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Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
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The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated
by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions
at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two
mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer
for an Atwood number AT = 1 and for sufficiently small values of AT . In the former case, viscosity is a less
effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances
its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI), taking place at the
interface between two fluids when a denser medium lays atop a
lighter one in a gravitational field g, is present in an enormous
variety of physical systems [1–8], ranging from the quotidian
spilling of water from a jar when it is inverted, to astrophysical
phenomena like the ignition of a supernova or the formation of
the spectacular structures observed by the Hubble telescope
in the supernova remnants of the Crab and Eagle nebula
[9,10]. It is also behind many geophysical processes, such as
in the coastal upwelling [11], in the subduction phenomenon
occurring at the convergent boundaries of the tectonic plates
[12], and in salt dome formations, as well as in the regularly
spaced volcanism observed in continental rifting [13–17]. It
also plays a role in ocean dynamics [18], in the bioconvection
observed in cell cultures [19], and in many industrial processes.
Besides, it is one of the crucial issues in the research on
inertial confinement fusion [20–27], and in many experiments
on high-energy density physics (HEDP) [28–42].

The most simple configuration of two superposed semi-
infinite media has been widely studied in a huge variety of
situations. However, much less effort has been dedicated to
the RTI involving finite width media, probably because despite
its relevance in most of the above-mentioned processes, the
analysis becomes more difficult, especially when a lighter fluid
with finite density and viscosity beneath the heavy layer is
involved. The first study of the RTI in finite width fluids was
already performed by G. I. Taylor [2] for the simplest case of a
single layer of ideal fluid (ρ1 = 0), so that the Atwood number
AT = (ρ2 − ρ1)/(ρ2 + ρ1) = 1, where fluids “1” and “2” are
the lighter and the heavier fluids, respectively (Fig. 1). In such
a case, he found that the growth rate γ is independent of the
layer thickness h (γ = √

kg, where k is the perturbation wave
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number). An extension of the Taylor’s result to AT < 1 was
given by Goncharov et al. [43], showing that for a fluid slab
of finite width h, the growth rate becomes smaller and is given
by the following expression:

γ =
√

(ρ2 − ρ1)kg

ρ2 + ρ1 coth kh
. (1)

Actually, such a result was already contained in the previous
work by Mikaelian in which he considered the RTI of stratified
ideal fluids with interfacial surface tensions [44]. More recently
a somewhat similar work was performed for studying RTI in
stratified media in presence of magnetic fields [45,46].

Previous studies of RTI in stratified viscous fluids were
carried on by Harrison in the framework of the equivalent
problem of the oscillation of superposed fluids [47]. However,
the final results were limited to the case of very low viscosity of
the heavy layer. RTI in stratified fluids was also considered by
several authors. For instance, Ramberg studied the problem for
a variety of boundary conditions, but the particular case of an
accelerated layer with a top free surface was barely mentioned
[13,14]. A similar problem was investigated by Lister and
Kerr [15], and by Wilcock and Whitehead [17], for the
particular case of a very low viscosity of the heavy fluid slab.
Besides, the complementary asymptotic regime of small wave
Reynolds number (high viscosity or very large perturbation
wave number) was considered by Parhi and Nath [16].

The RTI in situations in which the medium composing the
slab is an elastic solid was also considered, although in much
less extent [48,50,51].

The three-layer system with viscosity and surface tensions
was also analyzed by Mikaelian for the case in which the
system is confined by rigid walls [52,53]. However, in most
of the experiments on HEDP, as well as in many situations
present in Nature, we have to deal with a denser fluid slab
of finite thickness pushed and accelerated by a lighter fluid.
So that no rigid walls are present, and the top surface of the
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FIG. 1. Schematic of the two-interfaces system formed by a
viscous layer on the top of a semi-infinite viscous fluid.

heavier medium is a free surface, such as in the case of the
recent experiment by Adkins et al. [54].

Besides, a similar situation is expected to occur in the
advanced target designs for inertial confinement fusion using
ablators of high density carbon or beryllium [55–57]. These
ablators are melted at the beginning of the target implosion
for eliminating the deleterious effects of the polycrystalline
microstructures present in the solid state which could seed
hydrodynamic instabilities.

In this paper we study the RTI in a viscous fluid slab of
width h, and density ρ2, laying atop a semi-infinite viscous
fluid of lower density ρ1 < ρ2, with interfacial surface tension
on each interface, and considering that the top interface is a
free surface. To investigate the relative effects of the lighter
fluid viscosity, and of the surface tensions, we first analyze
the case in which the light fluid is ideal and with no surface
tensions (Sec. II A). Later we include successively the effects
of its viscosity, in an approximate manner by assuming that it
is irrotational (Sec. II B), and the effects of the surface tensions
on the interfaces (Sec. II C).

II. LINEAR ANALYSIS OF THE RTI

Figure 1 shows the general situation we are studying,
consisting in a Newtonian fluid slab of width h, density ρ2, and
dynamic viscosity μ2, overlaying a semi-infinite Newtonian
fluid of density ρ1 < ρ2, and dynamic viscosity μ1, in a
constant gravitational field �g = gêy = −�∇ϕ (êy is the unitary
vector in the vertical direction, and ϕ is the gravitational
potential). The denser fluid occupies the region −h � y � 0,
and the lighter fluid occupies the region y � 0. The region
y < −h above the fluid slab is empty (ρ3 = 0).

We start with the equations for momentum and mass
conservation, which read as follows:

ρ
d �v
dt

= −�∇p + ρ �g + �∇ · ��σ ′, (2)

dρ

dt
+ ρ �∇ · �v = 0, (3)

where �v, ρ, and p are the fluid velocity, density, and pressure,

respectively. In addition, ��σ ′ is the deviatoric part of the stress
tensor σik = −p δik + σ ′

ik (δik is the Kronecker δ), which for
a Newtonian fluid is written in the following form

σ ′
ik = μ

(
∂vi

∂xk

+ ∂vk

∂xi

− 2

3
δik

∂vj

∂xj

)
, (4)

where we have used index notation for Cartesian tensors in
which any index i,j,k = 1,2,3 indicates the space coordinates
x,y,z, respectively. Besides, in Eqs. (2) and (3), dM/dt

represents the total material derivative of any magnitude M

(�v, ρ, p, ��σ ′):

dM

dt
= ∂M

∂t
+ (�v · �∇)M. (5)

For linearizing the previous equations we proceed in the
usual manner by expressing every magnitude M as M =
M0 + δM , where M0 and δM � M0 are, respectively, the
equilibrium value and the perturbation ofM . Then, Eqs. (2)–(4)
yield the following linear equations system for the perturba-
tions:

ρn

∂(δ�vn)

∂t
= −�∇(δpn + ρn δϕn) + �∇ · ��S(n), (6)

�∇ · (δ�vn) = 0, (7)

where n = 1,2 refers to the bottom and top medium, respec-
tively, and we have assumed incompressible perturbations
(δρ = 0). In addition, it is

S
(n)
ik ≡ δσ ′(n)

ik = μ

[
∂(δvni)

∂xk

+ ∂(δvnk)

∂xi

]
. (8)

To obtain the perturbed velocity field we use the Helmholtz
decomposition [8,58], for which we can express the velocity
field as the sum of an irrotational part δ�v φ = �∇φ, determined
by the scalar function φ, plus a rotational part δ�v ψ given by
the zero divergence vector ψêz:

δ�vn = �∇φn + �∇ × (ψnêz). (9)

Then, substitution of Eq. (9) into Eqs. (6) and (7) yields,
respectively:

�∇
(

γφn + δpn

ρn

+ δϕn

)
+ �∇ × [(γψn − νn∇2ψn)�ez] = 0,

(10)

∇2φn = 0, (11)

where νn = μn/ρn is the kinematic viscosity of fluid “n,”
δϕn = −gηn = −gδvny/γ , and we have taken φ ∝ ψ ∝ eγ t ,
with γ being the instability growth rate.

Equation (10) can be decoupled by adopting the Bernoulli
gauge [8], so that the terms between parenthesis are equal to
zero separately:

γφn + δpn

ρn

+ δϕn = 0, (12)

γψn = νn∇2ψn. (13)
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Thus, by assuming two-dimensional perturbations of the form:

φn ∝ eqy sin kx, (14)

ψn ∝ eq ′
ny cos kx. (15)

Equations (11) and (13) yield, respectively,

q = ±k ; q ′
n = ±λn ; λn =

√
k2 + γ

νn

. (16)

Equations (14)–(16) allow for obtaining the velocity field
in each fluid from Eq. (9).

A. Viscous layer atop a lighter ideal fluid

We analyze at a first place the simplest case in which the
semi-infinite lighter fluid is inviscid (μ1 = 0) and the effects of
surface tensions are not taken into account. Thus, the perturbed
velocity field of the lighter fluid (y � 0) is obtained from
Eqs. (9) and (11) (ψ1 = 0):

φ1 = a1e
−kyeγ t sin kx, δv1y = ∂φ1

∂y
, δv1x = ∂φ1

∂x
, (17)

where a1 is a constant to be determined.
For the heavier viscous fluid in the region −h � y � 0

we can write the following convenient forms for the potential
functions φ2 and ψ2, respectively:

φ2 = a cosh ky + b cosh k(h + y)

sinh kh
eγ t sin kx, (18)

ψ2 = c sinh λy + d sinh λ(h + y)

sinh λh
eγ t cos kx, (19)

where a, b, c, and d are constants to be determined together
with a1 and the growth rate γ from the boundary conditions at
y = 0 and y = −h. Then, the velocity field is given by Eq. (9),
which can be re-written as follows:

δv2y = ∂φ2

∂y
− ∂ψ2

∂x
, δv2x = ∂φ2

∂x
+ ∂ψ2

∂y
. (20)

1. Boundary conditions at y = 0 and y = −h

The continuity of the tangential and normal stresses at
y = 0 and y = −h, respectively, and the continuity of the
normal velocity at y = 0 produce a close set of equations for
determining the previous constants and the growth rate.

Since the region above the fluid slab is empty (ρ3 = 0),
and the bottom lighter fluid is ideal [S(1)

xy (y = 0) = 0], the
continuity of the tangential stresses on each interface read,
respectively,

S(2)
xy (y = 0) = 0; S(2)

xy (y = −h) = 0. (21)

Then, from Eqs. (8) and (18)–(20), it is straightforward to get
the following relationships:

d = − 2k2

λ2 + k2
b; c = − 2k2

λ2 + k2
a. (22)

In a similar manner, the continuity of the normal stresses
δσ (n)

yy = −δpn + S(n)
yy at both interfaces are expressed as

follows:

−δp2 + S(2)
yy = −δp1, y = 0, (23)

−δp2 + S(2)
yy = 0, y = −h. (24)

From Eq. (12) we have

−δp2 = γρ2φ2 − ρ2gδv2y

γ
; −δp1 = γρ1φ1 − ρ1gδv1y

γ
.

(25)
Therefore, at y = 0, Eq. (23) yields

γφ2 + 2ν2
∂(δv2y)

∂y
− gδv2y

γ
= ρ1

ρ2

(
γφ1 − gδv1y

γ

)
, (26)

and at y = −h Eq. (24) gives

γφ2 + 2ν2
∂(δv2y)

∂y
− gδv2y

γ
= 0. (27)

On the other hand, the continuity of the normal velocity at
y = 0 is expressed as follows:

δv2y(0) = δv1y(0), (28)

which yields

a1 = −(b + d). (29)

2. Dispersion relation and instability growth rate

By using Eqs. (18)–(20), and introducing Eqs. (22) and (29)
into Eq. (26), we get

aA + b

[
C − B + ρ1

ρ2

(
γ

ν2
+ kg

γ ν2

)]
= 0, (30)

where A, B, and C are given by the following expressions:

A = (λ2 + k2)2 csch kh − 4k3λ csch λh

λ2 − k2
, (31)

B = kg/γ ν2, (32)

C = (λ2 + k2)2 coth kh − 4k3λ coth λh

λ2 − k2
. (33)

In the same manner, from Eq. (27), we get

a(C + B) + bA = 0. (34)

The system formed by Eqs. (30) and (34) allows for obtaining
the instability growth rate by asking that its determinant be
equal to zero:

C2 − A2 = B2 − ρ1

ρ2
(C + B)

(
B + γ

ν2

)
. (35)

Equation (35) is a rather complicated transcendental equation
for the growth rate γ as a function of the perturbation wave
number k, with the slab thickness h, the viscosity ν2 of
the heavier fluid, and densities ρ2 and ρ1 as parameters. To
express it in a more explicit form it is convenient to introduce
dimensionless magnitudes:

κ = k

k0
; σ = γ√

k0g
; k0 =

(
g

ν2
2

)1/3

. (36)
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Then, after a tedious but straightforward algebra we get the
following equation for the dimensionless growth rate σ as
a function of the dimensionless wave number κ , with the
parameters AT = (ρ2 − ρ1)/(ρ2 + ρ1) and α = k0h:

(2κ2 + σ )4 + 16κ6(κ2 + σ ) − 8κ3
√

κ2 + σ (2κ2 + σ )2

× [coth ακ coth α
√

κ2 + σ − csch ακ csch α
√

κ2 + σ ]

= M2
T aσ

2 −
[

1 − AT

1 + AT

(κ + σ 2 + Mv) + MT b

]

× [κMT a + (2κ2 + σ )2 coth ακ

− 4κ3
√

κ2 + σ coth α
√

κ2 + σ ], (37)

where MT a , MT b, and Mv are functions of κ related to the
presence of the interfacial surface tensions and viscosity in the
lighter fluid. For the present particular case, we have

MT a = 1 ; MT b = 0 ; Mv = 0. (38)

A much simpler expression is obtained for the asymptotic
regime κ → ∞. Actually, an equation for the asymptotic
growth rate σ∞ is more conveniently obtained from Eqs. (31)
and (32), which for κ � 1 read

A = 2k2(kh cosh kh + sinh kh)

sinh2 kh
, (39)

C = k2(2kh + sinh 2kh)

sinh2 kh
. (40)

Introducing these equations into Eq. (35), we get

4κ2σ 2
∞ + 2

1 − AT

1 + AT

κσ∞ − 2AT

1 + AT

= 0 (41)

or

σ∞ = 1

4κ

⎡
⎣

√(
1 − AT

1 + AT

)2

+ 8AT

1 + AT

− 1 − AT

1 + AT

⎤
⎦. (42)

As it can be seen, the asymptotic value σ∞ of the dimen-
sionless growth rate is independent of the thickness of the
fluid slab, and it only depends on the Atwood number AT .
That is, the effects of the viscosity and of the finite thickness
of the heavier fluid slab will be felt mainly at the small and
intermediate values of the dimensionless perturbation wave
number. Certainly, this is the foreseen behavior because for
the largest values of the perturbation wave number the layer is
seen as a semi-infinite medium.

In Fig. 2 we have represented the growth rate σ for several
values of the dimensionless thickness α = k0h of the slab and
Atwood numbers. Figure 2(a) shows that the maximum growth
rate is higher for the thinnest slabs for the particular case of
AT = 1. This behavior may seem to be somewhat unexpected
in view of the fact that for ideal fluids, Eq. (1) shows that the
growth rate is smaller for the thinnest slabs, at least for the
cases when a lighter fluid below is present (AT < 1). When
ρ1 = 0, Eq. (1) shows that σ becomes independent of h.

Nevertheless, both features are consistent with each other
and caused by the same physical event, such as it was shown in
[50,51] for the case of an accelerated elastic solid slab. In fact,
to completely appreciate such a fact, it is worth to remark first
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FIG. 2. Dimensionless growth rate σ as a function of the di-
mensionless perturbation wave number κ for several values of the
dimensionless thickness α = k0h of the heavy fluid layer and different
Atwood numbers AT . (a) AT = 1; (b) AT = 0.8; (c) AT = 0.4.

the physics underlying the growth rate reduction for thinner
layers shown by Eq. (1) for ideal fluids.

From Fig. 1 we can see that as a consequence of the
perturbation the weight per unitary surface increases in a
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valley by the amount ρ2g�h (�h = ξa − ξb), and if ρ1 = 0
it drives the growth of the perturbation at the maximum rate
[59]. Instead, when ρ1 �= 0, the lighter fluid exerts an opposite
force (per unitary surface) ρ1gξa that slows down the instability
growth. But since �h = ξa − ξb is greater as thicker is the slab
whilst the force exerted by the lighter fluid is independent of
h, the growth rate results to be larger for thicker slabs when
two ideal fluids are involved.

If now ρ1 = 0 (AT = 1) and the slab consists of a viscous
fluid, the force resisting the interface motion due to the
viscosity is Syy ≈ 2μ2γ (�h/h). Since �h/h is larger for the
thicker slabs, viscosity turns out more efficient for slowing
down the instability growth. Then, the growth rate is smaller
as thicker is the fluid slab, such as it is observed in Fig. 2(a).

When an ideal fluid beneath the viscous slab is present
(ρ1 �= 0), the two previous effects arising from the thickness
change �h compete each other. This competition can be seen
in Figs. 2(b) and 2(c). For AT = 0.8, Fig. 2(b) shows that for
the largest values of κ , the reduction of the effectiveness of the
viscous forces lead to a higher growth rate for the thinnest slabs.
But as κ decreases, the behavior inverts and the growth rates
becomes smaller for the thinnest slabs as a consequence of the
lower weight increase (in the valleys), together with the action
of the buoyancy force ρ1gξa exerted by the lighter fluid. The
second effect dominates for the thinnest slabs and AT = 0.8,
being the only effect that is operating for AT = 0.4 at all the
perturbation wave numbers and leading to the behavior shown
in Fig. 2(c), in which the growth rate decreases for the thinner
slabs. In any case, for the largest values of κ , the asymptotic
regime is achieved and the dimensionless growth rate σ is
determined only by the Atwood number [Eq. (42)].

On the other hand, the effect of the Atwood number alone
is rather like expected, showing a reduction of the growth rate
as lower is AT , for a given value of α (Fig. 3).

B. Viscous layer atop a lighter viscous fluid

We include first the effect of the viscosity of the lighter fluid
and we do this in an approximate manner by considering that
the light fluid is irrotational [49,50]. As it was discussed in
Ref. [50], this is a good approximation for κ � 1 and κ � 1,
and the maximum error occurs for intermediate values of κ .
However, it is well known that in the case of a single semi-
infinite viscous fluid, the irrotational approximation produces
pretty accurate results for the growth rate with a maximum
error of around 11% when compared with the exact results
[3]. In our case of two viscous fluids in which the irrotational
approximation is used only in the semi-infinite lighter fluid, the
goodness of the approximation can be expected to be better or,
at most, equal than for the case of a single irrotational fluid.

Then, by adopting this approximation, the previous cal-
culations presented in Sec. II A are modified by adding the
following term on the right-hand side of Eq. (26):

ρ1

ρ2
ν1

∂(δv1y)

∂y
, (43)

and the term Mv in Eq. (37) turns out

Mv = 2
ν1

ν2
κ2. (44)
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FIG. 3. Dimensionless growth rate σ as a function of the di-
mensionless perturbation wave number κ for several values of the
Atwood number AT and different dimensionless thicknesses α = k0h.
(a) α = 1; (b) α = 0.4.

As expected, in the case of two semi-infinite viscous fluids
the accuracy of this approximation is better than for the case
of a single viscous fluid, such as it can be seen in Fig. 4(a)
where the results of the present theory for α � 1 are compared
with the exact calculations for several values of AT [3]. We see
that the accuracy is better than 5%.

In Fig. 4(b) we show the effect of the viscosity of the lighter
fluid by comparing the case in which the lighter fluid is ideal
with that one in which it has the same kinematic viscosity
than the heavier fluid slab (ν1 = ν2). The effect of the light
fluid viscosity is more pronounced for the largest values of the
dimensionless perturbation wave number κ , where the growth
rate reaches the asymptotic value and it becomes independent
of α.

C. Viscous layer atop a lighter viscous fluid
with surface tensions

To better appreciate the combined effects of viscosity and
surface tension in a fluid slab accelerated by a semi-infinite
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FIG. 4. Dimensionless growth rate σ as a function of the dimen-
sionless perturbation wave number κ when both fluids are viscous
(ν1 = ν2), and the lighter fluid is irrotational. (a) Comparison with
exact rotational theory (Chandrasekhar) for the case of two semi-
infinite fluids for several Atwood numbers AT ; (b) Comparison with
the case of an ideal light fluid (ν1 = 0) for several thicknesses α = k0h

of the heavy layer.

fluid, let us first to briefly summarize the simpler case in which
both fluid are inviscid and with surface tensions Ta and Tb at
the interfaces y = 0, and y = −h, respectively. This case was
already considered by Mikaelian for the more general situation
including another ideal fluid above the layer (ρ3 �= 0) [44]. In
the present case, the perturbation of the normal velocities can
be written as follows:

δv2y = (A+eky + A−e−ky) sin kx; −h � y � 0, (45)

δv2y = B−e−ky sin kx; −h � y � 0. (46)

Then, the boundary conditions at y = 0 are

B− = A+ + A− = γ ξa, (47)

γ 2ρ1

k
ξa + γρ2

k
(A+ − A−) = (ρ2 − ρ1)gξa − k2Taξa, (48)

and, at y = −h, we have

A+e−kh + A−ekh = γ ξb, (49)

γρ2

k
(A+e−kh − A−ekh) = ρ2gξb + k2Tbξb. (50)

By solving the system of Eqs. (47)–(50), the following bi-
quadratic equation is obtained [44]:

c1γ
4 + c2γ

2 − c3 = 0, (51)

where

c1 =
(

1 − ρ1

ρ2

)(
1 + ρ1

ρ2
coth kh

)
, (52)

c2 = k3

(
Tb

ρ2
+ Ta

ρ2 − ρ1

)
coth kh

+ ρ1

ρ2 − ρ1

(
kg + k3Tb

ρ2

)(
1 + ρ1

ρ2
coth kh

)
, (53)

c3 =
(

kg + k3Tb

ρ2

)(
kg − k3Ta

ρ2 − ρ1

)
. (54)

Equations (51)–(54) show the well known fact that the
surface tension Ta of the interface at y = 0 determines a cutoff
wave number above which the system is stable, and that it is
independent of the heavy layer width:

kc =
√

(ρ2 − ρ1)g

Ta

. (55)

We will see that this value of kc is not altered by the presence
of the viscosities.

By simple inspection of Eqs. (48) and (50) we observe
that surface tensions at both interfaces can be included in our
more general problem by performing the following changes in
Eqs. (26) and (27), at y = 0 and y = −h, respectively:

g → g − k2Ta

ρ2 − ρ1
; y = 0, (56)

g → g + k2Tb

ρ2
; y = −h. (57)

With these transformations, in Eq. (37) for the instability
growth rate, we have to take

MT a = 1 + Saκ
2 ; Sa =

√
k0

g

Ta

ρ2ν2
, (58)

MT b = κ3(Sa + Sb) ; Sb =
√

k0

g

Tb

ρ2ν2
. (59)

In Figs. 5(a)– 5(c) we have represented the growth rate as
a function of the perturbation wave number for several values
of the dimensionless fluid slab thickness α, and for different
values of the Atwood number and of the dimensionless pa-
rameters Sa and Sb that determine the relative weight of the
surface tension with respect to the viscous effects. The results
are shown for a typical case with ν1 = ν2 (same kinematic
viscosities). For comparison, we also show the corresponding
growth rates for the case in which both fluids are inviscid, and
for the case in which only the lighter fluid is inviscid.
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FIG. 5. Dimensionless growth rate σ as a function of the di-
mensionless perturbation wave number κ for several values of the
dimensionless thickness α = k0h of the heavy fluid layer, and of the
dimensionless surface tensions Sa and Sb. Comparisons with the cases
of two ideal fluids (ν1 = ν2 = 0), and of a light ideal fluid (ν1 = 0,
ν2 �= 0). (a) AT = 0.4, Sa = 15, Sb = 150; (b) AT = 0.4, Sa = 5,
Sb = 45; (c) AT = 0.25, Sa = 0.2, Sb = 0.4.

As a general feature the viscosity of the lighter fluid beneath
the viscous layer has, in relative terms, very little effect on
the growth rate. This is essentially because the effects of the
semi-infinite lighter fluid viscosity are more notorious for the

largest perturbation wave numbers, which are stabilized by the
presence of the surface tension at the interface y = 0. This
behavior is certainly more marked for the largest Atwood
numbers for which the general role of the lighter fluid is
diminished.

Therefore, the dominant viscous effects are, in general,
linked to the viscosity of the heavier fluid layer. That is, the
finite thickness of this layer enhance the effectiveness of the
heavier fluid viscosity for reducing the instability growth rate.
Such effects are, as in the previous cases, more significant for
the largest perturbation wave numbers, close to the cutoff. On
the other hand, as it could be expected, the role of viscosity is
reduced for the largest values of Sa and Sb.

1. Comparison with experiments in Ref. [54]

The situation studied in this subsection has been recently
considered experimentally by Adkins et al. [54]. They have
performed very singular experiments with Newtonian fluids in
a three layer system. One of these experiments corresponds to
the case with ρ3 = 0 that we are studying and, therefore, we
can compare their experimental results with the present theory.

Actually, in the absence of a more complete theory as
the presented in this work, the authors have compared their
results with the inviscid theory by Mikaelian [44], which
includes surface tension. However, they did not find a good
quantitative agreement, and it was attributed to the viscosity
of the involved fluids, not included in the Mikaelian’s theory.
In an attempt to present the results in a manner that hopefully
could be independent of the fluid viscosities, they normalized
the experimental results for the case of a finite thickness layer,
with those ones corresponding to two semi-infinite fluids.
These normalized experimental results were compared with the
normalized theoretical results by using the Mikaelian’s theory,
and a good agreement was found, although no justification was
given for such a procedure.

The present theory including viscosities and surface ten-
sions does not provide any indication that the normalization
procedure adopted in Ref. [54] could make the results indepen-
dent of the fluid viscosities. Except, of course, for the trivial
case in which viscosities are not relevant. In Figs. 6(a) and 6(b)
we have represented the growth rate σ as a function of the
perturbation wave number κ , for AT = 0.288, Sa = 15.91, and
Sb = 141.4, that correspond to the experimental conditions in
Ref. [54] (ρ1 = 773 kg/cm3, ρ2 = 1398 kg/cm3, Ta = 3.5 ×
10−3 N/m, Tb = 31.1 × 10−3 N/m, μ1 = 3.26 × 10−3 Pa s,
μ2 = 6.24 × 10−3 Pa s), and for α = 7.897, α = 15.794,
respectively, corresponding to the two fluid slab thicknesses
used in the experiments (h = 1 mm, and h = 2 mm). The
results for α � 1 are also shown, as well as the corresponding
cases for inviscid fluids (dotted lines). The experimental results
are represented with full dots.

The two things to be noticed are that: (a) in agreement with
the previous discussion, there are no significant differences
between the inviscid theory and the present one including
viscosities, for the relatively small perturbation wave numbers
k considered in the experiments (1.257 mm−1, 0.419 mm−1,
0.314 mm−1, 0.251 mm−1); (b) as reported in Ref. [54] the
theoretical values of the growth rate are larger than the ones
observed in the experiments (around 20–25%). The first issue
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FIG. 6. Comparison of the present theory for two viscous fluids
with surface tensions (full lines), with the experimental results (dots)
of Ref. [54]. (a) α = 7.897 (h = 1 mm); (b) α = 15.794 (h = 2 mm).
Results for the cases of two ideal fluids (dotted lines), and two semi-
infinite fluids are also shown (α � 1).

certainly explains that the normalization with the growth rates
values for α � 1 may agree with the experimental results,
because in the range of perturbation wave numbers considered,
viscosities have no significant effects.

However, the second issue cannot be explained. Perhaps,
the fact that the normalized theoretical results agree with the
experiments while the absolute values differ in more than a
20% in a range in which viscosity seems to play a not relevant
role, may indicate the possibility of some systematic error in
the measurements, the effects of which are canceled when the
results are normalized with the corresponding growth rates for
α � 1.

III. CONCLUDING REMARKS

We have presented the linear theory of the incompressible
RTI occurring when a semi-infinite viscous fluid pushes and
accelerates a heavier viscous fluid layer of finite thickness h,
including the effects of the surface tension on both interfaces
and considering that the top interface is a free surface. This

is the situation of interest in most of the experiments on
high energy density physics and, in particular, in the design
of advanced targets for inertial confinement fusion that use
high density carbon or beryllium as ablator materials. The
internal microstructure due to the polycristalline nature of
such materials, together with the low density of the ablated
corona does not allow to take advantage of their solid prop-
erties [51]. Therefore, the ablator must be melted by the
first shock to avoid excessive seeding of the hydrodynamic
instabilities [55–57].

It is found that when the effect of the surface tension is not
dominant, there are two competing mechanisms that regulate
the dependence of the instability growth rate in terms of the
thickness of the heavy layer. Each one of such mechanisms
prevail in an extreme value of the Atwood number. For AT = 1
the growth rate is a decreasing function of the layer thickness,
whilst the opposite is observed for AT � 1. For intermediate
values, the first behavior is ruling for large wave numbers κ and
the second one for the smallest values of κ . This is because the
viscosity becomes, in general, less effective for reducing the
growth rate as thinner is the heavy layer. Therefore, the former
behavior becomes weaker when the surface tension effects are
dominant.

The viscosity of the semi-infinite lighter fluid is relatively
less effective for reducing the growth rate than the viscosity
of the heavier fluid layer, and since its effects are more
notorious for the largest wave numbers κ , its influence becomes
diminished when surface tension, which stabilizes such wave
numbers, is present.

The theory can be applied to recent experiments reported
in Ref. [54], and it shows that in the range of the ex-
perimental perturbation wave numbers, the growth rate is
mainly determined by the surface tensions at both interfaces
with a minor effect of the fluid viscosities. This certainly
explains that the normalization of the experimental results
with the corresponding growth rates for two semi-infinite
fluids is in agreement with the normalized theoretical results
by Mikaelian [44] for ideal fluids. But it could indicate that
such a normalization procedure may have canceled eventual
systematic errors in the experiment rather than the viscosity
effects.

For applications to the design of advanced targets for
inertial confinement fusion it would be necessary to know
the mechanical properties of melted solids (surface tensions
and viscosities) under the extremely high strain rates probably
present during the target implosion. In this regards the present
theory is also of relevance for the design of experiments using
RTI as a tool for assessing such properties in a similar manner
as it has been done for solid strength measurements at high
strains and strain rates [35,36,39].
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