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Marangoni instability in a thin film heated from below: Effect of nonmonotonic dependence
of surface tension on temperature
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We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and
separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation
of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and
oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of
linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling
k ∼ (Bi)1/2, where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate
that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a
certain range of the dimensionless parameters, viz., Biot number (Bi), Galileo number (Ga), and inverse capillary
number (�). Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on
the stability of the system and identify the critical values of these parameters above which instability initiates in
the liquid layer.
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I. INTRODUCTION

Marangoni convection in a fluid layer, which finds appli-
cations in areas like thin film evaporators, crystal growth,
phase separation process, etc., has been a focus of interest
for researchers for the past few decades [1–3]. Originating
from the variation of surface tension of fluids, this convec-
tion phenomenon is typically encountered in microfluidic
systems as well [4–6]. Albeit both the Marangoni and the
Bénard (induced by buoyancy) convection can occur in a
heated liquid layer, several investigations reveal that for a
sufficiently thin layer, Marangoni convection predominates
over the Bénard convection [7–10] attributed primarily to the
dominance of thermocapillarity over the buoyancy effect. Due
to the involvement of the surface effects (surface tension)
rather than the volumetric ones (buoyancy), such convection
phenomenon can even occur in the microgravity environment
as demonstrated by previous researchers in this field [11–14].
However, when both the thermocapillary and buoyancy effects
are present together, the phenomenon is collectively called the
“Marangoni-Bénard” convection as reported in a number of
studies [15–18].

Surface tension is a property of liquids that can vary
with temperature, concentration, electrochemical potential,
etc. For a pure liquid, the surface tension is a sole function
of temperature, whereas for binary fluids, surface tension can
vary with both the temperature and concentration of the fluid
[19–21]. Therefore, for pure liquids, the Marangoni convection
is induced under the sole influence of thermocapillary effect,
while, for binary fluids, such convection process occurs by the
combined action of thermocapillary and solutocapillary effects
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[22–24]. Several experimental investigations reported in the
literature suggest that, for most of the fluids, surface tension
has a linear relationship with temperature. With an increase
in temperature, the surface tension of such fluids decreases
monotonically [25]. As such, the literature is rich with the
analysis of Marangoni convection for such kind of fluids
[9,26,27]. Another important aspect is the nonlinear variation
of surface tension with temperature. In this context, we would
like to mention here that experiments carried out following
well-developed methods reveal that for a certain class of fluids,
surface tension varies nonmonotonically with temperature.
This particular behavior of surface tension is demonstrated by
fluids like long chain aqueous solutions of alcohol, water-oil-
surfactant systems, nematic liquid crystals, ionic liquids, etc.
[28–33]. These fluids are frequently called “self-rewetting”
fluids due to their unique behavior in the boiling process
[34]. Several investigations have revealed that such fluids
enhance the heat transfer rate in thermal management systems,
especially in heat pipes [35–37]. While a series of papers
was devoted to the Marangoni convection in a liquid layer
with linear dependency of surface tension with temperature
[9,27,38,39], considering the nonmonotonic behavior of sur-
face tension with temperature, a few studies on Marangoni
convection are available in the literature as well [40–42].

In the study of Marangoni convection in a heated liquid
layer resting atop a substrate, generally two cases are con-
sidered: conducting and insulating substrates for temperature
perturbations [9,43]. For the conducting case, a fixed liquid
temperature prevails at the substrate, whereas for the insulating
case, the normal component of heat flux remains fixed at the
substrate. For both the conducting and insulating substrates
(for temperature perturbations), two modes of instability can
occur in a liquid layer, viz., the monotonic mode (stationary
convection) and the oscillatory mode (overstability) [44–46].
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For a liquid layer heated from below, the monotonic mode
of instability was first detected by Pearson [9] for both the
conducting and insulating substrates. Takashima [47] showed
that, for a conducting substrate, an oscillatory mode of insta-
bility can also emerge in the liquid layer when heated from
above. Recently, for the long-wave perturbations, Shklyaev
et al. [48] detected the oscillatory mode of instability for
a liquid layer resting on an insulating substrate and heated
from below. Extending this analysis Samoilova and Lobov
[49] discovered the oscillatory modes of instability for the
short-wave perturbations. To summarize, the reported studies
as mentioned above are focused on the Marangoni convection
either in a pure liquid layer or in binary fluids heated from
above or below, mainly taking a linear variation of surface
tension with temperature into account in the analysis. In
particular, the above-mentioned studies concentrated both on
the long-wave as well as short-wave oscillatory modes of
instability associated with Marangoni convection of a liquid
layer resting either on a conducting or an insulating substrate
for temperature perturbations. Moreover, it is worth noting
that the investigation of long-wave Marangoni convection in a
liquid layer lying atop a substrate of low thermal conductivity
is generally performed under the well-established asymptotic
limits of k ∼ (Bi)1/2 and k ∼ (Bi)1/4, where k and Bi are,
respectively, the wave number of perturbation and Biot number
of the free surface [23,50]. Albeit a significant advancement in
investigating the Marangoni instability of a heated liquid layer
has been made by the research community, the analysis of such
kind of instabilities for both the long-wave and short-wave
disturbances considering the nonlinear variation of surface
tension with temperature is insufficient to date essentially to
explore the physical insights involved with the underlying
thermohydrodynamics.

In this study, we have executed an analysis on the Marangoni
convection in a heated liquid layer for which surface tension
varies nonmonotonically with temperature. Considering the
effect of gravity, here, we have theoretically addressed the
instabilities of such a fluid layer subjected to both the long-
wave and short-wave perturbations.

The paper is organized as follows: We formulate the prob-
lem in detail in Sec. II. In Sec. III, we analyze the problem for
the long-wave perturbations. Also, Sec. III A is continued with
the discussion as follows: Using lubrication approximation and
following the scaling k ∼ (Bi)1/2, we demonstrate both the
monotonic and oscillatory modes of instability in the heated
liquid layer. The problem is analyzed for short-wave perturba-
tions in Sec. III B by demonstrating both the monotonic and
oscillatory instability modes. Finally, we make an effort in
Sec. IV to summarize the principal conclusions obtained from
this analysis.

II. PROBLEM FORMULATION

We consider a plane incompressible liquid layer with
infinite extent in the longitudinal directions x and y, and having
an unperturbed height H in the gravitational field g as shown in
Fig. 1. The liquid layer lies atop a horizontal solid substrate of
low thermal conductivity and is bounded above (at the z = H

plane) by a deformable free surface. The entire liquid layer
is heated uniformly from below so that a constant vertical

FIG. 1. Schematic of the physical system under consideration
with the imposed boundary conditions. The deformable interface is
located at z = h(x,y,t). A constant heat flux provided at the solid
substrate yields the temperature gradient –A at the z = 0 plane.

temperature gradient −A prevails at the z = 0 plane. The liquid
layer remains at rest up to a certain critical value of A, above
which the Marangoni convection starts appearing in it due to
the variation of surface tension (σ ) with temperature (T ). We
assume the unperturbed layer thickness H to be sufficiently
small so that the effect of buoyancy can be neglected as com-
pared to the Marangoni effect. In this analysis, we consider the
Marangoni convection to be induced by a nonlinear variation
of surface tension with temperature, dictated by the quadratic
relationship σ = σo − σT (T − T∞)2/2 [28]. However, except
for surface tension, all other thermophysical properties, viz.,
the thermal conductivity κ , viscosity μ, and density ρ of the
liquid layer are assumed to remain invariant with temperature.
We further consider the heat flux from the free surface to be
governed by Newton’s law of cooling.

A. Governing equations

For this surface tension driven convection process, the
governing transport equations and their associated boundary
conditions can be represented in dimensional form by the
following set of equations.

Continuity equation:

∇ · v = 0. (1a)

Momentum equation:

vt + (v · ∇)v = −ρ−1∇p + υ∇2v − gk. (1b)

Energy equation:

Tt + v · ∇T = α∇2T . (1c)

In Eqs. (1a)–(1c), the subscript denotes the partial derivative
with respect to the corresponding variable, v(u,w) is the
velocity field (u is the two-dimensional projection of velocity
vector onto the x−y plane and w is the z component of
velocity), p is the pressure field, and T is the temperature field.
The terms ρ,υ,α in the above equations are, respectively, the
fluid density, kinematic viscosity, and thermal diffusivity, while
g represents the gravitational field. Moreover, k is the unit
vector in the z direction, ∇ ≡ (∂x,∂y,∂z), and t represents time.

The boundary conditions at the fluid-solid interface (i.e.,
at the z = 0 plane) are, respectively, the no-slip condition for
velocity and a specified heat flux condition.

z = 0 : v = 0,Tz = −A. (2a)
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At the free surface [i.e., at the z = h(x,y,t) plane], the boundary conditions represent, respectively, the kinematic boundary
condition, heat transfer governed by Newton’s law of cooling and the stress balance equation (both normal and tangential stress).
Below we write these conditions as

z = h(x,y,t) : ht + u · ∇h = w, (2b)

q(T − T∞) = −κ(n · ∇T ), (2c)

−2μ
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(
1 + h2

x + h2
y

)3/2 + σ
[
hxx

(
1 + h2

y

) − 2hxhyhxy + hyy

(
1 + h2

x

)]
, (2d)

2(wz − ux)hx − (vz + wy)hxhy − (uy + vx)hy + (uz + wx)
(
1 − h2

x

) =
(√
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(
1 − h2

y

) =
(√

1 + h2
x + h2

y/μ
)dσ
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. (2f)

In Eqs. (2a)–(2f), q represents the rate of convective heat
transfer from the liquid to the ambient gas phase held at fixed
temperature T∞, κ is the thermal conductivity of the liquid,
μ is dynamic viscosity, and n = (k − ∇h)/

√
1 + (∇h)2 is the

outward unit vector at the gas-liquid interface in the normal
direction.

In this study, since our aim is to investigate the effect of
nonlinear variation of surface tension (with temperature) on the
onset of Marangoni convection, we therefore use the following
relationship to represent such variation between the surface
tension and the fluid temperature [28]:

σ = σo − σT (T − T∞)2
/

2. (3)

In Eq. (3), σo is the surface tension at temperature T∞. Note
that such a nonlinear relationship between σ and T exists for a
large class of liquids and can be found in the literature as well
[28–30].

B. Base state

At equilibrium condition, the system under present con-
sideration corresponds to a no-flow condition, indicating a
laterally uniform base state. This conductive state of the system
can be represented as follows:

ho = H, vo = 0, po = ρg(H − z),
(4)

To = A(H − z) + κA

q
+ T∞.

Before we proceed to investigate the stability of this base
state of the system with respect to long-wave and short-wave
perturbations, we next try to cast the governing equations

and the associated boundary conditions in a dimensionless
framework as discussed in the forthcoming sections.

C. Dimensionless equations

We now make an effort to nondimensionalize the gov-
erning equations and their associated boundary conditions
represented by Eqs. (1) and (2). In order to do so, we define
the following set of dimensionless variables:

(x̄,ȳ,z̄) = (x,y,z)

H
, t̄ = t

H 2/α
, (ū,v̄,w̄) = (u,v,w)

α/H

p̄ = p

ρνα/H 2
, T̄ = T − T∞

AH
.

Note that, to compare the results of this analysis with
that reported in the literature, here we have adopted the
same scalings and notations that were used in the earlier
studies of Marangoni convection [48,49]. Moreover, for the
convenience of presentation, we drop the overbar sign from all
the nondimensional variables. Hence the governing equations
in dimensionless form read as

Continuity equation:

∇ · v = 0. (5a)

Momentum equation:

Pr−1(vt + v · ∇v) = −∇p + ∇2v − Gak. (5b)

Energy equation:

Tt + v · ∇T = ∇2T . (5c)

The associated boundary conditions become

z = 0: v = 0, TZ = − 1, (6a)

z = h(x,y,t): ht + uhx + vhy = w, (6b)

(n · ∇T ) = − BiT , (6c)
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) = − MaT Ty
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1 + h2

x + h2
y. (6f)

D. Dimensionless base state

In dimensionless form, the base state [see Eq. (4)] can be
represented by the following relationships:

ho = 1, vo = 0, To = 1 − z + 1

Bi
, po = Ga(1 − z). (7)

Note that the boundary value problem represented by
Eqs. (5) and (6) is characterized by the following sets of
dimensionless parameters,

Bi = qH

κ
, Ga = gH 3

υα
, Ma = σT A2H 3

ρυα
,

Pr = υ

α
, � = σoH

ρυα
,

which are, respectively, the Biot number, Galileo number,
Marangoni number, Prandtl number, and dimensionless sur-
face tension (or inverse capillary number). Here, it is important
to note that except for the Marangoni number (Ma), all other
nondimensional parameters are defined in the same manner
as that in Shklyaev et al. [48] and Samoilova and Lobov
[49]. However, for this analysis, since we have considered
the surface tension to vary nonlinearly with temperature, we
therefore define Ma in a slightly different manner and name
it the quadratic Marangoni number. Compared to the linear
Marangoni number (defined as MaL = σT AH 2/ρυχ for fluids
whose surface tension varies linearly with temperature) the
important feature of this quadratic Marangoni number is that,
for σT > 0, the latter is always a positive quantity (and hence
independent of the direction of heating). However, MaL can
be either positive or negative depending on the direction of
heating (even for σT > 0).

We now proceed to study the stability of this base state
against the long-wave and short-wave perturbations, as dis-
cussed systematically in the forthcoming sections.

III. RESULTS AND DISCUSSION

A. Long-wave stability theory

1. Lubrication approximation

In this section, we study the stability of the base state
[see Eq. (7)] against the long-wave disturbances. In order
to analyze the evolution of such large scale flows, here we
use the lubrication approximation. As such, following this
approximation, we rescale the coordinates, time, and velocity

as given below:

X = εx, Y = εy, Z = z, τ = ε2t,
(8)

u = εU, v = εV, w = ε2W.

where ε is a small parameter (0 < ε � 1) and can be consid-
ered as the ratio of H to the longitudinal length scale.

It is important to note that, since the present study is con-
cerned with a liquid layer with poorly conducting boundaries,
therefore the magnitude of the Biot number (Bi) must have to
be very small (Bi < 1). Moreover, throughout the analysis, we
have considered the inverse capillary number (�) to be large
[24]. Thus, we can rescale both Bi and � in the manner as
given below:

Bi = ε2b, � = ε−2ς. (9)

It may be noted that the scaling adopted in Eq. (9) differs
from the conventional scaling Bi = O(ε4), which is typically
used in the study of long-wave Marangoni convection of a
liquid layer with insulating boundaries [22,51]. A different
scaling is employed in this analysis accounting for the fact
that the conventional scaling becomes inadequate at certain
situations as demonstrated by Podolny et al. [52]. Accordingly,
in this analysis, we deal with the intermediate asymptote
between the conventional long-wave mode Bi = O(ε4) and
the case of finite Bi, that corresponds to b → 0 and b → ∞,
respectively. However, it should be mentioned here that, in
the present study, we do not impose any restriction on the
magnitude of the Galileo number (Ga). Depending upon the
strength of the gravitational field, fluid layer thickness, and its
properties, Ga can vary from ultralow to a very high value.
For instance, under normal gravity condition and for a 0.1-
mm-thick layer of water-based solution Ga becomes O(102),
while in microgravity condition, where g = O(10−2 m/s2),
Ga ∼ O(10−1).

We now expand all the dependent variables of the problem
in a power series with respect to ε2 as follows:

(U,V,W ) = (U0,V0,W0) + ε2(U1,V1,W1) + · · · , (10a)

p = P0 + ε2P1 + · · · , (10b)

T = −Z + 1

ε2b
+ T0 + ε2T1 + · · · . (10c)

It may be noted here that, in Eq. (10), we have not presented
an expansion for h. This is because the scaling provided by
Eq. (8) is sufficient to ensure a slow variation of h, which
further provides a small amplitude of surface deformation [53].
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A comparison between Eqs. (7) and (10) reveals that the base
state of the system corresponds to P0 = po, T0 = 1.

Substituting the rescaled fields [Eqs. (8–(10)] into Eqs. (5)
and (6), and applying the conventional technique of lubrication
approximation, we obtain the following set of equations:

U0X + V0Y + W0Z = 0, (11a)

P0X = U0ZZ, P0Y = V0ZZ, P0Z = − Ga, (11b)

T0ZZ = 0, (11c)

at Z = 0: U0 = V0 = W0 = 0,T0Z = 0, (12a)

at Z = h(X,Y,τ ): W0 = hτ + U0hX + V0hY , T0Z = 0,

U0Z = −Ma

(
T0 + 1

ε2b
− h

)
(T0X − hX),

(12b)

V0Z = −Ma

(
T0 + 1

ε2b
− h

)
(T0Y − hY ),

−P0 = ς (hXX + hYY ).

The solutions of Eqs. (11a)–(11c), subjected to the boundary
conditions as given in Eqs. (12a) and (12b), can be written as

U0 = 1

2
Z(Z − 2h)∂X[Gah − ς∇2h]

− MaZ

(
θ + 1

ε2b
− h

)
(θX − hX), (13a)

V0 = 1

2
Z(Z − 2h)∂Y [Gah − ς∇2h]

− MaZ

(
θ + 1

ε2b
− h

)
(θY − hY ), (13b)

W0 = 1

2
Z2∇ ·

[
1

3
(3h − Z)∇� + Ma	

]
, (13c)

P0 = Ga(h − Z) − ς∇2h, (13d)

T0 = θ (X,Y,τ ), (13e)

where � = Gah − ς∇2h and 	 = (θ + 1
ε2b

− h)∇(θ − h).
In Eqs. (13a)–(13e), ∇ ≡ (∂X,∂Y ,0) is the two-dimensional

projection of the gradient operator onto the X−Y plane. Here,
the base state, which corresponds to the motionless state of the
liquid layer, is given by

h = 1, θ = 1. (14)

In what follows, we study the stability of this base state
of the system with respect to infinitesimal perturbations as
discussed in the subsequent sections.

2. Amplitude equations

In order to obtain the first amplitude equation, we use the
condition hτ = −∇.

∫ h

0 U0dZ which governs the evolution of
the fluid layer thickness. This condition gives the following

expression as

hτ = ∇ ·
[

1

3
h3∇� + 1

2
Mah2	

]
. (15)

The first term on the right-hand side of Eq. (15) takes into
account the damping effect of gravity as well as the surface
tension on the surface deflection of the liquid layer, while
the second term represents the influence of thermocapillarity
induced flow on the liquid layer.

It may be mentioned here that the second amplitude equa-
tion is obtained from the heat transfer equation. Following the
first order expansion of Eq. (5c) and the associated boundary
conditions [Eqs. (6a) and (6c)], we get the following set of
equations as described below:

T1ZZ = θτ + U0T0X + V0T0Y − ∇2θ − W0, (16)

at Z = 0: T1Z = 0, (17a)

at Z = h(X,Y,τ ): T1Z = ∇θ · ∇h − 1
2 (∇h)2 − b(θ − h).

(17b)

Integration of Eq. (16) subjected to the boundary conditions
as given in Eqs. (17a) and (17b) provides the second amplitude
equation. Below we write the second amplitude equation as

hθτ = ∇ · (
1
8h4∇� + 1

6 Ma	h3
)

+ (
1
3h3∇� + 1

2 Ma	h2
) · ∇(θ − h)+∇ · (h∇θ )

− 1
2 (∇h)2 − b(θ − h). (18)

The first two terms on the right-hand side of Eq. (18) take
into account the advective transport of heat by the fluid; the
third term represents the heat conductivity in the longitudinal
directions, while the last two terms take care of the heat loss
from the free surface. As such, the set of amplitude equations
[Eqs. (15) and (18)] governs the nonlinear dynamics of the
long-wave perturbations.

3. Linear stability analysis

The amplitude equations, given in Eqs. (15) and (18) are
nonlinear in h and θ . We here make an effort to linearize these
equations using small perturbation analysis. Substituting the
perturbed fields, viz., h = 1 + δ and θ = 1 + φ, and lineariz-
ing the equations with respect to small disturbances we get the
following expressions as

δτ = ∇2

[
1

3
(Gaδ − ς∇2δ) + 1

2

Ma

ε2b
(φ − δ)

]
, (19a)

φτ = ∇2

[
φ + 1

8
(Gaδ − ς∇2δ) + 1

6

Ma

ε2b
(φ − δ)

]
− b(φ−δ).

(19b)

Now, representing the perturbation fields to be proportional
to exp(iKX + λτ ) where K and λ(= λr + iλi) are, respec-
tively, the dimensionless wave number and complex growth
rate of the perturbations, we arrive at the following dispersion
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relation as mentioned next.

λ2 + (λ/3)[3b + K2(3 + Ga+ςK2 − Ma/ε2b)]

− (K2/144ε2b)[MaK2(72 + Ga + ςK2)]

+ (K2/3)[(b + K2)(Ga + ςK2)] = 0. (20)

It may be noted that Eq. (20) possesses both the real and
complex solutions. The real solution of Eq. (20) represents
the monotonic instability, whereas the complex solution corre-
sponds to the oscillatory instability. We next discuss both kinds
of (monotonic and oscillatory) instabilities systematically in
the subsequent sections.

4. Monotonic instability

We first start with the case of monotonic instability. At the
monotonic instability threshold, the disturbance growth rate
(λ) vanishes [43]. Substituting λ = 0 in Eq. (20), we arrive
at the relationship that determines the monotonic instability
boundary as

Mam = 48ε2b(b + K2)(Ga + ςK2)

K2(72 + Ga + ςK2)
. (21)

In terms of the unscaled wave number k(= εK), Biot
number (Bi), and inverse capillary number (�), Eq. (21) can
be reproduced in the following form as

Mam = 48Bi(Bi + k2)(Ga + �k2)

k2(72 + Ga + �k2)
. (22)

For a nondeformable free surface (i.e.,for Ga + �k2 
 72)
at large k, Eq. (22) reduces to the following:

Mam = 48Bi. (23)

5. Oscillatory instability

The oscillatory instability boundary is determined by the
condition where the disturbance growth rate (λ) attains a
purely imaginary value λ = iλi . Here, λi is the oscillation
frequency and is a real quantity. The neutral stability curve
for the oscillatory instability mode is given by the following
expression as

Mao = ε2b

(
3 + 3b

K2
+ Ga + ςK2

)
, (24)

and the oscillation frequency is determined by the relation

λi = K2
√

(72 + Ga + ςK2)(Mao − Mam)
/

144Bi. (25)

For the unscaled wave number k(= εK), Biot number (Bi),
and inverse capillary number (�), we can rewrite Eq. (24) as

Mao = Bi

(
3 + 3Bi

k2
+ Ga + �k2

)
. (26)

It is important to mention here that the oscillatory mode of
instability takes place only when Mao(k) < Mam(k).

We present the neutral stability curves for the long-wave
monotonic and oscillatory modes of instability in Fig. 2.
For numerical calculations, consistent with the assumptions
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FIG. 2. Neutral stability curves for the long-wave monotonic
(solid lines) and oscillatory (dashed lines) modes at Pr = 1, Ga = 10,
and � = 1000. Panel (a) corresponds to Bi = 0.05; (b) corresponds
to Bi = 0.5. The inset in (a) shows the zoomed-in view of the stability
curve for the monotonic mode of instability.

considered in the analysis, we use the following range for the
parameters Bi, �, and Ga [49]:

O(10−3) � Bi � O(10−1), O(102) � � � O(104),

O(1) � Ga � O(10).

Moreover, throughout the analysis, we have taken following
the values used in several studies in this field [24,54] Pr ∼
O(1), which is consistent with the typical values for most of
the fluids as well.

From Fig. 2 it can be observed that, for both the monotonic
and oscillatory modes of instability, there exists a minimum
Marangoni number only above which the instability first
appears in the liquid layer. Henceforth, we call this Marangoni
number as the critical Marangoni number (Mac) and the distur-
bance wave number (k) associated with this Mac as the critical
wave number (kc). Figures 2(a) and 2(b) also demonstrate
the effect of Biot number (Bi) on the stability of the system.
A closer observation of Figs. 2(a) and 2(b) reveals that the
critical Marangoni number (Mac) of the system increases with
an increase in the magnitude of the Biot number (Bi). This
observation signifies that the higher values of Bi enhance the
stability of the system. It is important to note that, in this
analysis, Bi characterizes the heat loss from the free surface of
the liquid layer. Therefore, the higher is the magnitude of Bi,
the higher will be the heat transfer rate from the free surface of
the liquid. This increased heat transfer rate from the free liquid
surface increases the stability of the system for higher values
of Bi as witnessed in Figs. 2(a) and 2(b). Moreover, Fig. 2
further demonstrates that for Bi = 0.05 the oscillatory mode
is critical, whereas for Bi = 0.5 the monotonic mode becomes
critical. A detailed discussion on the variation of the instability
modes with Biot number is provided later in the context of the
discussion of Figs. 6 and 7.

For finite values of k, Eq. (22) indicates that the neutral
stability curve for the long-wave monotonic mode has a
minimum Marangoni number (Ma = Mac) when Bi� < 72.
This is also confirmed from the inset of Fig. 2(a). The critical
wave number (kc) and the critical Marangoni number (Mac)
corresponding to this minimum of the neutral stability curve
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are given by Eqs. (27) and (28), respectively.

kc,m =
√

BiGa� +
√

Bi2Ga2�2 + BiGa�(72 + Ga)(72 − Bi�)

�(72 − Bi�)
, (27)

and

Mac,m = 48Bi[� + Bi�(72 − Bi�)][Ga(72 − Bi�) + �]

�[(72 − Bi�)(72 + Ga) + �]
, (28)

where � = BiGa� +
√

Bi2Ga2�2 + BiGa�(72 + Ga)(72 − Bi�).

However, for Bi� > 72, the minimum of this neutral
stability curve occurs at Mac = 48Bi in the limit of k → ∞ as
can be verified from Fig. 2(b).

The neutral stability curve for the long-wave oscillatory
mode also presents a minimum as can be observed from Fig. 2.
Below, in Eq. (29), we provide the critical Marangoni number
(Mac,o) and disturbance wave number (kc,o) corresponding to
this minimum of the neutral stability curve.

Mac,o = Bi
(

3 + Ga + 2
√

3Bi�
)
, kc,o =

(
3Bi

�

)1/4

.

(29)

The variations of the critical Marangoni number and the
critical wave number for both the monotonic and oscillatory
modes of instability with the dimensionless parameters Bi, Ga,
and � are presented in Sec. II B.

We demonstrate, in Fig. 3, the effect of Galileo number
(Ga) on the stability of the system. In this analysis, since g is
nondimensionalized as Ga, therefore Fig. 3 basically addresses
the effect of gravity on the stability of the liquid layer. From
Fig. 3, it can be observed that increasing the magnitude of Ga
increases the stability of the system. This is because of the
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0

10

20

30

40

k

M
a

LM LO
LM LO

Unstable

2

1 Stable

Stable

FIG. 3. Neutral stability curves for the long-wave monotonic
(solid and dash-dotted lines) and oscillatory modes (dotted and dashed
lines) for different values of Ga at Pr = 1, � = 1000, and Bi = 0.1.
Lines marked by 1 and 2 correspond to Ga = 1 and Ga = 10,
respectively. The inset shows the zoomed-in view of the stability curve
at higher wave number.

fact that, for higher values of Ga, the stabilizing influence of
gravity dominates over the destabilizing effect introduced in
the system by the effect of thermocapillarity, thus leading to
an enhancement in the stability of the system for higher values
of Galileo number as witnessed from Fig. 3. However, the
increasing magnitude of Galileo number reduces the range of
disturbance wave number (k) for which the oscillatory mode
is critical as can be observed from Fig. 3.

Figure 4 depicts the effect of � (inverse capillary number)
on the stability of the system under consideration in this
analysis. In this study, since � represents the nondimensional
surface tension, therefore Fig. 4 essentially demonstrates the
effect of surface tension on the stability of the liquid layer.
From Fig. 4 it can be observed that the increasing magnitude
of � enhances the stability of the system. We attribute this
observation to the influential role of surface tension on the
stability of the liquid layer. In this context, it may be mentioned
that the surface tension is a fluid property that tries to stabilize a
system by dampening the surface deflections. Hence, increas-
ing the magnitude of surface tension (and thus �) increases the
stability of the fluid layer by reducing the surface deformations
as can be verified from Fig. 4. However, the higher values
of � reduce the range of disturbance wave number (k) that
is also observed in Fig. 4, for which the oscillatory mode is
critical.
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FIG. 4. Neutral stability curves for the long-wave monotonic
(solid and dash-dotted lines) and oscillatory modes (dotted and dashed
lines) for different � at Pr = 1, Ga = 10, and Bi = 0.1. Lines marked
by 1 and 2 correspond to �= 1000 and �= 10 000, respectively.
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B. Short-wave stability theory

In this section, we investigate the short-wave mode of
Marangoni instability induced by the nonlinear variation of
surface tension with temperature.

1. Linear stability analysis

Here, we study the stability of the base state of the system
[see Eq. (7)] with respect to the short-wave perturbations. Since
the problem under present consideration is invariant of the
rotation of the system in the x−y plane, therefore we consider
two-dimensional infinitesimal perturbations only in the x−z

plane for analyzing the stability of the base state. Substituting
the perturbed fields v = (u,0,w), p = p0 + P , T = T0 + θ ,
and h = 1 + ξ , and linearizing Eqs. (5) and (6) with respect to
these small disturbances, we get the following set of equations:

∇ · v = 0, (30a)

Pr−1vt = − ∇P + ∇2v, (30b)

θt = ∇2θ + w, (30c)

at z = 0: v = 0, θz = 0, (31a)

at z = 1: ξt = w, P − Gaξ= − �ξxx + 2wz,

uz + wx = −Ma(θx − ξx)/Bi, θz= − Bi(θ − ξ ). (31b)

Now, utilizing the stream function relations u = ψz and
w = −ψx , we can write Eqs. (30) and (31) in the following
form:

Pr−1 ∂∇2ψ

∂t
= ∇4ψ, (32a)

θt = ∇2θ − ψx, (32b)

at z = 0: ψ = 0, ψz = 0, θz = 0, (33a)

at z = 1: ξt = − ψx,

P − Gaξ = −�ξxx − 2
∂2ψ

∂x∂z
, (33b)

ψzz − ψxx = −Ma(θx − ξx)/Bi,θz= − Bi(θ − ξ ).

Representing the perturbation fields to be proportional to
exp(−λt + ikx), where λ(=λr + iλi) and k are, respectively,
the disturbance growth rate and disturbance wave number,
Eqs. (32) and (33) become

ψiv −
(

2k2 − λ

Pr

)
ψ ′′ +

(
k2 − λ

Pr

)
k2ψ = 0, (34a)

θ ′′ + (λ − k2)θ = ikψ, (34b)

at z = 0: ψ = 0, ψ ′ = 0, θ ′ = 0, (35a)

at z = 1: λξ = ikψ, ψ ′′′ −
(

3k2 − λ

Pr

)
ψ ′

= ik(Ga + �k2)ξ,

ψ ′′ + k2ψ = − ikMa(θ − ξ )/Bi, θ ′ = − Bi(θ − ξ ).

(35b)

In Eqs. (34) and (35) the prime denotes the z derivative, and
the superscript iv represents the fourth order derivative.

2. Monotonic instability

It is mentioned earlier that, for the monotonic mode of
instability, λ = 0 at the stability border. Substituting λ = 0
in Eqs. (34) and (35) and solving for ψ and θ , we obtain the
following expressions:

ψ = a1sinh kz − a1kz cosh kz + a2kz sinh kz, (36)

θ = i

4k
[3a1kz cosh kz − 3a1 sinh kz − a1k

2z2 sinh kz + a2k
2z2 cosh kz − a2kz sinh kz + a3 cosh kz]. (37)

Note that the above solutions for ψ and θ are obtained by applying the boundary conditions at the z = 0 plane. Substituting
the boundary conditions at z = 1 into the solution of ψ and θ , and solving for Ma, we get the following expression for the neutral
stability curve:

Mam = 8kBi(Ga + �k2)(cosh k sinh k − k)(k sinh k + Bi cosh k)

(Ga + �k2)(cosh ksinh2k − 2k sinh k + k2 cosh k − k3 sinh k) + 8k5 sinh k
. (38)

It is worth noting that, for the limit k � 1, Bi ∼ k2, and � ∼ k−2, Eq. (38) resembles Eq. (22).

3. Oscillatory instability

For the oscillatory mode of instability λi 
= 0 at the stability border. Solving Eqs. (34) and (35) using the boundary conditions
at z = 0, we get the solution for ψ and θ as given below:

ψ = −c1(k1) sinh kz + c1 sinh k1z − c2 cosh kz + c2 cosh k1z, (39)
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θ = i

2λk1k2

[−2kc1k1
2 exp (−k2z) + kλc1 exp (−k2z) − 2c1k1

2k2 sinh kz + λc1kk2z cosh k1z

−2kk1c2k2 cosh kz + λc2kk2z sinh k1z + 2λk1k2c3 cosh k2z

]
. (40)

Employing the boundary conditions at z = 1 in the solution of ψ and θ , and solving for Ma, we obtain the following expression
that governs the neutral stability curve for the short-wave oscillatory mode of instability.

Mao = ℵ1ℵ4 + ℵ0ℵ1ℵ5

ℵ1ℵ6 + ℵ2ℵ8 + ℵ0ℵ1ℵ7 + ℵ0ℵ3ℵ8
. (41)

The quantities ℵ0 − ℵ8 appearing in Eq. (41) are lengthy.
For brevity in presentation we do not provide these expressions
here; rather they are defined in the Appendix of this paper.

We show in Fig. 5 the neutral stability curve for the
monotonic and oscillatory modes of instability obtained at
different Biot numbers (Bi). From Figs. 5(a) and 5(b) it can be
observed that, with increasing the magnitude of Bi, following
a similar trend with the long-wave mode, the stability of the
liquid layer also increases for the short-wave mode. A detailed
discussion on the influence of Biot number on the stability of
the system is provided earlier in the context of discussion of
Fig. 2. Moreover, Fig. 5 also compares the results between
the long-wave and short-wave stability analysis. We observe
that, for Bi = 0.05, the results of the long-wave analysis agree
well with the short-wave analysis for all the range of wave
number (k) considered in this analysis, while for Bi = 0.5,
the results between long-wave and short-wave analysis match
only for small values of k. It is worth mentioning here that the
observations as reflected in Fig. 5 show similarity with those
reported in the literature [49].

Figures 6(a) and 6(b) depict the variation of the critical
Marangoni number (Mac) and the disturbance wave number
(kc) with Biot number (Bi). It is observed that the stability
of the system increases with increasing magnitude of Bi as
indicated by an increase in Mac for higher values of Biot
number. Moreover, Fig. 6(a) further demonstrates that there
exists a particular range of Bi only within which the oscillatory
mode (for both the long-wave and short-wave perturbations)
becomes critical [see inset of Fig. 6(a)]. It is worth mentioning
that this range depends on the magnitude of both Ga and �, as
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FIG. 5. Neutral stability curves for the monotonic and oscillatory
modes of instability at Pr = 1, Ga = 10, and � = 1000. Panel (a)
crresponds to Bi = 0.05; (b) corresponds to Bi = 0.5. (a), (b) LM,
LO, SM, and SO represents the stability curves for the long-wave
monotonic, long-wave oscillatory, short-wave monotonic, and short-
wave oscillatory modes, respectively.

can be found from Figs. 7(a) and 7(b). However, outside this
range, the monotonic mode becomes critical, which is also
observed from the present figures (Figs. 6 and 7).

A closer look at Figs. 6(a) and 6(b) further reveals that
the results of the long-wave stability analysis agree well
with the short-wave analysis for small values of Bi. For the
monotonic mode of instability, this range is 0 < Bi < 0.072
corresponding to 0 < Bi� < 72. Moreover, for the monotonic
mode of instability, the critical wave number (kc) for the
long-wave approximation agrees with the short-wave analysis
in a fairly accurate manner up to the range Bi < 0.072, as
can be seen from Fig. 6(b). However, for Bi > 0.072, kc

associated with the long-wave monotonic mode grows rapidly
[see Fig. 6(b)], thus limiting the domain of applicability of
long-wave approximation.

Figure 8 demonstrates the influence of gravity (here nondi-
mensionalized as the Galileo number, Ga) on the stability of
the system for the short-wave perturbations. It can be observed
that the stability of the system increases with increasing the
magnitude of Ga, attributed primarily to the stabilizing role
of gravity on the stability of the heated fluid layer. However,
higher values of Ga reduce the range of disturbance wave
number (k) for which the oscillatory mode is critical as
witnessed in the present figure.

We depict in Fig. 9 the variation of critical Marangoni
number (Mac) and disturbance wave number (kc) with Galileo
number (Ga). From the present figure it can be observed
that, for both the long-wave and short-wave perturbations, the
stability of the system increases with increasing the magnitude
of Ga. This is indicated by an increase in Mac for higher values
of Ga. Figure 9(a) further demonstrates that the oscillatory
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FIG. 6. Variation of the (a) critical Marangoni number, and (b) the
critical wave number with Bi at Pr = 1, Ga = 10, and � = 1000. (a),
(b) LM, LO, SM, and SO represent the long-wave monotonic, long-
wave oscillatory, short-wave monotonic, and short-wave oscillatory
modes, respectively. The inset in (a) shows the zoomed-in view at
small Biot number.
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FIG. 7. Variation in the domain of oscillatory instability for (a)
� vs Bi at Pr = 1, Ga = 10, and (b) Ga vs Bi at Pr = 1, � = 1000.
Domains 1 and 2 in (a), (b) correspond to the long-wave oscillatory
(LO) and short-wave oscillatory (SO) modes, respectively.

mode (for both long-wave and short-wave perturbations) is
critical only up to a particular value of Ga(≈ 17), after which
the monotonic mode becomes critical. Since the increasing
magnitude of Ga reduces the deformability of the free surface,
this ensures the fact that for pure Marangoni convection, the
oscillatory instability occurs only for a fluid layer having a
deformable surface.

The variation of the critical wave number (kc) with Ga is
shown in Fig. 9(b). It can be observed that kc for the monotonic
mode of instability (for both the long-wave and shortwave
perturbations) increases with Ga. However, for the oscillatory
mode, kc is independent of Ga for both the long-wave and
short-wave perturbations as can be seen from Fig. 9(b). As
such, this observation can be verified by having a closer look
at Eq. (29).

Figure 10 demonstrates the effect of � (inverse capillary
number) on the stability of the system for the short-wave
monotonic and oscillatory modes of instability. Following the
similar trend with long-wave approximation (see Fig. 4), it
can be observed that the stability of the system increases with
increasing the magnitude of � for the short-wave perturbations
as well. This is due to the enhanced dampening of surface
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FIG. 8. Neutral stability curves for the short-wave monotonic
(solid and dash-dotted lines) and oscillatory mode (dotted and dashed
lines) for different values of Ga at Bi = 0.1, Pr = 1, and � = 1000.
Lines marked by 1 and 2 correspond to Ga = 1 and Ga = 10,
respectively. The inset shows the zoomed-in view of the neutral
stability curve at higher wave number.
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FIG. 9. (a) Variation of the critical Marangoni number and (b)
the critical wave number with Galileo number at Bi = 0.05, Pr = 1,
and � = 1000. (a), (b), LM, LO, SM, and SO represent the long-
wave monotonic, long-wave oscillatory, short-wave monotonic, and
short-wave oscillatory modes, respectively.

deflection by the surface tension force for higher values of �.
However, the increasing magnitude of � reduces the range of
disturbance wave number (k) for which the oscillatory mode
is critical as can be verified from Fig. 10.

We show in Figs. 11(a) and 11(b) the variation of critical
Marangoni number (Mac) and disturbance wave number (kc)
with the inverse capillary number (�). From Fig. 11(a), it
can be observed that, up to a certain critical value of �

(� = 720 corresponding to Bi� = 72), Mac associated with
the long-wave monotonic mode of instability increases, after
which it becomes independent of �. This is because, for
Bi� � 72, the neutral stability curve for the monotonic mode
of instability attains the limiting value of Mac = 48Bi [see
Eq. (23)]. However, at Bi� � 72, Mac for the short-wave
monotonic mode of instability slightly exceeds the value 48Bi
and it continues to grow marginally with �. Figure 11(a)
further reveals that, for the set of parameters considered in the
present plotting, the oscillatory mode is critical only for small
values of �. Since the increasing magnitude of � reduces the
deformability of the free surface, this further ascertains the
fact that oscillatory instability occurs only for a deformable
free surface. However, the range of � for which the oscillatory
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FIG. 10. Neutral stability curves for the short-wave monotonic
(solid and dash-dotted lines) and oscillatory modes (dotted and dashed
lines) for different values of � at Bi = 0.1, Pr = 1, and Ga = 10.
Lines marked by 1 and 2 correspond to � = 1000 and � = 10 000,
respectively.
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FIG. 11. Variation of (a) the critical Marangoni number and (b)
the critical wave number with � at Bi = 0.1, Pr = 1, and Ga = 10.
(a), (b); LM, LO, SM, and SO represent the long-wave monotonic,
long-wave oscillatory, short-wave monotonic, and short-wave oscil-
latory modes, respectively.

mode becomes critical is large for short-wave perturbations as
compared to the long-wave perturbations.

We demonstrate in Fig. 11(b) the variation of kc with �.
From Fig. 11(b) one can find that, beyond a certain value of �

(� = 720 corresponding to Bi� = 72), kc for the long-wave
monotonic mode increases rapidly, thus leaving the domain of
applicability of long-wave approximation. Note that, for this
particular value of �(= 720), the neutral stability curve for
the long-wave monotonic mode attains the limiting value of
Mac = 4.8 as depicted by Fig. 11(a).

Keeping in mind the verification of our theoretically pre-
dicted value with the results from possible experimentation,
in particular, towards the possible validation of the theoretical
modeling framework employed in this paper with the experi-
mental results, in Fig. 12 we demonstrate the neutral stability
curve for a real system comprising an aqueous 1-butanol solu-
tion. It is important to mention here that, upon heating, such a
fluid layer presents a nonmonotonic variation of surface tension
with temperature as verified from experimental observations
of Villers and Platten [28]. From Fig. 12 we can observe that,
for the chosen set of dimensionless parameters, the oscillatory
mode is critical with Mac = 1.19 at kc = 0.06. For a fluid layer
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FIG. 12. Neutral stability curves for an aqueous 1-butanol fluid
layer of thickness 0.05 mm, Bi = 0.025, Ga = 6, and � = 5000. The
solid line represents the monotonic mode, and dashed one corresponds
to the oscillatory mode of instability.

of thickness 0.05 mm and ν = 100 cSt, this critical Marangoni
number is achieved at a temperature difference of 6 K with
characteristic wavelength of 0.5 mm. We would like to mention
here that one can verify experimentally the neutral stability
curve for both the monotonic and oscillatory modes for a
liquid layer heated from below with the observations and
the variations reflected in Fig. 12 as well as the theoretically
predicted value of critical Marangoni number obtained for a
magnitude of temperature difference 6 K.

C. Model comparison with the previous studies

In this section, we make an attempt to compare our results
with the earlier reported results in the literature for a system
that has a close resemblance to the present system. We also
discuss the implications of the nonmonotonic variation of
surface tension on the stability of the system. For a liquid
layer resting on an insulating substrate and heated from below,
Shklyaev et al. [48] investigated the Marangoni convection
by considering the linear variation of surface tension with
temperature for the long-wave perturbations. They obtain
the following neutral stability curves for the monotonic and
oscillatory modes of instability:

MaL,m = 48(Bi + k2)(Ga + �k2)

k2(72 + Ga + �k2)
, (42)

MaL,o = 3 + 3Bi

k2
+ Ga + �k2. (43)

A comparison of the above equations [i.e., Eqs. (42) and
(43)] with Eqs. (22) and (26) of the present analysis reveals that,
for the nonmonotonic variation of surface tension with temper-
ature, Bi (Biot number) appears as the correction factor in the
expression for the neutral stability curve for both monotonic
and oscillatory modes of instability. Symbolically it can be
represented as Ma = Bi(MaL). This is also true for the neutral
stability curve for a liquid layer having a nondeformable free
surface, for which we obtain Ma = 48Bi [in the limit of large
k; see Eq. (23)] compared to MaL = 48 for the monotonic va-
ration of surface tension with temperature [48]. Therefore, it is
evident that, for Marangoni convection induced by nonmono-
tonic variation of surface tension with temperature, the stability
of the system is significantly dependent on the Biot number
(or the heat transfer rate) at the free surface. In this context,
it is worth mentioning here that by complying with the earlier
studies on Marangoni convection (where a monotonic variation
of surface tension with temperature is considered [9]), for the
present analysis also the stability of the system increases with
increasing magnitude of Bi for both the long-wave and short-
wave perturbations (see Figs. 2 and 5). Moreover, similar to the
Marangoni convection induced by a linear variation of surface
tension with temperature, for the nonmonotonic variation also,
the oscillatory mode of instability occurs only for a deformable
free surface [i.e., for small values of Ga; see Fig. 7(b)].

IV. CONCLUSIONS

In this paper, we have studied Marangoni convection in
a thin liquid layer heated from below and separated from
the surrounding gas phase by a deformable free surface.
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Conducting this investigation, we aimed towards an under-
standing about the effect of nonmonotonic variation of surface
tension (with temperature) on the onset of instability in the
heated liquid layer for both the long-wave and short-wave
perturbations. To analyze the Marangoni convection induced
by such nonmonotonic variation of surface tension, here we
define the quadratic Marangoni number (in contrast to the
linear Marangoni number) to determine the stability of the
liquid layer. For the long-wave Marangoni convection, using
the scaling k ∼ (Bi)1/2, we derive a set of amplitude equations
[Eqs. (15) and (18)] that govern the coupled nonlinear evolution
of the fluid layer thickness as well as temperature. Also, in
this study, under the framework of linear stability analysis,
we have analytically derived the neutral stability curve for
the monotonic and oscillatory modes of instability for both
long-wave and short-wave perturbations.

Compared to the earlier studies of Marangoni convection
(see Shklyaev et al. [48], where a monotonic variation of

surface tension with temperature is considered) we have found
that Bi (Biot number) appears as the correction factor in the
expression for neutral stability curve, while accounting for
a nonlinear variation of surface tension with temperature. It
is found that such a nonlinear effect introduces a nontrivial
change in the stability threshold of the liquid layer. The
investigation reveals that, when such a fluid layer is heated
from below, both monotonic and oscillatory instability can
appear for a particular range of the dimensionless parameters,
viz., Bi, Ga, and �. This study further demonstrates that
increasing the magnitude of the above-mentioned parameters
increases the stability of the fluid layer either by enhancing
the heat transfer rate from the free surface or by reducing
the surface deflection under the effect of gravity and surface
tension. Finally, we found that, compared to the long-wave
disturbance, the short-wave disturbance increases the range of
the dimensionless parameters for which the oscillatory mode
becomes critical.

APPENDIX: EXPRESSIONS FOR THE TERMS ℵ0 − ℵ8 APPEARING IN EQ. (41)

The terms ℵ0 − ℵ8 appearing in Eq. (41) are defined by the following expressions:

ℵ0 = γ1/γ2,

γ1 = −λ Pr k3
1 cosh k1 − 2λ Pr k1k

2 cosh k + 3λ Pr k1k
2 cosh k1 + λ2k1 cosh k − λ2k1 cosh k1

+ Pr(Ga + �k2)(kk1 sinh k − k2 sinh k1),

γ2 = 2λ Pr k3 sinh k + λ Pr k3
1 sinh k1 − 3λ Pr k1k

2 sinh k1 − λ2k sinh k + λ2k1 sinh k1

− Pr k2(Ga + �k2)(cosh k − cosh k1),

k1 =
√

k2 − λ/Pr,

k2 =
√

k2 − λ,

ℵ1 = λk2 sinh k2 + λBi cosh k2,

ℵ2 = −kk1 exp(−k2) + λk exp(−k2)/2k1 + kk1Bi exp(−k2)/k2 − λBik exp(−k2)/2k1k2 + kk1 cosh k

− λk sinh k1/2 − λk cosh k1/2k1 + kBi sinh k1 − λBik cosh k1/2k1,

ℵ3 = −λBik sinh k1/2k1 − λk cosh k1/2 − λk sinh k1/2k1 + k2 sinh k + kBi sinh k1,

ℵ4 = −2Biλkk1 sinh k + Biλk2
1 sinh k1 + Biλk2 sinh k1,

ℵ5 = −2Biλk2 cosh k + Biλk2
1 cosh k1 + Biλk2 cosh k1,

ℵ6 = −k2k1 exp (−k2)/k2 + λk2 exp (−k2)/2k1k2 + λk2 cosh k1/2k1 − k2 sinh k1,

ℵ7 = λk2 sinh k1/2k1 − k2 cosh k1,

ℵ8 = λk cosh k2.
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