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Effect of shock waves on the statistics and scaling in compressible isotropic turbulence
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The statistics and scaling of compressible isotropic turbulence in the presence of large-scale shock waves
are investigated by using numerical simulations at turbulent Mach number Mt ranging from 0.30 to 0.65. The
spectra of the compressible velocity component, density, pressure, and temperature exhibit a k−2 scaling at
different turbulent Mach numbers. The scaling exponents for structure functions of the compressible velocity
component and thermodynamic variables are close to 1 at high orders n � 3. The probability density functions
of increments of the compressible velocity component and thermodynamic variables exhibit a power-law region
with the exponent −2. Models for the conditional average of increments of the compressible velocity component
and thermodynamic variables are developed based on the ideal shock relations and are verified by numerical
simulations. The overall statistics of the compressible velocity component and thermodynamic variables are
similar to one another at different turbulent Mach numbers. It is shown that the effect of shock waves on the
compressible velocity spectrum and kinetic energy transfer is different from that of acoustic waves.
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I. INTRODUCTION

Compressible turbulence plays an important role in many
natural phenomena and industrial applications, including in-
terstellar turbulence, inertial confinement fusion, and the
designs of supersonic aircrafts and scramjets. Statistics and
structures of compressible turbulence are more complex than
those of incompressible turbulence, due to the strong couplings
between the velocity field and thermodynamic fields [1–12]. In
addition to vortex structures, there are shock waves generated
from compressible turbulence. The scaling and intermittency
of compressible turbulence can be different from those of
incompressible turbulence, due to the interaction between
vortex structures and shock waves.

According to the traditional Richardson-Kolmogorov-
Onsager picture, kinetic energy cascades conservatively from
large scales to small scales in an inertial range of three-
dimensional fully developed incompressible turbulence at very
high Reynolds number [13]. Due to the pressure-dilatation
correlation, kinetic energy is not an ideal invariant of com-
pressible Navier-Stokes equations. Thus, the notion of kinetic
energy cascade in compressible turbulence is not as clear
as that in incompressible turbulence. Aluie’s pioneer work
[14,15] demonstrated the existence of an inertial range over
which kinetic energy cascades locally and in a conservative
fashion in compressible turbulence, provided that the pressure-
dilatation cospectrum decays at a sufficiently rapid rate. The
analysis was based on the Favre filtering approach and was
further verified by numerical simulations of both forced and
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decaying compressible isotropic turbulence [16]. Moreover,
Kolmogorov’s 4/5 law for energy flux is an exact result in
incompressible turbulence, which provides a strong foundation
for the constant energy flux in the inertial range [13]. Similar re-
lations in compressible turbulence have been studied recently.
Falkovich et al. derived an exact physical-space flux relation
for compressible turbulence analogous to the Kolmogorov
flux relation for incompressible turbulence [17]. Wagner et al.
further studied and modified the flux relation by numerical sim-
ulation of three-dimensional supersonic isothermal turbulence
[18]. Galtier and Banerjee [19] derived an exact fourth-order
relation for correlation functions in compressible isothermal
turbulence, which was verified numerically by Kritsuk et al.
in three-dimensional supersonic isothermal turbulence [20].
Wang et al. [21] examined the kinetic energy cascade by
Fourier analysis, a new exact physical-space flux relation and
the Favre filtering approach in a numerically simulated com-
pressible turbulence. Eyink and Drivas [22] made a profound
theoretical analysis on the dissipative anomalies of both kinetic
energy and entropy in compressible turbulence. Their analysis
indicated that the singularity of shock structure is important
for cascades of both kinetic energy and entropy in the limit
of high Reynolds number and Peclet number in compressible
turbulence.

As a nonlinear model of three-dimensional hydrodynamic
turbulence, Burgers turbulence has been frequently investi-
gated by both theoretical analysis and numerical simulations
since the pioneering work done by Burgers [23]. A number
of studies have demonstrated the significant impact of shock
waves on the statistical properties of Burgers turbulence
[24–32]. For the stationary Burgers turbulence driven by large-
scale force, isolated shocks connected by smooth ramps could
be identified, leading to the bifractal scaling exponents of the
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velocity structure function: the scaling exponent equals to n at
orders n � 1 and equals to 1 at orders n � 1 [13,24,33]. For the
stationary Burgers turbulence driven by a multiscaling force,
the multiscaling behaviors of the velocity structure function
were found: the scaling exponent of the velocity structure
function asymptotically saturates to 1 with increasing orders
[25]. The probability density function (PDF) of the velocity
derivative in Burgers turbulence has attracted many attentions
[26–31]. It was found that due to the large negative velocity
gradients stem from preshocks, the left tail of the PDF of
the velocity derivative exhibits the −7/2 power-law scaling
[29–32].

Shock waves in three-dimensional compressible flows are
more complicated than those in Burgers turbulence. Velocity
jumps across shock waves of compressible flows are coupled
with thermodynamic properties through ideal shock relations.
To isolate the effect of shock waves on turbulence, lots of
efforts have been devoted to the problem of the isotropic
turbulence interacting with a single shock wave [34–41].
The traditional numerical approach to the problem of shock-
turbulence interaction is very expensive even when a shock
capturing scheme is used [41]. Most studies are limited to the
low Reynolds numbers. Recently, Ryu and Livescu showed
that the shock-turbulence interaction can be described by the
linear interaction approximation (LIA), provided that the shock
wave width is much smaller than the turbulence scales and the
upstream turbulent Mach number is modest [38]. Post-shock
data of the shock-turbulence interaction at Taylor Reynolds
number about 180 was generated by using LIA, and was used
to study the effect of the plane shock wave on the vorticity
dynamics and kinetic energy transfer of turbulence [40,41].

Shocklets can be generated from fluctuations of turbu-
lent eddies in compressible turbulence at moderate and high
turbulent Mach numbers. The term “eddy shocklets” was
first introduced by Lee et al. [42] to describe the locally
high compression structures in compressible turbulence, which
exhibit characteristics of a typical shock wave, such as jumps
of pressure, density, and temperature across the structures.
There have been a number of interesting studies to address
the statistics of shocklets [2,43,44], and the significant effects
of shocklets on the statistical properties and spatial structures
of compressible turbulence, including kinetic energy dissipa-
tion, vorticity production, intermittency, Lagrangian statistics,
passive tracers and particles [43,45–52]. It is worth noting
that the eddy shocklets were usually observed in decaying
or solenoidally forced compressible isotropic turbulence at
moderate to high turbulent Mach numbers ranging from 0.3
to 1.0. Recently, Wang et al. [44] studied the statistics of
shocklets in the solenoidally forced compressible isotropic
turbulence at turbulent Mach number ranging from 0.5 to
1.0. The PDFs of the shocklet strength and the jumps of
the velocity and thermodynamic variables across the shocklet
were found to exhibit a power-law scaling. Wang et al. [51]
investigated the scaling and intermittency of the solenoidally
forced compressible isotropic turbulence at turbulent Mach
number ranging from 0.5 to 1.0. Statistical relations between
the compressible velocity component and thermodynamic
variables were studied by the shock jump conditions and
numerical simulations. The relative scaling exponent of the
structure functions of the compressible velocity component

and thermodynamic variables was shown to saturate with an
increase of the order. Wang et al. [53] applied the Favre filtering
approach to study the kinetic energy transfer of the solenoidally
forced compressible isotropic turbulence at turbulent Mach
number ranging from 0.4 to 1.0. The subgrid-scale (SGS)
kinetic energy flux was shown to be enhanced by shocklets. The
net contribution of pressure dilatation to the average kinetic
energy transfer was found to be negligibly small, due to the
cancellation between compression and expansion work.

For the situation of stationary compressible isotropic turbu-
lence driven by both solenoidal and compressible force com-
ponents, large-scale shock waves can be generated, due to the
significant fluctuations of compressible velocity component
[21,54,55]. Wang et al. [21] investigated the interscale kinetic
energy transfer of compressible isotropic turbulence in the
presence of large-scale shock waves by using numerical simu-
lations at turbulent Mach number Mt = 0.62. It was shown that
the solenoidal component of kinetic energy spectrum exhibits
a k−5/3 scaling, while the compressible component of the
kinetic energy spectrum exhibits a k−2 scaling. It was observed
that both solenoidal and compressible components of SGS
kinetic energy flux are nearly constant in an inertial range.
Moreover, the SGS kinetic energy flux of the compressible
mode was found to be larger than its solenoidal counterpart
in the inertial range in their numerical simulations. Wang
et al. [55] studied the statistics and structures of pressure and
density of compressible isotropic turbulence in the presence
of large-scale shock waves by using numerical simulations at
turbulent Mach number Mt = 0.73. A −2 power-law scaling
behavior was observed for the PDFs of the pressure gradient
and pressure increment, and was explained by a statistical
model. The average of density increment conditioned on the
pressure increment was investigated by an heuristic model
and numerical simulations. A positive correlation between the
vorticity magnitude and pressure was identified, which was
different from the situation of incompressible turbulence.

Recently, there are several interesting studies to address
the compressibility effect on the energy transfer, coherent
structure and intermittency in stationary compressible mag-
netohydrodynamic turbulence [56,57]. It was observed that
the solenoidal velocity and the magnetic fields exhibit a k−5/3

spectrum, while the compressible velocity exhibits a k−2

spectrum in compressible magnetohydrodynamic turbulence
driven by both solenoidal and compressible force components
[56]. Kinetic and magnetic energies were found to cascade
conservatively from large to small scales. The conversion
between kinetic and internal energy by pressure dilatation was
shown to be dominated by the largest scale contributions. The
saturated scaling exponents of high order structure functions
of density and compressible velocity were identified, which
could be attributed to the sheet-like current density structures
and shocks [57].

There have been a number of studies on the statistics
and scaling of supersonic turbulent flows, showing that the
occurrence of shock waves causes distinct spectra and inter-
mittency in supersonic turbulence [58–63]. Boldyrev et al.
[58,59] extended the phenomenological model of She and
Leveque [64] to supersonic turbulence, by assuming that the
most dissipative structures are shock waves rather than vortex
filaments. Kritsuk et al. [60] showed that the spectrum of
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velocity u exhibited a k−1.95 scaling and the spectrum of
density-weighted velocity ρ1/3u exhibited a k−5/3 scaling in
the inertial range, in a supersonic isothermal Euler turbulence
at root mean square Mach number around 6. Schmidt et al.
[61] pointed out that the scaling exponents for the structure
functions of density-weighted velocity ρ1/3u were universal
for two different types of supersonic turbulence that are driven
by solenoidal force and compressible force, respectively, at
root-mean-square (rms) Mach number around 5.5. Konstandin
et al. [62] observed that both Lagrangian and Eulerian structure
functions exhibited higher intermittency in the supersonic tur-
bulence driven by the compressible force as compare to those
of the supersonic turbulence driven by the solenoidal force.
Federrath [63] found that the spectrum of the density-weighted
velocityρ1/3u exhibited a k−1.74 scaling for the solenoidal force
and exhibited a k−2.10 scaling for the compressible force, in
isothermal supersonic Euler turbulence at Mach number 17.

In this paper, we present a numerical study of statistics and
scaling of stationary compressible isotropic turbulence driven
by both solenoidal and compressible force components at grid
resolution of 10243, and at turbulent Mach number Mt ranging
from 0.30 to 0.65. We observe large-scale shock waves in
our numerical simulations. We show that the statistical prop-
erties of the simulated flows are significantly different from
those of solenoidally forced compressible isotropic turbulence
[10,44,51]. In Sec. II, we present a brief description about
the governing equations and numerical method. In Sec. III, we
provide simulation parameters and one-point statistics of com-
pressible turbulent flows. In Sec. IV, we investigate the spectra
of velocity and thermodynamic variables. In Sec. V, we study
the two-point statistics of simulated compressible turbulence.
Moreover, we develop heuristic models for conditional average
of increments of compressible velocity and thermodynamic
variables based on the ideal shock relations. In Sec. VI, we
present some discussions about the kinetic energy cascade of
compressible turbulence, the different effects of shock waves
and acoustic waves on the compressible velocity spectrum,
and the physical insight on the models for conditional average
based on the ideal shock relations. In Sec. VII, we provide a
summary and conclusion of our study.

II. GOVERNING EQUATIONS AND
NUMERICAL METHOD

We study compressible turbulence of ideal gas governed
by the following dimensionless Navier-Stokes equations in
conservation form [10]:

∂ρ

∂t
+ ∂(ρuj )

∂xj

= 0, (1)

∂(ρui)

∂t
+ ∂[ρuiuj + pδij ]

∂xj

= 1

Re

∂σij

∂xj

+ Fi , (2)

∂E
∂t

+ ∂[(E + p)uj ]

∂xj

= 1

α

∂

∂xj

(
κ

∂T

∂xj

)

+ 1

Re

∂(σijui)

∂xj

− � + Fjuj , (3)

p = ρT/(γM2), (4)

where ρ is the density, ui is the velocity component, p is the
pressure, and T is the temperature. Fi is a large-scale forcing
to the fluid momentum, and � is a large-scale cooling function
per unit volume. The viscous stress σij is defined by

σij = μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3
μθδij , (5)

where, the velocity divergence θ is given by

θ = ∂uk

∂xk

. (6)

The total energy per unit volume E is defined by

E = p

γ − 1
+ 1

2
ρ(ujuj ). (7)

In the governing equations of compressible turbulence, the
hydrodynamic and thermodynamic variables are normalized
by a set of reference scales, including the reference length Lf ,
velocity Uf , density ρf , pressure pf = ρf U 2

f , temperature
Tf , energy per unit volume ρf U 2

f , viscosity μf , and thermal
conductivity κf [10]. After normalization, three reference
governing parameters appear: the reference Reynolds number
Re ≡ ρf Uf Lf /μf , the reference Mach number M = Uf /cf ,
and the reference Prandtl number Pr ≡ μf Cp/κf . Here, the
speed of sound is defined by cf ≡ √

γRTf . γ ≡ Cp/Cv is
the ratio of specific heat at constant pressure Cp to that at
constant volume Cv , which is assumed to be equal to 1.4.
R is the specific gas constant. The parameter α is defined
by α = Pr Re(γ − 1)M2. It is assumed that the parameter Pr
is equal to 0.7. The temperature-dependent viscosity μ and
thermal conductivity κ are specified by the Sutherland’s law
[65]:

μ = 1.4042T 1.5

T + 0.40417
, (8)

κ = 1.4042T 1.5

T + 0.40417
. (9)

Numerical simulations of compressible isotropic turbulence
are performed in a cubic box of (2π )3 with periodic boundary
conditions. A hybrid compact-WENO scheme [65] is applied
for the numerical simulations on a uniform grid with 10243

grid points. The hybrid scheme combines an eighth-order
compact finite difference scheme [66] for smooth regions and
a seventh-order WENO scheme [67] for shock regions. The
velocity field is forced by fixing the energy spectrum within
the two lowest wave-number shells. This force is applied to
both solenoidal and compressible components of the velocity
field [54,55,57,68,69]. The ratio of solenoidal to compressible
energy component injected by this force is equal to 1. A
spatially uniform thermal cooling � is applied to sustain the
internal energy in a statistically steady state [65].

III. SIMULATION PARAMETERS AND
ONE-POINT STATISTICS

The Taylor microscale Reynolds number Reλ and the
turbulent Mach number Mt of compressible turbulence are
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TABLE I. Simulation parameters and resulting flow statistics.

Resolution Reλ Mt η/�x LI/η λ/η

10243 201 0.30 1.28 197 25.1
10243 196 0.40 1.30 193 24.5
10243 230 0.52 1.18 218 26.8
10243 234 0.65 1.04 244 27.3

defined, respectively, by [6]

Reλ = Re
〈ρ〉u′λ√

3〈μ〉 , (10)

and,

Mt = M
u′

〈√T 〉 , (11)

where 〈〉 stands for ensemble average. The rms value of the
velocity magnitude is given by u′ =

√
〈u2

1 + u2
2 + u2

3〉 and the
Taylor microscale is

λ =
√ 〈

u2
1 + u2

2 + u2
3

〉
〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉 . (12)

The Kolmogorov length scale η and the integral length scale
LI of compressible turbulence are defined, respectively, by [6]

η = [〈μ/(Reρ)〉3/ε]1/4, (13)

and

LI = 3π

2(u′)2

∫ ∞

0

E(k)

k
dk, (14)

where ε is the ensemble average of the dissipation rate of
kinetic energy per unit mass:

ε =
〈
σijSij

Reρ

〉
. (15)

E(k) is the spectrum of kinetic energy per unit mass, namely,∫ ∞
0 E(k)dk = (u′)2/2. The strain rate tensor Sij is given by

Sij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (16)

Overall statistics of simulated compressible turbulence are
summarized in Tables I–IV. The Taylor microscale Reynolds
number is close to 200. There are four different turbulent Mach
numbers: Mt = 0.30, 0.40, 0.52, and 0.65. The resolution
parameter η/�x is in the range 1.04 � η/�x � 1.30, where
�x denotes the grid length in each direction. Consequently,
the resolution parameter kmaxη is in the range 3.27 � kmaxη �
4.08, where the largest wave number, kmax, is half of the number

TABLE II. Velocity statistics.

Mt u′ uc,rms us,rms uc,rms/us,rms θ ′ ω′ θ ′/ω′

0.30 2.19 1.24 1.81 0.69 9.1 17.6 0.52
0.40 2.21 1.24 1.82 0.68 9.7 17.4 0.56
0.52 2.23 1.20 1.88 0.64 10.1 17.5 0.58
0.65 2.19 1.24 1.81 0.69 11.2 19.5 0.57

TABLE III. Statistics of thermodynamic variables.

Mt p0 T0 prms/p0 ρrms/ρ0 T rms/T0

0.30 39.2 0.99 0.24 0.17 0.067
0.40 22.0 1.00 0.33 0.23 0.091
0.52 14.1 0.91 0.40 0.28 0.11
0.65 9.80 0.83 0.52 0.36 0.15

of grids N in each direction: kmax = N/2 = π/�x. The values
of resolution parameters η/�x and kmaxη in our simulations are
similar to those in previous studies of stationary compressible
isotropic turbulence [6,10,43,55].

By applying the Helmholtz decomposition, we decompose
the velocity field u into a solenoidal component us and a
compressible component uc [1,2,6,9,10]:

u = us + uc, (17)

where

∇ · us = 0, (18)

and,

∇ × uc = 0. (19)

The rms values of the solenoidal and compressible velocity
components are defined by us,rms = √〈(us

1)2 + (us
2)2 + (us

3)2〉
and uc,rms = √〈(uc

1)2 + (uc
2)2 + (uc

3)2〉, respectively. In
Table II, we show that the ratio uc,rms/us,rms is in the range
0.64 � uc,rms/us,rms � 0.69, indicating that the magnitude
of compressible velocity component is comparable to its
solenoidal counterpart.

The rms values of velocity divergence and vorticity mag-
nitude are defined by: θ ′ =

√
〈θ2〉 and ω′ =

√
〈ω2

1 + ω2
2 + ω2

3〉,
respectively. As shown in Table II, the ratio θ ′/ω′ is in the range
0.52 � θ ′/ω′ � 0.58. The rms value of velocity divergence is
nearly independent on the turbulent Mach number in our sim-
ulations, which is different from the situation of solenoidally
forced compressible isotropic turbulence where θ ′ increases
rapidly with the increase of Mt [9,44].

As shown in Table III, we calculate the rms values
prms/p0, ρrms/ρ0, and T rms/T0 of pressure, density and
temperature normalized by their average values, respec-
tively. Here, prms =

√
〈(p − p0)2〉, ρrms =

√
〈(ρ − ρ0)2〉, and

T rms =
√

〈(T − T0)2〉. The average values of thermodynamic
variables are given by p0 = 〈p〉, ρ0 = 〈ρ〉, and T0 = 〈T 〉. The
average density is ρ0 = 1 in our numerical simulations. We
observe that the normalized rms values of thermodynamic

TABLE IV. Normalized statistics of velocity and thermodynamic
variables.

√
γρ0p0u

c,rms/ γp0ρ
rms/ γp0T

rms/

Mt prms (ρ0p
rms) [(γ − 1)T0p

rms]

0.30 0.97 0.98 0.97
0.40 0.94 0.98 0.97
0.52 0.97 0.96 0.97
0.65 0.96 0.96 0.98
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variables increase with the turbulent Mach number. Moreover,
in Table IV, we present the following relations for different
turbulent Mach numbers:

√
γρ0p0u

c,rms

prms
≈ 1, (20)

γp0ρ
rms

ρ0prms
≈ 1, (21)

and

γp0T
rms

(γ − 1)T0prms
≈ 1. (22)

These observations are consistent with some previous studies
of compressible isotropic turbulence [1,9,70].

We can derive the Eqs. (20)–(22) from ideal shock rela-
tionships in the situation of weak shocks. The jump of normal
velocity across a shock can be written as [43,44]

δsun =
√

2(p2 − p1)2

ρ1[(γ + 1)p2 + (γ − 1)p1]
, (23)

where δsun = |u2n − u1n|. We name the variables upstream of
the shock (lower density side) with subscript 1 and downstream
of the shock (higher density side) with subscript 2. u1n (or u2n)
is the velocity, projected along the shock normal direction,
upstream (or downstream) of the shock relative to the shock
front.

For the weak shocks, we assume that ρ1 ≈ ρ2 ≈ ρ0, p1 ≈
p2 ≈ p0, and T1 ≈ T2 ≈ T0. We obtain the following approx-
imation:

δsun ≈ u′

γMt

δsp

p0
, (24)

where δsp = p2 − p1. It is reasonable to make an approxima-
tion that the jump of the compressible velocity component is
nearly equal to the jump of the normal velocity across a shock
[44,51]. Then we have

δsu
c ≈ u′

γMt

δsp

p0
, (25)

Therefore, the rms values uc,rms and prms of fluctuations of
compressible velocity and pressure induced by the ideal shock
jump conditions satisfy

uc,rms ≈ u′

γMt

prms

p0
. (26)

Since Mt ≈ u′/
√

γp0/ρ0, we obtain Eq. (20).
From ideal shock relationship, the density ratio and the

pressure ratio across a shock satisfy the following relation
[2,43,44]:

ρr = (γ + 1)pr + γ − 1

(γ − 1)pr + γ + 1
. (27)

For a weak shock, we have the linear approximation:

δsρ

ρ0
≈ 1

γ

δsp

p0
, (28)

where δsρ = ρ2 − ρ1 and δsp = p2 − p1. Thus, the rms values
ρrms andprms of density and pressure induced by the ideal shock

+

+

+

+

Mt

0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.3

0.4

0.5

0.6
prms/p0

γρrms/ρ0

γTrms/[(γ−1)T0]
C0Mt

+

FIG. 1. Normalized rms values prms/p0, γρrms/ρ0, and
γ T rms/[(γ − 1)T0] of pressure, density, and temperature,
respectively, at turbulent Mach numbers Mt = 0.30, 0.40, 0.52, 0.65.
Here, C0 = 0.8.

jump conditions satisfy

ρrms

ρ0
≈ 1

γ

prms

p0
. (29)

The above equation is equivalent to Eq. (21). Equation (22)
can be derived in a similar fashion.

In Fig. 1, we plot normalized rms values prms/p0,
γρrms/ρ0, and γ T rms/[(γ − 1)T0] of pressure, density, and
temperature, respectively, at turbulent Mach numbers Mt =
0.30, 0.40, 0.52, 0.65. We find that

prms

p0
≈ γρrms

ρ0
≈ γ T rms

(γ − 1)T0
≈ C0Mt. (30)

From Eq. (26), we show that

C0 ≈ γ uc,rms

u′ ≈ 0.8. (31)

The theoretical relations Eqs. (30) and (31) are in good
agreement with numerical results as shown in Fig. 1.

IV. SPECTRA OF VELOCITY AND
THERMODYNAMIC VARIABLES

In Fig. 2, we plot the compensated spectrum E(k)ε−2/3k5/3

of velocity field at different turbulent Mach numbers Mt =
0.30, 0.40, 0.52, 0.65, where

∫ ∞
0 E(k)dk = 〈u2〉/2. We can

identify an inertial range of velocity spectrum, namely,

E(k)ε−2/3k5/3 ≈ CK, (32)

where the Kolmogorov constant CK is about 1.8, which is close
to the values (1.5 to 2.0) typically observed for incompressible
turbulent flows [71–73].

In Fig. 3, we show the compensated spectra Es(k)ε−2/3k5/3

and Ec(k)ε−2/3k5/3 of the solenoidal and compressible com-
ponents of velocity field at different turbulent Mach numbers
Mt = 0.30, 0.40, 0.52, 0.65, where

∫ ∞
0 Es(k)dk = 〈(us)2〉/2
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kη

E
(k

)ε
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1.8

FIG. 2. Compensated spectrum E(k)ε−2/3k5/3 of velocity field at
different turbulent Mach numbers Mt = 0.30, 0.40, 0.52, 0.65.

and
∫ ∞

0 Ec(k)dk = 〈(uc)2〉/2. We find the following relation:

Es(k)ε−2/3k5/3 ≈ 1.4, (33)

kη

E
s (k

)ε
−2

/3
k5/

3

10-2 10-1 100
10-3

10-2

10-1

100

101

Mt=0.30
Mt=0.40
Mt=0.52
Mt=0.65

(a)

1.4

kη

E
c (k

)ε
−2

/3
k5/

3

10-2 10-1 100
10-3

10-2

10-1

100

Mt=0.30
Mt=0.40
Mt=0.52
Mt=0.65

(b)
k−1/3

FIG. 3. Compensated spectra Es(k)ε−2/3k5/3 and Ec(k)ε−2/3k5/3

of the solenoidal and compressible components of velocity field at
different turbulent Mach numbers Mt = 0.30, 0.40, 0.52, 0.65.

which indicates that Es(k) exhibits a k−5/3 scaling. We also
show

Ec(k)ε−2/3k5/3 ∼ k−1/3, (34)

which indicates that Ec(k) exhibits a k−2 scaling. These
observations are consistent with previous studies on numer-
ical simulations of compressible isotropic turbulence driven
by both solenoidal and compressible force components at
Mt = 0.62 and Mt = 0.73 [21,55]. According to a previous
study [21], large-scale shock waves can be generated by the
compressible force component, giving rise to the k−2 spectrum
of the compressible velocity component, which is similar to the
Burgers turbulence [32]. Here, we confirm the k−2 spectrum
of the compressible velocity component for turbulent Mach
number ranging from 0.30 to 0.65. It is worth noting that the
effect of Mach number on the spectrum of the compressible
velocity component is negligibly small, which is different from
the situation of solenoidally forced compressible isotropic
turbulence where the spectrum of the compressible velocity
component is highly dependent on the turbulent Mach number
[10].

We depict contours of the normalized velocity divergence
θ/θ ′ on arbitrarily selected x-y slices at turbulent Mach
numbers Mt = 0.30, 0.40, 0.52, 0.65, in Fig. 4. We show that
the features of expansion motions are very different from those
of compression motions. High expansion regions θ/θ ′ > 1 are
bloblike and spatially localized. High compression regions
θ/θ ′ < −1 are much narrower and longer. The bandlike struc-
tures of high compression regions are shock waves [51,55,65].
Most strong expansion regions are close to some regions of
strong compression. This observation is consistent with the
physical insight that expansion regions can be identified just
downstream of shock waves in compressible turbulence [43].
The spatial distributions of the normalized velocity divergence
θ/θ ′ are similar to each other for different turbulent Mach
numbers in our simulations. It is worth noting that in the
situation of solenoidally forced compressible isotropic turbu-
lence, the bandlike structures of high compression regions are
obvious only for high turbulent Mach numbers Mt � 0.8 [51].
Thus, a finite ratio (1 : 1) of compressible to solenoidal kinetic
injection by large-scale external force can induce shock waves
at much lower turbulent Mach numbers as compared with
solenoidally forced compressible isotropic turbulence [44].

We present contours of the normalized density ρ/ρ0 on the
same slices as in Fig. 4, at turbulent Mach numbers Mt =
0.30, 0.40, 0.52, 0.65, in Fig. 5. Several severe discontinuities
of the contours associated with strong compression can be
identified, which represent the density jumps across shock
waves. This observation is consistent with a previous study
on the density and pressure of the compressible isotropic
turbulence driven by both solenoidal and compressible force
components at Mt = 0.73 [55]. Here, we observe similar
spatial structures of shock waves for turbulent Mach number
ranging from 0.30 to 0.65. In Fig. 6, we show contours of the
normalized pressure p/p0 and normalized temperature T/T0

on the same slice as in Figs. 4 and 5, at turbulent Mach number
Mt = 0.65. The contours of pressure and temperature exhibit
frontlike structures in strong compression regions, which are
very similar to those of density. Moreover, we observe that
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FIG. 4. Contours of the normalized velocity divergence θ/θ ′ on arbitrarily selected x-y slices, at turbulent Mach numbers (a) Mt = 0.30,
(b) Mt = 0.40, (c) Mt = 0.52, (d) Mt = 0.65.

the fluctuations of normalized pressure p/p0 are stronger than
those of normalized temperature T/T0 and normalized density
ρ/ρ0.

In Fig. 7, we plot the normalized spectra E
ρ

N (k),
E

p

N (k), and ET
N (k) of density, pressure, and tempera-

ture, respectively, at different turbulent Mach numbers
Mt = 0.30, 0.40, 0.52, 0.65, where E

ρ

N (k) = Eρ(k)/(ρrms)2,
E

p

N (k) = Ep(k)/(prms)2, and ET
N (k) = ET (k)/(T rms)2. Here,

the spectra of density, pressure, and temperature satisfy∫ ∞
0 Eρ(k)dk = 〈(ρ − ρ0)2〉, ∫ ∞

0 Ep(k)dk = 〈(p − p0)2〉, and∫ ∞
0 ET (k)dk = 〈(T − T0)2〉, respectively [10]. We find that

spectra of density, pressure, and temperature exhibit a k−2

scaling for different turbulent Mach numbers. The k−2 scaling
of spectra of thermodynamic variables were already found
in a previous study of the compressible isotropic turbulence
driven by both solenoidal and compressible force components
at Mt = 0.73 [55], which could be attributed to the occurrence
of large-scale shock waves. It is worth noting that similar to
the behaviors of spectra of velocity and its two components,
the normalized spectra of thermodynamic variables are almost

overlap one another at different turbulent Mach numbers in our
simulations.

In the nearly isentropic weakly compressible turbulent
flows, we have the following relations [10]:

(p − p0)

p0
≈ γ (ρ − ρ0)

ρ0
≈ γ (T − T0)

(γ − 1)T0
. (35)

Generally, for any compressible flow, we can define the residual
density and residual temperature as [10]

ρR = (ρ − ρ0) − ρ0(p − p0)

γp0
, (36)

and

T R = (T − T0) − (γ − 1)T0(p − p0)

γp0
. (37)

We consider the normalized spectra of the residual density and
residual temperature: E

ρ

R(k)/Eρ(k) and ET
R (k)/ET (k). Here,

the spectra of the residual density and residual temperature
satisfy

∫ ∞
0 E

ρ

R(k)dk = 〈(ρR)2〉 and
∫ ∞

0 ET
R (k)dk = 〈(T R)2〉.
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FIG. 5. Contours of the normalized density ρ/ρ0 on the same slices as in Fig. 4, at turbulent Mach numbers (a) Mt = 0.30, (b) Mt = 0.40,
(c) Mt = 0.52, (d) Mt = 0.65.

In Fig. 8, we plot the normalized spectra of the residual density
and residual temperature at different turbulent Mach numbers
Mt = 0.30, 0.40, 0.52, 0.65. We observe that the normalized
spectra become larger as the turbulent Mach number increases.
The normalized spectrum of the residual density is always
much smaller than 1.0. Similarly, the normalized spectrum
of the residual temperature is much smaller than 1.0 in the
range kη < 0.1. These observations indicate that the spectra of
density and temperature exhibit the same inertial scaling as the
spectrum of pressure. The normalized spectrum of the residual
temperature are close to 1.0 at small scales kη ≈ 1.0, implying
that the isentropic relations are no longer valid at small scales.
We note that even though the exact isentropic relation is
definitely violated at large-scale shock waves, the statistical
isentropic relations of the spectra of pressure, density, and
temperature can be identified at relatively large scales kη <

0.1, which may partially be attributed to the cancellation
effect between low-entropy flows upstream of shock waves
and high-entropy flows downstream of shock waves [55].

V. TWO-POINT STATISTICS OF COMPRESSIBLE
TURBULENCE

We consider longitudinal structure functions of the com-
pressible velocity component defined as [51]

SL,c
n (r) ≡

〈∣∣∣∣δru
c

u′

∣∣∣∣
n〉

, (38)

where δru
c = [uc(x + r) − uc(x)] · r̂ denotes the longitudi-

nal increment of the compressible velocity component at
the separation r. Here, r̂ = r/|r|. The structure functions
are normalized by using the rms velocity u′. Similarly, we
define structure functions of the density, pressure, and temper-
ature by [51]

Sρ
n (r) ≡

〈∣∣∣∣δrρ

ρ0

∣∣∣∣
n〉

, (39)

Sp
n (r) ≡

〈∣∣∣∣δrp

p0

∣∣∣∣
n〉

, (40)
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FIG. 6. Contours of the normalized pressurep/p0 and normalized
temperature T/T0 on the same slice as in Figs. 4 and 5, at turbulent
Mach number Mt = 0.65.

and

ST
n (r) ≡

〈∣∣∣∣δrT

T0

∣∣∣∣
n〉

, (41)

where δrρ = ρ(x + r) − ρ(x), δrp = p(x + r) − p(x), and
δrT = T (x + r) − T (x) are, respectively, the increments of
the density, pressure, and temperature at the separation r.
The structure functions are normalized by using the ensemble
average values of the thermodynamic variables ρ0, p0, and T0.

The structure functions can exhibit power-law scaling
behaviors in the inertial range of turbulence. The power-law
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(c)

−2

FIG. 7. Normalized spectra E
ρ

N (k), E
p

N (k), and ET
N (k) of density,

pressure, and temperature at different turbulent Mach numbers Mt =
0.30, 0.40, 0.52, 0.65.

scaling exponents are denoted by ζL,c
n , ζ

ρ
n , ζ

p
n , and ζ T

n , for
the compressible velocity component, density, pressure, and
temperature, respectively [51],

SL,c
n (r) ∼ rζL,c

n , (42)
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FIG. 8. Normalized spectra E
ρ

R(k)/Eρ(k) and ET
R (k)/ET (k) of

the residual density and residual temperature, respectively, at different
turbulent Mach numbers Mt = 0.30, 0.40, 0.52, 0.65.

Sρ
n (r) ∼ rζ

ρ
n , (43)

Sp
n (r) ∼ rζ

p
n , (44)

and

ST
n (r) ∼ rζT

n . (45)

In Figs. 9(a)–9(d), we present the structure functions
SL,c

n (r), S
ρ
n (r), S

p
n (r), and ST

n (r) of the compressible velocity
component and thermodynamic variables at orders from 1 to
6 for turbulent Mach number Mt = 0.65 in a log-log plot.
We mark out the scale range 8 � r/η � 64 by two dash
lines, wherein the structure functions exhibit power-law scaling
behaviors. The slopes of structure functions increase with
the increase of order n. At high orders n � 3, the structure
functions are parallel to one another, suggesting that the scaling
exponents of structure functions can be saturated at n � 3.
In Figs. 9(e) and 9(f), we depict the third-order structure
functions S

L,c
3 (r) and S

ρ
3 (r) of the compressible velocity

component and density at turbulent Mach numbers Mt =
0.30, 0.40, 0.52, 0.65. The third-order structure functions
S

L,c
3 (r) of the compressible velocity component are nearly

identical to each other for different turbulent Mach numbers.
The third-order structure function of the density uniformly be-
comes larger at all scales as turbulent Mach number increases.
However, the slope of the third-order structure function S

ρ
3 (r)

is insensitive to the change of turbulent Mach number. We note
that similar results can be obtained for the third-order structure
functions of the pressure and temperature.

We calculate the scaling exponents ζL,c
n , ζ

ρ
n , ζ

p
n , and ζ T

n

of structure functions of the compressible velocity component
and thermodynamic variables at turbulent Mach numbersMt =
0.30, 0.40, 0.52, 0.65, as shown in Fig. 10. The scaling
exponent of the compressible velocity component becomes
nearly constant at high orders n � 3 with the saturated value
close to 1:

ζL,c
∞ ≈ 1. (46)

This result signifies the similarity between the compressible
velocity component of compressible isotropic turbulence and
the velocity field in Burgers turbulence, both of which are
dominated by large-scale shock waves. Similarly, the scal-
ing exponents of density, pressure, and temperature are also
saturated at high orders n � 3 with the saturated value close
to 1:

ζ ρ
∞ ≈ 1, (47)

ζ p
∞ ≈ 1, (48)

and

ζ T
∞ ≈ 1. (49)

The scaling exponents of the compressible velocity component
and thermodynamic variables are found to be nearly indepen-
dent on the turbulent Mach number. In a previous study, it was
revealed that the relative scaling exponents of the compressible
velocity component and pressure saturate at high orders n � 3
in the solenoidally forced compressible isotropic turbulence at
turbulent Mach number Mt = 1.0 [51].

We calculate the PDFs of the normalized incre-
ments of the compressible velocity component and
thermodynamic variables: P (δru

c/uc,rms), P (δrρ/ρrms),
P (δrp/prms), and P (δrT /T rms). In Fig. 11, we
provide the normalized PDFs of the increments of the
compressible velocity component and thermodynamic
variables: (r/η)−1P (δru

c/uc,rms), (r/η)−1P (δrρ/ρrms),
(r/η)−1P (δrp/prms), and (r/η)−1P (δrT /T rms) for the
separations r/η = 16, 24, 32, 48, 64 at turbulent Mach
number Mt = 0.65. We find that the left tails of the
normalized PDFs (r/η)−1P (δru

c/uc,rms) overlap one another
for different separations. The right tail of the normalized PDFs
(r/η)−1P (δru

c/uc,rms) becomes longer with the increase of
the separation r . Moreover, the left tail of the normalized
PDFs (r/η)−1P (δru

c/uc,rms) is much longer than the right
tail. This observation indicates that the left tail has a major
contribution to the high-order structure functions of the
compressible velocity component. We show that the tails
of the normalized PDFs of the increments of the density,
pressure, and temperature nearly overlap one another for
different separations. Moreover, the tails of the normalized
PDFs of the pressure increments (r/η)−1P (δrp/prms) are
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FIG. 9. Structure functions of the compressible velocity component and thermodynamic variables. The scale range 8 � r/η � 64 is marked
out by two dash lines. (a) SL,c

n (r) at Mt = 0.65; (b) Sρ
n (r) at Mt = 0.65; (c) Sp

n (r) at Mt = 0.65; (d) ST
n (r) at Mt = 0.65; (e) S

L,c
3 (r) at

Mt = 0.30, 0.40, 0.52, 0.65; (f) S
ρ

3 (r) at Mt = 0.30, 0.40, 0.52, 0.65.

longer than those of the normalized PDFs of the increments
of the density and temperature (r/η)−1P (δrρ/ρrms) and
(r/η)−1P (δrT /T rms). It is worth noting that the collapse of the
tails of the PDFs of the increments of the compressible
velocity component and thermodynamic variables by
proper normalization indicates the saturation of the
scaling exponents of structure functions [48,51,55,74,75],
which is consistent with the previous observations in
Fig. 10 that the scaling exponents of the compressible
velocity component and thermodynamic variables are

saturated at high orders n � 3 with the saturated value
close to 1.

In Figs. 12(a)–12(d), we display the normalized
PDFs of the increments of the compressible velocity
component and thermodynamic variables: (r/η)−1

P (−δru
c/uc,rms), (r/η)−1P (δrρ/ρrms), (r/η)−1P (δrp/prms),

and (r/η)−1P (δrT /T rms) in a log-log plot, for the separations
r/η = 16,24,32,48,64 at turbulent Mach numberMt = 0.65.
The normalized PDFs exhibit a power-law region with the
exponent close to −2. The −2 power-law region of the
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FIG. 10. Scaling exponents of structure functions of the compressible velocity component and thermodynamic variables at turbulent Mach
numbers Mt = 0.30, 0.40, 0.52, 0.65. Errors include both statistical fluctuations and the uncertainty in the fit to the power-law scaling range.
(a) ζL,c

n ; (b) ζ ρ
n ; (c) ζ p

n ; (d) ζ T
n .

normalized PDFs can be also identified at other three turbulent
Mach numbers Mt = 0.30, 0.40, 0.52, as shown in Figs. 12(e)
and 12(f). In a previous study, the −2 power-law region of the
normalized PDFs of the increments of pressure was identified
in numerical simulations of the compressible isotropic
turbulence driven by both solenoidal and compressible force
components at Mt = 0.73 [55]. A heuristic PDF model was
introduced to explain the power-law exponent −2. Here, we
find the −2 power-law region of the normalized PDFs for
the increments of the compressible velocity component and
three thermodynamic variables at turbulent Mach numbers
Mt = 0.30, 0.40, 0.52, 0.65.

We plot average of the increments of density and tempera-
ture conditioned on the pressure increment, for the separations
r/η = 16, 24, 32, 48, 64 at turbulent Mach number Mt =
0.65 in Figs. 13(a) and 13(b). All the conditional average
collapse to the same curve for the different separations,
demonstrating the scale-invariant properties of the density,
pressure and temperature. Due to the lack of samples in nu-
merical simulations, the conditional average of the increments
of density and temperature drop off rapidly for |δrp/p0| > 5.
We begin to derive heuristic models of the conditional average
of density and temperature based on ideal shock relations.
From the Eq. (27) of the Rankine-Hugoniot jump condition

of density ratio and pressure ratio across a shock, we obtain

ρ2 − ρ1

ρ0
= 1

γ

ρ1/ρ0

p1/p0

1

1 + (γ−1)p0

2γp1

p2−p1

p0

p2 − p1

p0
, (50)

where, subscript 1 denotes the variables upstream of the shock
and subscript 2 denotes the variables downstream of the shock.
We make an approximation:

ρ1/ρ0

p1/p0
≈ 1. (51)

Equation (50) becomes

ρ2 − ρ1

ρ0
≈ 1

γ
[
1 + (γ−1)p0

2γp1

p2−p1

p0

] p2 − p1

p0
. (52)

We introduce the following model for the increments of
the density and pressure induced by the ideal shock jump
condition: 〈

δrρ

ρ0

∣∣∣∣δrp

p0

〉
= 1

γ (1 + C1δrp/p0)

δrp

p0
, (53)

where, C1 is a constant. In Fig. 13(a), we show that Eq. (53) is
in good agreement with the numerical results for C1 = 4/35, at
Mt = 0.65. Similarly, we introduce the following model for the
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FIG. 11. Normalized PDFs of the increments of the compressible velocity component and thermodynamic variables for the separations
r/η = 16, 24, 32, 48, 64 at turbulent Mach number Mt = 0.65. (a) (r/η)−1P (δru

c/uc,rms); (b) (r/η)−1P (δrρ/ρrms); (c) (r/η)−1P (δrp/prms);
(d) (r/η)−1P (δrT /T rms).

average of temperature increment conditioned on the pressure
increment: 〈

δrT

T0

∣∣∣∣δrp

p0

〉
= γ − 1

γ (1 + C2δrp/p0)

δrp

p0
, (54)

where C2 is a constant. In Fig. 13(b), we find that Eq. (54) is
in good agreement with the numerical results for C2 = 3/14,
at Mt = 0.65. From Eq. (53), we can derive a model for the
average of the pressure increment conditioned on the density
increment: 〈

δrp

p0

∣∣∣∣δrρ

ρ0

〉
= γ

(1 − C1γ δrρ/ρ0)

δrρ

ρ0
, (55)

where C1 = 4/35. Similarly, from Eqs. (53) and (54), we can
derive a model for the average of the temperature increment
conditioned on the density increment:〈

δrT

T0

∣∣∣∣δrρ

ρ0

〉
= γ − 1

(1 + C3γ δrρ/ρ0)

δrρ

ρ0
, (56)

where C3 = C2 − C1 = 1/10. In Figs. 13(c) and 13(d), we ob-
serve that Eqs. (55) and (56) are consistent with the numerical
results, at Mt = 0.65.

Moreover, we show that the conditional average of the incre-
ments of density and temperature collapse to the same curve for

different turbulent Mach numbers Mt = 0.30, 0.40, 0.52, 0.65
in Figs. 13(e) and 13(f). Thus, model Eqs. (53) to (56)
of the conditional average of the increments of thermody-
namics are valid not only for different separations r/η =
16, 24, 32, 48, 64, but also for different turbulent Mach
numbers Mt = 0.30, 0.40, 0.52, 0.65. In a previous study,
a model for the conditional average 〈δrρ/ρrms|δrp/prms〉 was
proposed in the compressible isotropic turbulence driven by
both solenoidal and compressible force components at Mt =
0.73 [55], where the rms values ρrms and prms were used to nor-
malize the increments of the density and pressure. Here, we use
the average values ρ0, p0, and T0 to normalize the increments
of the density, pressure and temperature. The behaviors of
conditional average of increments of thermodynamic variables
are quite universal for different turbulent Mach numbers in our
numerical simulations.

We plot average of the increment of the compressible
velocity component conditioned on the pressure increment,
for the separations r/η = 16, 24, 32, 48, 64 at turbulent
Mach numbers Mt = 0.30, 0.40, 0.52, 0.65. in Fig. 14.
We observe that the conditional average 〈δru

c/u′|δrp/p0〉 is
always negative for |δrp|/p0 > 0.5. It is worth noting that
the large magnitude of the increments of the compressible
velocity component and thermodynamic variables can be
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FIG. 12. Normalized PDFs of the increments of the compressible velocity component and thermodynamic variables in a log-log plot.
(a) (r/η)−1P (−δru

c/uc,rms) at Mt = 0.65; (b) (r/η)−1P (δrρ/ρrms) at Mt = 0.65; (c) (r/η)−1P (δrp/prms) at Mt = 0.65; (d) (r/η)−1P (δrT /T rms)
at Mt = 0.65; (e) (r/η)−1P (−δru

c/uc,rms) for r/�x = 16 at Mt = 0.30, 0.40, 0.52, 0.65; (f) (r/η)−1P (δrρ/ρrms) for r/�x = 16 at Mt =
0.30, 0.40, 0.52, 0.65.

mainly attributed to the shock waves. The increment of the
compressible velocity component tends to be negative across
the shock wave, due to the strong compression of the shock
wave. This observation is consistent with the fact that the
left tail of the PDF of δru

c/uc,rms is much longer than the
right tail, demonstrating that the negative part of the increment
of the compressible velocity component is more intermittent
than its positive counterpart.

From Eq. (23) of the ideal shock condition, we have the
following equation for the normal velocity jump δsun:

δsun

u′ = 1

γ u′

√
γp1

ρ1

1√
1 + γ+1

2γ

p2−p1

p1

p2 − p1

p1
, (57)

where subscript 1 denotes the variables upstream of the shock
and subscript 2 denotes the variables downstream of the shock.
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FIG. 13. Conditional average of the increments of density, pressure and temperature. (a) 〈δrρ/ρ0|δrp/p0〉 at Mt = 0.65; (b) 〈δrT /T0|δrp/p0〉
at Mt = 0.65; (c) 〈δrp/p0|δrρ/ρ0〉 at Mt = 0.65; (d) 〈δrT /T0|δrρ/ρ0〉 at Mt = 0.65; (e) 〈δrρ/ρ0|δrp/p0〉 for r/�x = 16 at Mt =
0.30, 0.40, 0.52, 0.65; (f) 〈δrT /T0|δrp/p0〉 for r/�x = 16 at Mt = 0.30, 0.40, 0.52, 0.65.

For the weak shocks, we assume that p1 ≈ p0 and ρ1 ≈ ρ0.
Then, we obtain the following relation:

δsun

u′ ≈ C4√
1 + γ+1

2γ

δsp

p0

δsp

p0
, (58)

where δsp = p2 − p1 denotes the pressure jump across the
shock wave, and the coefficient C4 = 1/(γMt ). Now, we
introduce the following model for the conditional average of

the increment of the compressible velocity component:〈
δru

c

u′

∣∣∣∣δrp

p0

〉
= − C5√

1 + γ+1
2γ

|δrp|
p0

|δrp|
p0

, (59)

where the coefficient C5 = 0.42. Equation (59) is roughly
in agreement with the numerical results for relatively small
|δrp|/p0. We note that the coefficient C5 of the Eq. (59)
does not depend on Mt in our numerical simulations, which
is different from the Eq. (58), where the coefficient C4 is
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FIG. 14. Average of the increment of the compressible velocity component conditioned on the pressure increment, for the separations
r/η = 16, 24, 32, 48, 64 at turbulent Mach numbers (a) Mt = 0.30, (b) Mt = 0.40, (c) Mt = 0.52, (d) Mt = 0.65.

proportional to M−1
t . It is worth noting that the contribution of

the negative component of δru
c to the conditional average can

be canceled partly by its positive component, giving rise to the
fact that C5 is smaller than C4.

VI. DISCUSSION

According to previous studies on the numerical simula-
tions of compressible turbulence, we infer that the solenoidal
mode and compressible mode are only weakly coupled for
turbulent Mach number Mt � 1.0 [7,21,53]. It was shown
that in solenoidally forced compressible isotropic turbulence
at turbulent Mach number about 1.0, the compressible mode
occupies no more than 5% of total kinetic energy [7]. Moreover,
the SGS kinetic energy flux of compressible mode was found
to be no more than 10% of total SGS kinetic energy flux
in solenoidally forced compressible isotropic turbulence at
turbulent Mach numbers up to 1.0 [53]. These observations
imply that the net kinetic energy transferred from solenoidal
mode to compressible mode is quite small at Mt � 1.0.

It was shown by Wang et al. [21] that both solenoidal
and compressible components of SGS kinetic energy flux
are nearly constant in the inertial range in a stationary
compressible isotropic turbulence driven by both solenoidal
and compressible force components, implying that kinetic
energies of both solenoidal and compressible modes cascade

conservatively. The cascade of kinetic energy of solenoidal
mode is similar to that in incompressible turbulence, giving rise
to the Kolmogorov k−5/3 scaling of solenoidal component of
kinetic energy spectrum. The equation of the velocity potential
� defined by uc = −∇� was considered [21]:

∂t� − 1

2
∇� · ∇� = 4ν

3
∇2� + Np + Nsol + F, (60)

where, Np = ∇−2[∇ · (∇p/ρ)]. Nsol denotes the effect of the
solenoidal velocity component, which has small contribution
to the equation of the velocity potential. F is the potential
of external force. Similar to the theory of three-dimensional
Burgers turbulence [32], the nonlinear effect of potential
gradient square ∇� · ∇� gives rise to the generation of
large-scale shock waves. Thus, the cascade of kinetic energy
of compressible mode is similar to that in Burgers turbulence,
leading to the k−2 scaling of compressible component of kinetic
energy spectrum [21].

It is worth noting that the k−2 scaling of compressible ve-
locity spectrum is attributed to the large-scale shock waves. If
there is no large-scale shock wave in compressible turbulence,
the compressible velocity spectrum can exhibit the scaling
behavior with a different scaling exponent. In a previous
study of solenoidally forced compressible isotropic turbulence
by Wang et al. [10], it was shown that the spectrum of
compressible velocity exhibit a k−3 scaling at small turbu-
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lent Mach numbers Mt � 0.1 where the pseudosound mode
dominates the compressible dynamics, while the spectrum
of compressible velocity exhibit a k−5/3 scaling at moderate
turbulent Mach numbers 0.5 � Mt � 1.0 where the acoustic
mode dominates the compressible dynamics. It is worth noting
that no cascade of kinetic energy of compressible mode is
observed in the pseudosound-mode-dominated region, where
the compressible velocity is fully enslaved to the solenoidal
velocity [10]. Moreover, for compressible turbulence in the
acoustic-mode-dominated region, the compressible dynamics
can be approximated by linear wave equations [70]. Since there
is no energy flux among different wave numbers in linear wave
equations, the contribution of acoustic wave to the interscale
kinetic energy transfer is probably weak.

Previous studies showed that the average of SGS kinetic
energy flux is nearly constant in the inertial range of com-
pressible turbulence, indicating that interscale kinetic energy
transfer exhibits the scale-invariant property [21,53]. In this
paper, we have demonstrated the scale-invariant property of the
conditional average of increments of the compressible velocity
component and thermodynamic variables by both heuristic
models and numerical results. Moreover, the conditional aver-
age is shown to be insensitive to the change of turbulent Mach
numbers for 0.30 � Mt � 0.65 in our numerical simulations,
where the interaction between the solenoidal and compressible
modes is not significant.

Higher order statistics of the increments of the compress-
ible velocity component and thermodynamic variables are
necessary to demonstrate the intermittency of compressible
mode and thermodynamic fields. The heuristic models of
the conditional average of increments of the thermodynamic
variables shown in Fig. 13 imply that the intermittency of
temperature is weakest, while the intermittency of pressure is
strongest. The observations are consistent with the normalized
PDFs of increments of thermodynamic variables in Fig. 11: the
tails of normalized PDF of temperature increment are shortest,
while the tails of normalized PDF of pressure increment are
longest.

VII. SUMMARY AND CONCLUSIONS

In this paper, we investigated the statistics and scaling of the
velocity, density, pressure and temperature of the stationary
compressible isotropic turbulence in the presence of large-
scale shock waves at turbulent Mach number Mt ranging from
0.30 to 0.65. The turbulent flows are driven by both solenoidal
and compressible force components. The ratio of the rms
value of compressible velocity component to its solenoidal
counterpart is kept nearly constant at different turbulent Mach
numbers. It was found that the rms values of thermodynamic
variables normalized by their mean values are in proportion
to the turbulent Mach number. Some linear relations for the

normalized rms values of the compressible velocity component
and thermodynamic variables were derived from the ideal
shock conditions, and were verified by numerical simulations.

The spectra for the velocity and its solenoidal component
exhibit a k−5/3 scaling, while the spectra for the compressible
velocity component and thermodynamic variables exhibit ak−2

scaling. The normalized spectra of the compressible velocity
component and thermodynamic variables were found to be
nearly independent on the turbulent Mach number. The statis-
tical isentropic relations of the spectra of pressure, density and
temperature were identified at relatively large scales kη < 0.1.

The scaling exponents of the structure functions of the com-
pressible velocity component and thermodynamic variables
are saturated at high orders n � 3 with the saturated value
close to 1.0, similar to Burgers turbulence. The tails of the
normalized PDFs of increments of the compressible velocity
component and thermodynamic variables overlap one another
for different separations r , and exhibit a −2 power-law scaling
at different turbulent Mach numbers. The conditional average
of increments of the compressible velocity component and
thermodynamic variables overlap one another for different
separations r and different turbulent Mach numbers. Some
models based on the ideal shock conditions were proposed
for the conditional average, and were found to be consistent
with the numerical simulations.

Finally, we have pointed out that the solenoidal and com-
pressible modes are only weakly coupled for 0.30 � Mt �
0.65 in our numerical simulations. The spectrum and kinetic
energy transfer of compressible mode are closely related to
the large-scale shock waves, which can be partly explained by
the theory of three-dimensional Burgers turbulence. Moreover,
the effect of shock wave on the statistics of compressible
mode is different from that of acoustic wave, since shock
wave is a strongly nonlinear phenomenon, while acoustic wave
can be described approximately by linear wave equations.
The statistical properties investigated in the present study are
helpful for developing turbulence models of compressible tur-
bulence in the presence of large-scale shock waves. Numerical
simulations at higher turbulent Mach numbers are required to
further investigate the interactions between the solenoidal and
compressible modes.
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