the continuum surface force model for
surface tension [68]. Extensive details on the implemented
methods and convergence studies are available in Ref. [63].

C. Initial and boundary conditions

To solve the governing equations, the following initial and
boundary conditions are implemented. The simulations are
initialized by placing a concentric compound droplet in a
parabolic flow inside the tube. The drop is placed at a distance
of 2.5R from the inlet location. Although the initialization
of the concentric drop is somewhat artificial, we expect the
steady-state deformation and droplet eccentricity to remain
invariant to the initial conditions. This approach of initializing a
circular droplet in a flowing fluid inside a tube has been adopted
earlier, by many researchers [32,34,69]. A fully developed
velocity is imposed at the inlet of the capillary tube (z = 0)
given by u(r) = 2Vavg(1 − r2

R2 ) and v(r) = 0, where Vavg is
the average velocity of the imposed inflow. The walls of the
capillary tube are modeled as rigid surfaces with no-slip and
no-penetration conditions, i.e. u = v = 0 at r = R. At the tube
outlet, Neumann conditions for velocity and a fixed pressure is
applied for the outflow condition as ∂u/∂z = ∂v/∂z = 0 and
p = p0 at z = L. The computations are stopped when the drop
is at a distance of 2R from the outlet. This ensures that the flow
disturbances produced by the drop do not reach both the inlet
and the outlet.

D. Scaling

The radius of the tube, R, and average velocity of imposed
flow at inlet Vavg are taken as the characteristic length and
velocity scales. The corresponding timescale comes out as
R/Vavg. The properties of shell fluid, ρ1 and μ1, are em-
ployed as the density and viscosity scales, respectively. The
results obtained from our computations are presented in terms
of nondimensional parameters. The relevant dimensionless

numbers pertinent to our problem are the capillary number
Ca = μ1Vavg/σ , Reynolds number Re = ρ1VavgR/μ1, density
ratio γ = ρ2/ρ1, viscosity ratio η = μ2/μ1, drop aspect ratio
a = R1/R, and the shell thickness ratio k = R2/R1. The
capillary number represents the ratio of viscous force over
surface tension force. In our study, the Reynolds number, which
represents the relative magnitude of inertia over viscous forces,
is maintained at unity (Re = 1) for the entire range of our
computations. Furthermore, as we concentrate on the dynamics
of neutrally buoyant drops (γ = 1), the influence of gravity can
be safely neglected.

E. Fluid properties

The inner drop fluid and the outer ambient fluid are consid-
ered to be same thereby the problem is simplified as the study
of a two-fluid system. The shell fluid is chosen to be an aqueous
solution of glycerine. The ambient fluid (and inner core fluid) is
considered as different grades of silicone oil [70]. The density
contrast for the chosen fluid combinations is negligible and
hence in our entire study, we consider the density ratio γ to be
unity.

III. VALIDATION OF NUMERICAL PROCEDURE

A. Comparison with literature

The numerical solver adopted for the present study is
thoroughly validated by comparing our results with earlier
investigations. Figures 2(a), 2(b) and 2(c) presents the steady
shapes of a droplet migrating inside a capillary tube as
observed by Olbritch and Kung [71] for three different Ca.
The corresponding shapes from the present computations are
superimposed on top of the experimental images. It can be
seen that the drop profile shows good agreement for Ca = 0.05
and 0.10. However, a slight deviation is seen for Ca = 0.16.
Additionally, we reproduce the shapes obtained by Tsai and
Miksis [29] for droplets approaching breakup inside capillary
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FIG. 3. Quantitative comparison of drop shapes and average
droplet velocity between theoretical solutions of Nadim and Stone
[Eq. (6)] and present computations. Panels (a) and (b) show the drop
shapes for Ca = 0.28 and 1.4, respectively, while other parameters
are fixed at η = 1 and a = 0.3. Panel (c) demonstrates the variation
of u∗

avg with η keeping Ca and a fixed at 0.2 and 0.3, respectively.

tubes [Fig. 2(d)]. The results from our simulations, as shown
in Fig. 2(e), demonstrate good qualitative agreement with the
reported shapes of Tsai and Miksis [29] for the time instants
t∗ = 0,2,4, and 6.

To gain more confidence on the numerical solver, we
compare the drop shapes and average drop velocity obtained
from the analytical solutions of Nadim and Stone [72] with
the results from our present computations. The theoretical
solutions of drop shapes and average velocity are given as [72]

s = 1 + Ca

(
R1

R

)2 10 + 11λ

8(1 + λ)

(
cos3θ − 3

5
cosθ

)
,

u∗
avg = 2.0

[
1 − 2λ

2 + 3λ

(
R1

R

)2
]
, (6)

where s and θ describe the drop interface relative to its cen-
ter and u∗

avg denotes the average drop translation velocity. The
results from our computations presented in Fig. 3 demonstrate
good agreement with the theoretical predictions of Nadim and
Stone [72].

B. Grid convergence studies

To ensure that the results are independent of grid resolution,
we chose four grid meshes (8 × 240, 16 × 480, 32 × 960, and
64 × 1920). The test was conducted for a compound drop
migrating under conditions of Ca = 0.5, η = 0.2, a = 0.6,
and k = 0.5 and the average dimensionless velocity of the
drop u∗

avg was compared as a function of dimensionless time
t∗ for the chosen grids as shown in Fig. 4. The steady
velocities of the drop obtained are 1.526, 1.569, 1.584, and
1.588 for the four chosen grids, respectively. The difference
of u∗

avg between grids 8 × 240 and 16 × 480 is around 2.8%,
whereas the difference between the grid-meshes 32 × 960 and
64 × 1920 is less than 0.3%. Based on this, the grid-mesh
of 32 × 960 has been adopted for this study to optimize
the computational time without compromising the accuracy
of the obtained results. The smallest dimensionless cell size for
the chosen grid is 0.031. However, in Sec. IV D, the breakup of

FIG. 4. Comparison of the average drop velocity for different grid
sizes (8 × 240, 16 × 480, 32 × 960, and 64 × 1920) as a function
of dimensionless time t∗. The operating parameters are Ca = 0.5,

η = 0.2, a = 0.6, and k = 0.5.

compound droplets is explored, which is more sensitive to the
grid resolution and requires further refinement. The numerical
convergence of our results for drop breakup is demonstrated by
performing additional grid resolution tests and are presented
in Sec. IV D.

IV. RESULTS AND DISCUSSION

The following section presents a detailed study of the
motion of the compound drops traversing inside a capillary
tube and their associated dynamics. We initiate our study by
considering the deformation dynamics of a compound droplet
and exploring the hydrodynamics during its motion inside
the capillary. Subsequently, we investigate the dynamics of
breakup of the compound droplet. A large set of parameters are
to be taken under consideration and in the results that follow,
we have fixed the drop aspect ratio a at 0.6. The size of the
inner drop has been taken to be half of the outer drop, i.e.,
k = 0.5.

The simulations are initialized by introducing a concentric
drop in the capillary tube where a fully developed flow persists.
The parabolic flow imposed at the tube inlet propels the drop
to migrate across the tube (see Supplemental Material Video 1
[73]). The video suggests that during the flow, both the inner
and outer interfaces deform in which the outer one elongates
in the direction of the flow while the inner one does the same in
the normal direction of the flow. Figure 5 presents the variables
which are employed to quantitatively estimate the variation in
the shapes of the interfaces during the motion. For example,
the deformation index D∗ = (zmax − zmin)/(rmax − rmin) can
be employed to evaluate the change of shape of a droplet
along the flow direction (toward the z axis), where D∗ = 0
as well as along the normal to the flow direction (toward the r

axis), where D∗ < 0. Additionally, the inner drop moves away
from the initial concentric position, which can be quantified
in terms of an eccentricity index e∗ = zicen − zdcen, where
zicen is the area averaged center of the inner drop and zdcen

is the area averaged center of the entire drop. Owing to the
drop eccentricity e∗, the outer shell thickness of a compound
drop does not remain spatially uniform. In what follows, the
temporal evolution of deformation index D∗ and eccentricity
index e∗ have been explored for a wide range of parameters to
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FIG. 5. The computed parameters used to describe the dynamics of compound droplets. (a) Deformation index (Di and Do) corresponding
to inner and outer drop interfaces. (b) Drop eccentricity (e∗). (c) Minimum shell thickness d∗

min.

uncover the steady and unsteady deformation dynamics of the
compound droplets, as shown in Secs. IV B and IV C. Further,
the minimum distance between the inner and outer interfaces is
defined as d∗

min, which helps in identifying the zone of pinching
off of the outer shell. Thus, the temporal variation of d∗

min
unveils the breaking and pinch-off kinetics of the compound
droplets, as shown in Sec. IV D.

A. Temporal evolution of compound droplets

We consider the dynamics of a compound droplet and
analyze its temporal evolution under conditions of Ca =
0.5 and η = 0.2. Figures 6(a) and 6(b) (and Supplemental
Material Video 1 [73]) present snapshots of the compound
droplet during its unsteady and steady states of evolution.
The temporal evolution of the deformation parameter D∗ and
drop eccentricity e∗ are shown in Figs. 6(c) and 6(d). The
figures suggest that at the onset, the outer drop starts deforming
with time in the direction of the flow, which generates a
nonuniform curvature of the outer interface to compensate
for the interfacial shear stresses. Figure 6(a) depicts the
pressure field across the interfaces of a moving compound drop,
which suggests that the pressure drop across the interfaces is
inversely related to the curvature radius, as defined by the

FIG. 6. Temporal evolution of the compound droplet under con-
ditions of Ca = 0.5 and η = 0.2. Panel (a) represents the pressure
field inside the compound droplet, panel (b) shows the streamline
patterns inside the drop at steady state, panel (c) shows the variation
of deformation index D∗ with time for the inner and outer drop, and
panel (d) presents the evolution of drop eccentricity with time.

Young-Laplace equation. The minimum curvature radius of
the deformed outer droplet interface at the front and rear
ends corresponds to the regions of maximum pressure drops.
Further, the minimum pressure drop occurs approximately
normal to the flow direction where the interfaces are rather
flat and the curvature radius is maximum. Interestingly, the
reduction in pressure in the normal direction of the flow
stimulates the inner drop to deform perpendicular to the
flow direction. It can be clearly observed from Fig. 6(c)
that the deformation index D∗ for the outer drop increases
with time in the unsteady domain of evolution and attains
a constant magnitude, thereby indicating a steady state with
constant elongation axially. However, the magnitude of D∗ is
negative for the inner drop signifying an unsteady deformation
along the perpendicular axis at the initial stages of evolution.
As time progresses, the inner drop also reaches a steady
state with constant deformation normal to the flow direction.
Figure 6(b) presents the streamline patterns inside the com-
pound droplet after it has attained steady state. The flow
streamlines represent a set of circulation loops demonstrating
the pattern of momentum transfer between the inner and outer
interfaces of the compound droplet. Certainly, the temporal
variation in the strength of the vorticities of these recirculations
in the unsteady and steady domain of evolution decide the
extent of mass, heat, and momentum transport across the
interfaces. Additionally, it can be clearly perceived that the
inner drop moves away from its concentric position and finally
stabilizes near the “nose” of the outer drop. This can be
attributed to the fact that the inner drop experiences lower
drag due to its smaller size whereas the outer drop encounters
higher drag force due to its larger size and proximity to the
tube walls. This allows the smaller inner drop to migrate faster
as compared to the larger outer drop thereby leading to an
eccentric configuration with time. The evolution of the drop
eccentricity e∗ plotted in Fig. 6(d) demonstrates that the drop
eccentricity initially rises sharply and saturates to a steady
value with time. The faster moving inner drop is counteracted
by the viscous drag of the thin shell fluid near the “nose,”
thereby reducing its velocity with time and hence the drop
attains a fixed e∗ after migrating for some period inside the
capillary.

B. Effect of capillary number

To understand the influence of capillary number on the
dynamics of compound droplets, we perform simulations
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FIG. 7. Effect of capillary number on the (a) deformation of inner
and outer drop and (b) eccentricity of the drop. The viscosity ratio η

is kept fixed at 0.1.

by varying Ca from 0.3 to 0.6 while keeping η fixed at
0.2. The evolution of D∗ and e∗ with variation of capillary
number is presented in Figs. 7(a) and 7(b), respectively. With
increase in the capillary number, the dominance of capillary
force over viscous resistance is reduced. In consequence, the
deformations of both the inner and outer increases increase.
Additionally, under these circumstances, the inner drop under-
goes significantly higher deformation than the outer drop. This
can be elucidated by considering the smaller curvature of the
inner drop compared to the outer drop, which demands a larger
interfacial strength to maintain the curvature of the inner drop.
Importantly, Fig. 7(b) shows that the steady state eccentricity of
the compound drop is hardly influenced by the variation of Ca.

Figure 8 presents the pressure field in the region around
the compound drop obtained at t∗ = 8.0 for Ca = 0.3 and
0.6. It can be clearly observed from Fig. 8 that the pressure
inside the inner core drop is higher for Ca = 0.3 in comparison
to 0.6. The reduction of pressure inside the inner core with
increasing Ca can be anticipated upon consideration of the
discontinuity in normal stress at the interface as described by
the Young-Laplace equation. The dominating effect of surface
tension is strong when the capillary number is small and the
pressure difference acting across the interface is proportional
to O(σ/R2). The major influence of increasing Ca is to raise the
level of pressure inside the drop in comparison to the pressure
exterior to the drop.

C. Effect of viscosity ratio

In this section, we explore the impact of the relative
viscosity contrast between the shell and ambient fluid on
the deformation and steady shape of the compound droplet.

FIG. 8. Contour of pressure (zoomed in the region of the com-
pound drop) at time t∗ = 8.0 under condition of (a) Ca = 0.3 and
(b) Ca = 0.6. The viscosity ratio η is kept fixed at 0.1.

FIG. 9. Effect of viscosity ratio on the (a) deformation of inner
and outer drop and (b) eccentricity of the drop. The capillary number
is kept fixed at 0.5.

Figures 9(a) and 9(b) show the evolution of D∗ and e∗,
respectively, for varying η. A decrease in the viscosity ratio
leads to significant decrease in the drop deformation as well as
eccentricity. This implies that a compound drop traversing in
a more viscous ambience tends to deform more significantly
as demonstrated in Fig. 9. Furthermore, the magnitude of η

controls the temporal rate of evolution of droplet eccentricity.
A compound drop with higher η evolves into an eccentric
configuration faster than the one with lower η.

To explain the dependence of D∗ and e∗ on the relative
viscosity contrast between the fluids, we analyze the temporal
evolution of the average velocities of the inner and outer drops
for η = 0.05 and 0.2 as shown in Fig. 10. It can be clearly
discerned that the velocity of the drops for both values of η

remains less than the tube centerline velocity in a Poiseuille
flow. In the frame of reference of the outer drop, the tube
walls move opposite to the drop motion, dragging the fluid
at the interface of the drop. The outer drop thus experiences
shear from the faster moving continuous fluid as well as
shear imposed by the walls of the tube. As the ambience
becomes more viscous, the drag force on the interface increases
thereby increasing the deformation of the outer drop at higher
η. It can also be noted from the inset to Fig. 10 that the
inner drop moves faster than the outer drop during the initial
moments of migration inside the capillary due to its smaller
volume and proximity to the centerline. This relative velocity
difference between the inner and outer drop increases at higher

FIG. 10. Temporal evolution of inner and outer drop velocities
under varying η. The capillary number is kept fixed at 0.5.
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FIG. 11. Snapshots showing the temporal evolution of a com-
pound droplet leading to breakup.

η and serves as the root cause for the significantly greater
deformation of the inner drop due to the large amount of shear
acting at the inner interface. The compound droplet undergoes
larger deformation if the viscosity of the inner droplet is more
or the outer droplet is less viscous.

D. Breakup of compound droplets

The deformation of the inner and outer interfaces of the
compound drop depends on the delicate balance between
hydrodynamic stresses and interfacial tension. However, this
balance may fail under certain conditions leading to breakup of
the droplet. We investigate the rupture of the compound droplet
during the course of its deformation inside the tube. Figure 11
(and Supplemental Material Video 2 [73]) presents a qualitative
picture of the evolution of a compound droplet leading to its
eventual breakup. Owing to the opposing nature of deformation
of the inner and outer interfaces, the shell thickness becomes
nonuniform spatially with increasing eccentricity of the droplet
configuration during its temporal evolution. A rapidly thinning
region can be clearly observed wherein both the interfaces
close in on each other. Eventually, the gap between the two
interfaces becomes negligible and the outer shell ruptures to
release the inner fluid.

The drop breakup phenomenon is sensitive to the resolution
of the numerical grid. To check the convergence of our results,
additional grid tests are performed and presented in Fig. 12.
We measure the minimum distance between the inner and outer
interfaces d∗

min (defined in Fig. 5) as the drop proceeds toward
breakup and plot the drop profile for d∗

min = 0.05 and 0.01 for
two levels of refinement. The upper and lower half of the drop
profile in Fig. 12(a) corresponds to grid-meshes 128 × 3840
and 256 × 7680, respectively. It can be clearly observed that
the drop profiles are almost identical for the grid sizes 128 ×
3840 and 256 × 7680, thereby showing convergence of our
results. The volume of the primary and secondary drop formed
after breakup is computed using different grids and presented
in Fig. 12(b). The difference in primary drop volume between
grids 32 × 960 and 64 × 1920 is∼15%, whereas the difference
between grid-meshes 128 × 3840 and 256 × 7680 is less than
4%. Based on this, the grid-mesh of 128 × 3840 is used for
computing the dynamics of compound drop breakup. The
smallest dimensionless cell size for the chosen grid is 0.0078.

FIG. 12. Grid resolution test for drop breakup. (a) Comparison of
drop profile using grid sizes of 128 × 3840 (upper half) and 256 ×
7680 (lower half). The profiles are plotted for two values of d∗

min, 0.05
and 0.01, as the drop proceeds toward breakup. (b) The variation of
the volume of primary and secondary drops formed after breakup
with different grid resolutions. The capillary number is kept fixed
at 0.5.

Here, we note that the final rupture of the thin liquid sheet
will be essentially numerical as the physics that governs the
final breakup is molecular and requires multiscale modeling,
which hopefully will be possible in the near future. The error
introduced due to numerical clipping of the interface is of the
order of the smallest grid cell. The present computations shed
light on the mechanism of compound droplet breakup and its
dependence on relevant parameters.

To gain deeper understanding about the breakup process,
we vary the thickness of the shell and examine its effect on
the breakup phenomenon. The evolution of d∗

min with t∗ is
presented in Fig. 13(a) for compound droplets with different
shell thickness ratio k. Note that a higher value of k denotes
a compound drop with smaller shell thickness (k = R2/R1).
A compound drop with higher value of k ruptures in a shorter
time due to the smaller distance separating the inner and outer
interfaces.

To quantify the thinning rate of the shell, we analyze the
relation between the minimum distance between the interfaces
d∗

min and the time leading to rupture of the shell for k = 0.73
and 0.83. The temporal decrease of d∗

min with time t∗ can be
characterized by a power law expression [74] d∗

min ∼ τα , where
τ is the time leading to rupture (τ = t∗rupture − t∗) and α is the
exponent of power law.

FIG. 13. (a) The temporal evolution of minimum distance be-
tween the inner and outer interfaces d∗

min for different drops with
k = 0.73,0.76,0.80, and 0.83. (b) Relation between d∗

min and time
before rupture τ near the breakup of the droplet for k = 0.73 and 0.83.
The dotted lines in black, orange, red, and yellow represent d∗

min ∼
τ 1.5, τ 1.9, τ 0.2, and τ 0.1, respectively. The other operating parameters
are Ca = 0.5 and η = 1.0.
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FIG. 14. (a) The temporal evolution of minimum distance be-
tween the inner and outer interfaces d∗

min for Ca = 0.1,0.3,0.5,
and 0.7. (b) Relation between d∗

min and time before rupture τ near
the breakup of the droplet for Ca = 0.1 and 0.5. The dotted lines
represents d∗

min ∼ τ 1.5 and d∗
min ∼ τ 0.2. The other operating parameters

are η = 1.0 and k = 0.83.

Figure 13(b) depicts the thinning behavior of a compound
droplet with k = 0.73 and 0.83. During the initial stage of
droplet motion, the thinning proceeds at a rapid rate with
α = 1.9 and 1.5 for k = 0.73 and 0.83, respectively. This can
be attributed to the high velocity of the inner droplet during the
initial moments of the flow which leads to a significant increase
of the drop eccentricity. As the inner and outer interfaces
approach each other, a thin film is formed near the “nose”
of the drop with spatially nonuniform thickness. The flow in
this annular thin region is highly squeezed leading to strong
viscous stresses. This also explains the higher magnitude of
α witnessed for a thicker shell (k = 0.73) during the initial
duration of thinning in comparison to a thinner shell (k =
0.80). Beyond a critical minimum thickness of the film, the
thinning rate diminishes with α taking a value of 0.1 and
0.2 for k = 0.73 and 0.83, respectively, thereby transitioning
into a slowly thinning regime. The influence of Ca on the
thinning rate is presented in Fig. 14. It can be observed that
the thinning rate is insensitive to the variation of Ca. This
can be elucidated by considering the evolution of eccentricity
e∗ for different Ca as shown in Fig. 7(b). The temporal
evolution of e∗ is unaffected by the change of Ca, which
in turn makes the thinning rate insensitive to Ca. As the
magnitude of d∗

min decreases, the typical distance separating
the interfaces becomes very small compared to the compound
drop radius. The pressure inside this small gap is very large,
which significantly diminishes the thinning speed as reflected
by the rate limiting stage. Eventually, both the interfaces make
contact and the film ruptures. The rupture of the thin film
can lead to entire draining of the inner core fluid into the
surrounding ambient fluid or result in the formation of a smaller
compound droplet along with a separate drop of the shell
fluid. It may be noted here that herein we attempted only to
capture the pinch-off dynamics, because the actual breaking of
a compound droplet and the post breakup dynamics require the
use of full three dimensional simulations, which falls beyond
the scope of the current study.

V. SUMMARY

Numerical simulations have been performed to investigate
the hydrodynamic behavior of compound droplets traversing
inside a capillary tube under axisymmetric conditions. The
study focuses on the temporal evolution of a compound droplet
and analyzes its deformation history and interfacial morpholo-
gies. The study uncovers an unsteady evolution of a compound
droplet under the action of an imposed flow in which the
outer droplet progressively deforms along the flow direction
attaining a distorted prolate shape. The inner drop, however,
gradually deforms perpendicular to the flow direction in the
unsteady regime and reaches a distorted oblate shape at steady
state. The inner drop moves away from the initial concentric
position thereby increasing the drop eccentricity and finally
saturates to a constant value with time. The deformation of both
the inner and outer interfaces depends on the magnitude of Ca
with the inner drop undergoing significantly larger deformation
at higher values of Ca. In addition, the viscosity ratio plays a
critical role in deciding the magnitude of interfacial deforma-
tions and drop eccentricity. The inner drop is found to migrate
faster than the outer drop during the initial stage of motion
inside the capillary and the relative velocity difference between
the drops increases at higher η. The spatiotemporal evolution
of the inner drop towards the front of the compound drop
and the deformations of the inner and outer interfaces normal
to each other forms a thin film near the nose of the moving
compound droplet, which eventually causes the breakup of the
outer shell of the compound droplet. The thickness of the shell
is found to have substantial influence on the stability of the drop
thereby determining the time before the outer shell pinches off.
However, the rate of thinning is found to be independent of the
initial thickness of the shell. Importantly, the rate of thinning
of the outer shell thickness follows a power law criterion with
one initial stage of swiftly thinning regime to a slowly thinning
regime before the pinch-off. The findings from our study
may help in predicting the temporal rate of deformation of
compound drops traversing inside a capillary. The estimation
of rupture time can also be attempted by applying the power-
law criterion proposed for compound droplet breakup.

The observations from the present study may stimulate
further investigations on the hydrodynamics of compound
droplets migrating inside capillary tubes with non-Newtonian
rheology. Furthermore, the breakup of compound drops may
be explored using full three dimensional simulations along
with refined grids which might contribute toward further
enhancement of the existing knowledge on compound droplets.
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