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The inertial locomotion of an elongated model swimmer in a Newtonian fluid is quantified, wherein self-
propulsion is achieved via steady tangential surface treadmilling. The swimmer has a length 2l and a circular cross
section of longitudinal profileaR(z), wherea is the characteristic width of the cross section,R(z) is a dimensionless
shape function, and z is a dimensionless coordinate, normalized by l, along the centerline of the body. It is assumed
that the swimmer is slender, ε = a/l � 1. Hence, we utilize slender-body theory to analyze the Navier-Stokes
equations that describe the flow around the swimmer. Therefrom, we compute an asymptotic approximation to
the swimming speed, U , as U/us = 1 − β[V (Re) − 1

2

∫ 1
−1 z ln R(z) dz]/ ln(1/ε) + O[1/ ln2(1/ε)], where us is

the characteristic speed of the surface treadmilling, Re is the Reynolds number based on the body length, and β

is a dimensionless parameter that differentiates between “pusher” (propelled from the rear, β < 0) and “puller”
(propelled from the front, β > 0) -type swimmers. The function V (Re) increases monotonically with increasing
Re; hence, fluid inertia causes an increase (decrease) in the swimming speed of a pusher (puller). Next, we
demonstrate that the power expenditure of the swimmer increases monotonically with increasing Re. Further, the
power expenditures of a puller and pusher with the same value of |β| are equal. Therefore, pushers are superior
in inertial locomotion as compared to pullers, in that they achieve a faster swimming speed for the same power
expended. Finally, it is demonstrated that the flow structure predicted from our reduced-order model is consistent
with that from direct numerical simulation of swimmers at intermediate Re.
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I. INTRODUCTION

The application of reduced-order models to mathematically
describe locomotion of swimming organisms was initiated by
Taylor [1], who considered transverse oscillations of a two-
dimensional infinite sheet as a model for flagellar propulsion
at zero Reynolds number Re. Taylor’s pioneering work has
been generalized in many problems involving microscale
propulsion, such as hydrodynamic interactions between or-
ganisms [1–4], swimming in porous media [5], transient
propulsion [6], and swimming in non-Newtonian fluids [7–10].
Taylor’s model was also studied at finite Re [11] and in inviscid
flow (for a finite length sheet) [12,13]. In this regard, note that
the fluid mechanical regimes of small and large organisms are
completely different [14]. That is, the movement of microor-
ganisms is characterized by the dominance of viscous forces
over inertial forces (Re � 1), whereas the reverse is true for
large swimmers such as most fish. In contrast, both viscous and
inertial forces play a role in the (intermediate Re) locomotion
of organisms with linear dimension on the order of millimeters,
including crustaceans (e.g., copepods and euphausiids), large
ciliates, and small jellyfish.

The spherical squirmer, introduced by Lighthill [15] and
Blake [16], is another reduced-order model for self-propulsion,
where a spherical body achieves locomotion through small
axisymmetric deformations of its surface. A further simplified
squirmer model that swims through steady surface tread-
milling (that is, steady tangential motion of its surface) has
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been employed to examine various facets of locomotion in
Stokes (Re = 0) flow, including enhanced diffusion of passive
scalars [17,18], nutrient transport [19,20], hydrodynamic inter-
actions of swimmers [21,22], and swimming in non-Newtonian
fluids [23,24]. Furthermore, the squirmer model has recently
been used to study the impact of fluid inertia on self-propulsion,
using matched asymptotic expansions at small Re [25,26] and
numerical computation across a wide range of Re [27]. It was
found that spherical squirmers that generate thrust from their
rear (“pushers”) tend to swim faster than those that generate
thrust from their front (“pullers”) at nonzero Re.

Of course, most intermediate Re swimmers are not spheri-
cal; in fact, they tend to be elongated. The ciliate Paramecium
roughly resembles a prolate spheroid with an approximate
length and width of 100 μm and 40 μm, respectively, and
has an escape swimming speed of 10 mm/s, corresponding
to Re ≈ 2 [28]. Zooplankton such as copepods and krill,
with length of 1 mm to 1 cm, are associated with a sus-
tained swimming speed of around 5 cm/s and Re ≈ 10–100
[29–31]. Ngo and McHenry [32] studied the locomotion of
a water boatman (Corixidae), which has length and width of
around 5 mm and 1.5 mm, respectively. The water boatman
generates thrust via paddling appendages and covers the regime
10 � Re � 200. There has been relatively little modeling work
on swimming at intermediate Re, compared to the extensive
literature on locomotion in Stokes flow and at large Re.
Therefore, the central purpose of this article is to analyze a
reduced-order model for the locomotion of a slender swimmer
at nonzero Re. Naturally, such a model cannot capture in
detail the locomotion of any particular organism; however,
it can provide results and intuition relevant to the qualitative
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FIG. 1. Illustration of a slender squirmer-type swimmer in a
comoving frame. The various symbols in this sketch are described in
the main text. The curved arrows at the body surface depict the surface
treadmilling stroke around a puller (β > 0) and a pusher (β < 0). For
a puller (pusher), the surface velocity us is greatest at the front (rear)
as thrust is generated from the front (rear). The dots near the ends of
the body signify that us vanishes at the ends.

flow physics of a broad class of swimmers. As demonstrated
below, the elongated form of a swimmer can be exploited to
simplify the Navier-Stokes equations (NSEs) using slender-
body theory, thereby allowing one to analytically investigate
inertial locomotion. Specifically, the velocity disturbance due
to the motion of an elongated body is asymptotically small in
the ratio of its width to its length. This will enable us to utilize
matched asymptotic expansions to predict the swimming
velocity of a slender swimmer at nonzero Re. Slender-body
theory is a well developed subject in Stokes flow [33–37]
and in aerodynamics (Re � 1) [38,39]. Only a handful of
studies have applied slender-body theory at moderate Re
[40–43].

Here we consider a slender squirmer-type swimmer that has
an axisymmetric body shape. A cylindrical coordinate system
is adopted, where r is the radial distance and z is the axial
distance, respectively, from the origin located at the center of
the squirmer’s body (Fig. 1). The squirmer performs a steady
treadmill stroke with a surface velocity us = −us(1 + βz)(s·
ez)s, where us is the characteristic speed of the stroke. Positive
values of β correspond to “pullers,” while negative values of
β represent “pushers” [44]. (At β = 0, the squirmer is called
“neutral.”) Here ez is the unit vector in the z direction and s
is the unit vector tangent to the squirmer surface. This form
of surface treadmilling was used in Ref. [45] to analyze a
spheroidal squirmer in Stokes flow. The Reynolds number
Re = ρusl/μ signifies the ratio of inertial to viscous forces
based on the characteristic body length l, where ρ is the fluid
density and μ is the dynamic viscosity. A goal of the present
study is to compute an asymptotic approximation for the
swimming velocity of a squirmer, with stroke us , as a function
of Re and β. We will demonstrate that increasing Re causes an
increase (decrease) in the swimming speed of a pusher (puller).
This is consistent with the results obtained for a spherical
squirmer [25–27]. Our assumptions of a steady surface velocity
that is independent of slenderness and Reynolds number is in
the spirit of providing a simple, reduced-order model of inertial
locomotion. Clearly, the strokes of most biological organisms
are unsteady, depend on body shape, and can vary across Re.
The reasonableness of our assumptions will be verified by
the demonstration that our model predicts a time-averaged,
large-scale flow structure that is consistent with that from

direct numerical simulation of the unsteady locomotion of
intermediate Re swimmers.

In Sec. II we formulate the mathematical problem governing
the locomotion of our reduced-order inertial swimmer. In
Sec. III a slender-body analysis of the aforementioned problem
is performed, which ultimately yields an asymptotic approx-
imation to the swimming velocity. We discuss the results of
the slender-body analysis in Sec. IV, including the swimming
velocity, power expenditure, and flow structure about the
swimmer. Concluding remarks and suggestions for future work
are offered in Sec. V.

II. PROBLEM FORMULATION

Consider a swimmer of length 2l and characteristic cross-
sectional width a, which achieves locomotion through steady
surface treadmilling in an unbounded, incompressible New-
tonian fluid. Let ε = a/l with ε � 1; hence, the body is
slender. The body has a circular cross section of radius aR(z)
for −l � z � l, where R(z) is a dimensionless function that
specifies the longitudinal profile of the cross section (Fig. 1).
The surface velocity, or swimming stroke, us , is independent
of ε and Re. The squirmer swims at a velocity U in the axial
direction z. In the comoving frame of the squirmer, the body
is stationary, and the oncoming fluid velocity in the far field is
−U . Subsequent calculations are performed in this comoving
frame unless stated otherwise. Only steady swimming strokes
and locomotion are considered. The dimensionless NSEs and
boundary conditions are

Re v · ∇v = ∇2v − ∇p , ∇ · v = 0, (2.1)

v → −U as |x| → ∞, (2.2)

v = us on r = εR(z) for − 1 � z � 1, (2.3)

wherev is the velocity vector andp is the pressure. The position
vector x = rer + zez where er is the unit vector in the radial
direction. For steady motion of a neutrally buoyant swimmer

FH =
∫

σ · n dS = 0, (2.4)

where FH is the hydrodynamic force, σ = −p I + μ[(∇v) +
(∇v)T ] is the stress tensor, I is the identity tensor, (∇v)T is
the transpose of the velocity gradient ∇v, and S represents
the surface of the squirmer with outward unit normal n. The
dimensionless equations were obtained by normalizing v and
us by us , r by l, p by μus/l, and σ by μus/l. Henceforth, all
variables and equations will be dimensionless unless otherwise
stated. Since the swimming velocity is unknown a priori, the
far-field boundary condition (2.2) cannot be applied directly.
Instead, the swimming velocity is determined by applying the
force-free condition (2.4).

III. SLENDER-BODY THEORY

For ε � 1 the unit normal is [46]

n = er − ε
dR(z)

dz
ez + O(ε2). (3.1)
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Due to axisymmetry, we write v = vr er + vzez and us =
usr er + uszez, where the subscripts r and z denote the radial
and axial components, respectively. Since the body does not
ingest or expel fluid, on S we have

n · v = n · us = 0. (3.2)

Substituting (3.1) and (3.2) in the tangential velocity bound-
ary condition (I − nn) · v = (I − nn) · us , we obtain from
leading order matching that vz ∼ usz and vr ∼ O(ε), where
usz = −(1 + βz). Hence, the treadmilling generates a surface
velocity that is purely axial, to leading order. Note that this
approximation breaks down near the ends of the swimmer
(z = ±1); indeed, the surface velocity field us vanishes at
the ends. However, as discussed below, the error due to
this approximation generates a contribution to the swimming
speed that is subdominant to that which we calculate. As is
usual in slender-body theory, the problem is partitioned into
geometric inner, r ∼ O(ε), and outer, r ∼ O(1), regions. In
the inner region we define ρ = r/ε with ρ ∼ O(1) as ε → 0.
From the continuity equation ṽr ∼ εṽz, i.e., the radial velocity
is much smaller than the longitudinal velocity, where the
tilde decoration denotes the inner region. A straightforward
scaling analysis of the NSEs shows that inertial effects can be
discounted in the inner region if ε2Re � 1; the axial velocity
then satisfies

1

ρ

∂

∂ρ

(
ρ

∂ṽz

∂ρ

)
= 0, (3.3)

subject to ṽz = usz on ρ = R(z) for −1 � z � 1. Equa-
tion (3.3) signifies that radial diffusion of momentum governs
the flow in the inner region. The solution of (3.3) is [34]

ṽz = usz − Fl

2π
ln

ρ

R
, (3.4)

where Fl is the dimensionless force per unit length exerted on
the fluid by the swimmer (normalized by μus) acting along the
z direction. In the outer region, the swimmer appears as a line
segment of zero width and length 2. In terms of outer variables,
the inner velocity is

ṽz = usz − Fl

2π
ln

1

ε
− Fl

2π
ln

r

R
. (3.5)

Now ln(1/ε) diverges as ε → 0, which suggests an unbounded
outer flow. To prevent this absurdity, Fl must be asymptotically
small in ε. Specifically, we require

−U1 ∼ usz − Fl

2π
ln

1

ε
, (3.6)

where U1ez is the leading order contribution to the swimming
velocity. The force per unit length is then

Fl = f1

ln 1
ε

(3.7)

to leading order, where f1 = 2π (U1 + usz). The con-
straint (2.4) implies

∫ 1
−1 f1 dz = 0. Therefore,

U1 = −1

2

∫ 1

−1
usz dz. (3.8)

Using usz = −(1 + βz), we find that U1 = 1, regardless of
the value of β. Thus, to leading order, the swimming velocity

of a slender squirmer is independent of whether it is a
pusher or puller. Theers et al. [45] derived an expression for
the swimming velocity of a prolate spheroidal squirmer, of
arbitrary aspect ratio, with surface velocity us in Stokes flow
[see Eq. (29) in their paper]. Their result reduces to ours (i.e.,
U1 ∼ 1) in the limit of a slender spheroid. Additionally, our
analysis shows to leading order in ε that (1) the independence
of the swimming velocity on β holds at nonzero Re and
(2) the swimming velocity is independent of the longitudinal
radius profile R(z). Leshansky et al. [47] also considered a
prolate spheroidal swimmer at Re = 0, propelled by surface
treadmilling for the case β = 0. They too found that U1 ∼ 1
for a slender swimmer, with an algebraically small error of
ε2 ln(1/ε) arising from the flow near the ends of the body.
They commented that the physical meaning of this result is
that the swimmer is propelled with the velocity of surface
treadmilling, such that surface velocity in laboratory frame is
nearly zero over the majority of the body. Such a situation leads
to, in their words, a nearly “frictionless microswimmer” with
a power expenditure that is algebraically small in ε. Finally,
note that the swimming velocity of a spherical squirmer is also
independent of β in Stokes flow [15,26,48].

The above arguments suggest expansions of the force per
unit length and velocity field in powers of 1/ln(1/ε). Since the
inner region is viscously dominated provided ε2Re � 1, the
solution (3.4) remains valid with now a “weak” expansion of
Fl in 1/ ln(1/ε). In contrast, in the outer region we expand

v ∼ −ez + 1

ln 1
ε

v2 + · · · , p ∼ 1

ln 1
ε

p2 + · · · , (3.9)

where v2 and p2 are the O[1/ ln(1/ε)] contributions to the
velocity and pressure fields, respectively. By substituting
the expansions (3.9) into the NSEs (2.1), we find that the
O[1/ ln(1/ε)] flow in the outer region is governed by the Oseen
equations,

−Re
∂v2

∂z
= ∇2v2 − ∇p2, ∇ · v2 = 0, (3.10)

subject to

v2 → −U2ez as |x| → ∞, (3.11)

where U2 is the O[1/ ln(1/ε)] contribution to the swimming
speed. The solution to (3.10) will be matched to the inner
solution. The solution of the Oseen equations for a point force
Fδ(x)ez at the origin, where δ(x) is the Dirac delta function
and F is the strength of the point force, yields the “Oseenlet”
velocity field [49]

F ez

4π |x|e− Re
2 [z−|x|] + F

4πRe
∇

(
e− Re

2 [z−|x|] − 1

|x|

)
. (3.12)

Since the Oseen equations are linear, the outer velocity field is
constructed as a distribution of Oseenlets along the centerline
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of the body,

v2(x) = −U2ez + ez

4π

∫ 1

−1
g(ζ )

e− Re
2 {(z−ζ )+[r2+(z−ζ )2]

1/2}

[r2 + (z − ζ )2]1/2 dζ

+ 1

4πRe
∇

∫ 1

−1
g(ζ )

[e− Re
2 {(z−ζ )+[r2+(z−ζ )2]

1/2} − 1]

[r2 + (z − ζ )2]1/2 dζ ,

(3.13)

where g(z) is the source density of Oseenlets per unit length.
The axial component of v2 is

v2z = −U2 + 1

4π
I1 + 1

4πRe

∂I2

∂z
, (3.14)

where I1 and I2 denote the first and second integrals, respec-
tively, appearing in (3.13).

We seek the limit of v2z as r → 0 for matching to the inner
solution (3.4). This requires finding the limiting forms of the
integrals I1 and I2 as r → 0. Now I1 is singular as r → 0; its
asymptotic behavior can be extracted following the approach of
Schnitzer [50]: see Eqs. (3.9) and (3.10) and the accompanying
discussion in that paper. The integral I2 is regular as r → 0;
its leading order asymptotic behavior as r → 0 is found by
setting r = 0 in the integrand. Therefore, we obtain

I1 = 2g(z) ln

[
2(1 − z2)1/2

r

]
+ J1 + o(1) (3.15)

and

I2 = J2 + o(1), (3.16)

where

J1 =
∫ 1

−1

g(ζ )e− Re
2 [(z−ζ )+|z−ζ |] − g(z)

|z − ζ | dζ ,

J2 =
∫ 1

−1
g(ζ )

[
e− Re

2 [(z−ζ )+|z−ζ |] − 1

|z − ζ |

]
dζ . (3.17)

The inner limit of the outer velocity field is hence

v2z ∼ −U2 − 1

4π
g(z)2 ln r + 1

4π

{
g(z)2 ln[2(1 − z2)1/2]

+ J1 + 1

Re

∂J2

∂z

}
+ o(1). (3.18)

Writing the inner expansion in terms of outer variables gives

ṽz ∼ usz − 1

2π

[
f1

ln 1
ε

+ f2(
ln 1

ε

)2 + · · ·
][

ln
1

ε
+ ln

r

R

]
,

(3.19)

where f2 is the O(1/ ln2(1/ε)) contribution to the force per
unit length. Matching terms of O(1/ ln(1/ε)) from the inner
and outer expansions yields

g(z) = −2πβz (3.20)

and

f2 = 2π

[
U2 + βz ln

2(1 − z2)1/2

R

]
− 1

2

[
J1 + 1

Re

∂J2

∂z

]
.

(3.21)

The source density g(z) vanishes for a neutral squirmer, in
which case the trivial solutionv2(x) = 0 holds. Hence,U2 = 0;
there is no O(1/ ln(1/ε)) contribution to the swimming veloc-
ity. Moreover, for β = 0 all higher-order terms in the weak
expansion of the swimming velocity vanish, which implies
that the correction to the leading order swimming velocity,
U = 1, is algebraically small in ε. This is in agreement with
the calculations of Leshansky et al. [47] for a spheroidal
swimmer in Stokes flow. In fact, the present swimmer problem
for β = 0 is equivalent to irrotational flow past a slender
obstacle, for which the disturbance to the free stream velocity
is algebraically small in the slenderness [46]. The swimmer
does cause an O[1/ ln(1/ε)] flow disturbance at nonzero β;
hence, one expects a correction to the swimming speed at this
order, generally. Physically, for β 	= 0 the swimmer acts as
a source of vorticity, which diffuses through the inner region
and is then advected past the swimmer in the outer region (at
nonzero Re). There is no stretching of vorticity in the outer
region as the leading order flow therein is a uniform stream.
More specifically, since g(z) is a linear function of z whose
integral along the body length is zero, the force-free swimmer
represents a quadrupole source of vorticity. In Stokes flow
the evolution of vorticity in the fluid is solely via diffusion;
hence, the fore-aft (anti)symmetry of the quadrupole (for a
swimmer with a fore-aft symmetric longitudinal radius profile)
is retained and dictates that there is no net effect on the
swimming speed. That is, we expect U2 = 0 at Re = 0 for
all fore-aft symmetric pushers or pullers. At nonzero Re the
antisymmetric vorticity distribution in the fluid is broken by
inertial forces; hence, there will be a nonzero contribution
to the swimming speed at finite Reynolds number. Moreover,
since the source distribution is reversed in sign, but unaltered
in magnitude, under the transformation β → −β, we expect
pushers and pullers with the same value |β| to have an inertial
contribution to U2 that is equal in magnitude but opposite
in sign. These predictions will be verified in the calculations
below.

Using (3.20) we evaluate the integrals J1 and J2 (3.17) as

J1(z)

2πβ
= z{ln[Re(z + 1)] + γ + E1[Re(z + 1)]}

+ z − 1 + 1

Re
(1 − e−Re(z+1)) (3.22)

and

J2(z)

2πβ
= J1(z)

2πβ
− 2z, (3.23)

where γ = 0.577 . . . is the Euler-Mascheroni constant, and
E1(x) = ∫ ∞

x
t−1e−t dt is the exponential integral. As Re in-

creases the variation of J1 and J2 with z becomes increasingly
nonlinear, signifying the increasing impact of inertia on the
flow (Fig. 2).

Since the swimmer is force-free,
∫ 1
−1 f2 dz = 0. Hence,

using (3.21) with (3.22) and (3.23) yields the O[1/ ln(1/ε)]
contribution to the swimming speed as

U2 = β

[
1

2

∫ 1

−1
z ln R(z) dz − V (Re)

]
, (3.24)
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FIG. 2. Plots of J1 (a) and J2 (b) versus z for various Re. The
functions J1(z) and J2(z) are defined in (3.22) and (3.23), respectively,
and appear in the O[1/ ln2(1/ε)] contribution to the force per unit
length f2 (3.21).

where

V (Re) = 1

8Re2 (e−2Re + 2Re2 + 2Re − 1)

− 1

4Re
[ln(2Re) + γ + E1(2Re)] (3.25)

depends on Re but is independent of β and the profile R(z).
The total swimming speed is

U = 1 + U2

ln 1
ε

+ O

[
1

(ln 1
ε
)2

]
. (3.26)

From (3.24), the first term of U2 is independent of Re and
vanishes for a swimmer with a fore-aft symmetric radius
profile. The influence of inertia on the swimming speed is
therefore encapsulated in the function V (Re) (Fig. 3). For small
Re

V (Re) = Re

12
+ O(Re2), (3.27)

and at large Re

V (Re) = 1

4
+ O(Re−1 ln Re). (3.28)

It is interesting that V (Re) remains bounded as Re → ∞.
This is in contrast to the equivalent slender-body analysis of

FIG. 3. Plot of V versus Re. The function V (Re) is defined
in (3.25) and represents the inertial contribution to the O[1/ ln(1/ε)]
swimming speed U2.

the drag on particle towed by an external force, where the
second approximation to the drag grows as ln(Re) at Re �
1 [40]. This logarithmic divergence implies that the asymptotic
expansion for the drag loses uniformity at εRe = O(1), i.e.,
when the Reynolds number based on the cross-sectional radius
is order one. No such loss of uniformity occurs in the swimmer
problem; here the looser constraint ε2Re � 1 is required so
that viscous forces dominate inertial forces in the inner region.
The difference is that the towed particle exerts a net force on
the fluid, unlike the swimmer, which is force-free.

IV. RESULTS

A. Swimming velocity

A number of the predictions made above are now verifiable.
First, U2 = 0 for a neutral squirmer. Second, the values of |U2|
for a pusher and puller with equal values of |β| are identical.
Third, for a fore-aft symmetric body, U2 = 0 at Re = 0 and
monotonically increases (in magnitude) with increasing Re
for a given β, due to the increasing effectiveness of inertial
forces in sweeping vorticity past the swimmer. At fixed Re,
the magnitude of U2 increases with increasing magnitude of
β, as the swimmer acts as a stronger source of vorticity. Finally,
U2 increases (decreases) monotonically for pushers (pullers)
with increasing Re. This can be explained by analyzing the
O[1/ ln2(1/ε)] inertial thrust per unit length exerted by the
fluid on the swimmer, TI , defined as

TI = −
[
f2 − 2π

{
U2 + βz ln

[
2(1 − z2)1/2

R(z)

]
− 3βz

2

}]
.

(4.1)

Hence, using (3.21), (3.22), and (3.23) with (4.1) we find that

TI

2πβ
= 1

2Re

z

z + 1

(
1 − e−Re(z+1)) −

(
z + 1

2

)

+ 1

2

(
z + 1

Re

)
{ln[Re(z + 1)] + γ + E1[Re(z + 1)]}.

(4.2)
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FIG. 4. Distribution of inertial thrust per unit length TI at various
Re. The thin vertical line at z = 0 is to help the reader visualize the
increasing left-right asymmetry in TI with increasing Re.

Note that TI /2πβ = (z2 − 1)Re/8 + O(Re2) at small Re; thus
it is a purely inertial quantity. The function TI is plotted in
Fig. 4. It is readily shown that

∫ 1
−1 TI dz is positive for a pusher

at nonzero Re, which is consistent with U2 being positive.
That is, the fluid exerts an inertial thrust on a pusher in the
positive z direction, which must be balanced by additional
drag in the negative z direction so that the swimmer remains
force-free. This additional drag is achieved by an increase in
the swimming speed of a pusher. The reverse is true for a puller.
Therefore, fluid inertia cases an increase (decrease) in the
swimming speed of a pusher (puller). The origin of the inertial
thrust lies in the vorticity field around the swimmer. Recall
that at Re = 0 the vorticity bears a fore-aft antisymmetric
quadrupole distribution, decaying as 1/|x|3 at large distances
from the swimmer. (Here we ignore higher order multipoles
associated with a fore-aft asymmetric body shape, which do not
generate a contribution to the inertial thrust at the present level
of approximation.) More precisely, the vorticity field is made
up of two counter-rotating sets of vortex rings, as depicted
in Fig. 5(a) for a pusher. The antisymmetry of the vorticity
dictates that the pusher contribution to the stroke, namely,
usz + 1 = −βz, does not affect the swimming velocity, which
is thus independent of β. The inertial thrust is a consequence
of the loss of this antisymmetry at nonzero Re, as vorticity is
advected to the rear of the swimmer [Fig. 5(b)]. For a pusher,
the sets of counter-rotating vortex rings generate a flow toward
the rear body surface that has a component in the positive z

direction. It is this flow that drives the positive inertial thrust
TI for a pusher, causing an increase in its swimming speed with
increasing Re. Conversely, for a puller, the flow generated by
the counter-rotating vortices has a component in the negative
z direction, which leads to a decrease in the swimming speed.

B. Power expenditure

The dimensionless power, P , expended by the swimmer
(normalized by μu2

s l) is [47]

P = −
∫

n · σ · us dS. (4.3)

(a) Pusher (Re = 0, β < 0) -U

us+ 1 = -βz

-U

TI

TI

ω = 0

ω = 0

z

z

(b) Pusher (Re > 0, β < 0)

us+ 1 = -βz

FIG. 5. Mechanism of inertial thrust generation for a pusher.
(a) At Re = 0 the pusher contribution to the stroke, usz + 1 = −βz

(shown by curved arrows on the body surface), results in a fore-aft
antisymmetric vorticity distribution, as depicted by the oppositely
signed, counter-rotating vortices. In particular, the magnitude of the
vorticity is zero at the midpoint of the body, as indicated by the dashed
vertical line where ω = 0. (b) At Re > 0 vorticity is advected past
the swimmer by inertial forces, such that the fore-aft antisymmetry
is lost. Hence, as explained in the main text, an inertial thrust TI

is generated that leads to an increase in the swimming speed. An
equivalent argument can readily be made to explain the decrease in
the swimming speed of a puller with increasing Re.

In the slender-body approximation we find

P = −β

∫ 1

−1
zFl dz. (4.4)

Substituting the weak expansion for Fl we obtain

P = p1

ln 1
ε

+ p2

(ln 1
ε
)2

+ O

[
1

(ln 1
ε
)3

]
, (4.5)

where p1 = 4πβ2/3 and p2 = −β
∫ 1
−1 zf2 dz. Using (3.21)

yields

p2

2πβ2
= W (Re) +

∫ 1

−1

{
1

2
− z2 ln

[
2(1 − z2)1/2

R(z)

]}
dz,

(4.6)
where

W (Re) =
(

1

3
+ 1

2Re

)[
ln(2Re) + γ + E1(2Re)

]

+ 3 − 40Re3

36Re3 −
(

1 + 2Re + 2Re2

12Re3

)
e−2Re

(4.7)
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FIG. 6. Plot of W versus Re. The function W (Re) is defined
in (4.7) and represents the inertial contribution to the O[1/ ln2(1/ε)]
power expenditure p2.

encapsulates the influence of inertial forces on the power
expenditure All terms in the weak expansion of P vanish for
a neutral swimmer; here the power expended is algebraically
small in ε, due to small dissipation at the ends of the swimmer,
which are neglected in our analysis. This is consistent with
the finding of Leshansky et al. [47] that a slender β = 0
swimmer is almost “frictionless.” At nonzero β, the addition
of a puller or pusher contribution to the stroke leads to a power
expenditure that is logarithmically small in ε. Evidently, p1

and p2 are equal for a pusher and puller with the same value of
|β|. At O[1/ ln(1/ε)] the power expenditure is independent
of Re, but this is not so at O[1/ ln2(1/ε)], where W is a
monotonically increasing function of Re (Fig. 6). Therefore,
the power expended by the swimmer increases with increasing
Re. In fact, at small Re

W (Re) = Re2

45
+ O(Re3), (4.8)

and at large Re

W (Re) = 1

3

[
ln(2Re) + γ − 10

3

]
+ O(Re−1 ln Re). (4.9)

The logarithmic divergence of W at large Re implies that the
expansion for P (4.5) loses uniformity at Re = O(1/ε). It is
interesting that, in contrast, the expansion for the swimming
speed U (3.26) does not lose uniformity at Re = O(1/ε), for
reasons explained above.

C. Far-field flow

It is instructive to examine the flow at large distances from
the swimmer, Re|x| � 1. In the laboratory frame the flow
attenuates at large distances, and the velocity decay is found
from (3.13). In the majority, or “bulk,” of the far-field the
exponential terms in the integrands of I1 and I2 are negligibly
small. Therefore, I1 can be neglected altogether, and expanding
the remaining portion of the integrand of I2 for Re|x| � 1
shows that the bulk flow degenerates to a potential dipole

vbulk ∼ β

3Re ln(1/ε)
ez ·

(
I

|x|3 − 3xx
|x|5

)
, (4.10)

which results in an irrotational velocity field decaying as
1/|x|3. Therefore, for Re|x| � 1 the vorticity generated by
the swimmer is confined to a narrow wake at the aft symmetry
axis, where 1 + cos θ ∼ O(1/Re|x|). Here θ is the polar angle
measured from the z axis. The flow in the wake arises solely
from the second term in (3.13), since the third term is a
gradient field and hence produces an irrotational flow. [The
first term in (3.13) is a uniform flow and hence makes no
contribution to the far-field flow in the laboratory frame.]
Therefore, expanding the second term for large Re|x| with
Re|x|(1 + cos θ ) = O(1) yields the wake velocity field

vwake ∼ βez

3 ln(1/ε)

1

z2

(
1 + Rer2

4z

)
eRer2/4z, (4.11)

in which |x| ≈ −z and z < 0 near the aft symmetry axis. The
velocity disturbance in the wake is purely axial and decays as
1/|x|2, as opposed to the faster 1/|x|3 decay outside the wake.
The velocity in the wake changes direction at r = 2

√−z/Re:
for a pusher the flow is opposite the direction of locomotion
for r < 2

√−z/Re; the opposite is true for a puller. The mass
deficit in the wake is zero, which is consistent with the flow in
the bulk being solenoidal. Likewise, the wake does not contain
a momentum deficit, since the swimmer is force-free. Recall
that the velocity field in the wake behind a particle subject to an
external force decays as 1/|x| and contains a momentum deficit
that is proportional to the drag on the particle. The vorticity
in the wake ωwake = ωwakeeφ , where eφ is the azimuthal unit
vector about the symmetry axis. From (4.11),

ωwake ∼ − 2β

3 ln(1/ε)

Re r

4z3

(
2 + Rer2

4z

)
eRer2/4z. (4.12)

The vorticity decays as 1/|x|3 and vanishes at r =
0,

√−8z/Re.
The far-field flow predicted from our reduced-order model

is consistent with direct numerical simulations (DNSs) of
swimmers at moderate Reynolds numbers. Yeo et al. [51]
conducted DNSs of the swimming of a carangiform fish for
Re between 100 to 5000. Outside the wake and away from
the immediate vicinity of the fish, the flow strongly resembles
a potential dipole (see Figs. 16 and 20 in their paper), as
we predict (4.10). The unsteady flow in the wake adopts
the form of a reverse von Kármán vortex street, in which
the sign of the vortices are reversed from the vortex street
behind a (nonswimming) bluff body [52]. Similar DNSs of
Maertens et al. [53] demonstrate that the time-averaged flow
in the wake of an undulating fish gives an axial velocity
profile that moves away from the swimmer near the centerline
of the body (i.e., an outward jet), but then reverses sign to
ultimately yield a wake that is momentumless. This averaged
flow is consistent with what we predict for a pusher (4.11),
where the velocity has a zero crossing in the wake and is
directed away from the swimmer near the centerline. Indeed, a
carangiform fish generates thrust by undulations of its caudal
(tail) region, with relatively little movement of other parts of
its body, which is consistent with our model in which the
surface velocity is largest at the rear of a pusher. Maertens
et al. [53] also demonstrate that the time-averaged vorticity
field in the wake is characterized by a quartet of shear layers
of alternating sign. This is again consistent with the vorticity
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structure that we predict (4.12), which has two zero crossings
in the wake, demarcating regions of oppositely signed vortices.
The occurrence of four shear layers is a manifestation of that
fact that the swimmer acts a quadrupole source of vorticity, as
discussed above.

V. CONCLUSION

We have utilized slender-body theory to analyze the loco-
motion of a model elongated swimmer at nonzero Reynolds
number. The swimmer achieves self-propulsion by steady
surface treadmilling. We find that a pusher is superior to a
puller in inertial locomotion, since both expend the same power
(for equal values of |β|), while the pusher (puller) swims
faster (slower) with increasing Re. This finding may be of
relevance in the design of gaits for artificial swimmers in
inertial flow regimes. On that note, it would be interesting
to consider surface velocities that depend on ε and Re, to
mimic the differences in gaits exhibited by organisms across

Re. A more important extension would be to model unsteady
treadmilling of slender swimmers at finite Re, which is of clear
relevance since nearly all biological swimmers self-propel
via time-dependent gaits. Here we note that recent work has
considered a slender-body theory for the unsteady Stokes
equations, with application toward locomotion of microorgan-
isms [54]. A sensible first step for inertial locomotion would
be to construct a slender-body theory for the unsteady Oseen
equations. However, while analysis of unsteady gaits is of
practical interest, we reemphasize that our simple model does
capture the time-averaged flow structure of intermediate Re
swimmers.

ACKNOWLEDGMENTS

A.S.K. acknowledges support from the Camille Dreyfus
Teacher-Scholar Award program. F.G. acknowledges support
from the Summer Undergraduate Research Fellowship pro-
gram at Carnegie Mellon University.

[1] G. Taylor, Proc. R. Soc. Lond. 209, 447 (1951).
[2] G. J. Elfring and E. Lauga, Phys. Rev. Lett. 103, 088101 (2009).
[3] G. J. Elfring, O. S. Pak, and E. Lauga, J. Fluid Mech. 646, 505

(2010).
[4] V. Gyrya, I. S. Aranson, L. V. Berlyand, and D. Karpeev, Bull.

Math. Biol. 72, 148 (2010).
[5] A. M. Leshansky, Phys. Rev. E 80, 051911 (2009).
[6] O. S. Pak and E. Lauga, Proc. R. Soc. Lond. A 466, 107 (2010).
[7] E. Lauga, Phys. Fluids 19, 083104 (2007).
[8] H. C. Fu, C. W. Wolgemuth, and T. R. Powers, Phys. Fluids 21,

033102 (2009).
[9] H. C. Fu, V. B. Shenoy, and T. R. Powers, EPL (Europhys. Lett.)

91, 24002 (2010).
[10] J. Teran, L. Fauci, and M. Shelley, Phys. Rev. Lett. 104, 038101

(2010).
[11] S. Childress, in Proc. ASME 2008 Dynamic Systems and Control

Conf., Ann Arbor, Michigan, USA (2008), pp. 20–22.
[12] T. Y.-T. Wu, J. Fluid Mech. 10, 321 (1961).
[13] T. Y.-T. Wu, J. Fluid Mech. 46, 337 (1971).
[14] S. Childress, Mechanics of Swimming and Flying, Vol. 2 (Cam-

bridge University Press, Cambridge, 1981).
[15] M. Lighthill, Commun. Pure Appl. Maths 5, 109 (1952).
[16] J. Blake, J. Fluid Mech. 46, 199 (1971).
[17] J.-L. Thiffeault and S. Childress, Phys. Lett. A 374, 3487 (2010).
[18] Z. Lin, J.-L. Thiffeault, and S. Childress, J. Fluid Mech. 669,

167 (2011).
[19] V. Magar, T. Goto, and T. Pedley, Q. J. Mech. Appl. Maths 56,

65 (2003).
[20] V. Magar and T. Pedley, J. Fluid Mech. 539, 93 (2005).
[21] T. Ishikawa, M. Simmonds, and T. Pedley, J. Fluid Mech. 568,

119 (2006).
[22] K. Drescher, K. C. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley,

and R. E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009).
[23] L. Zhu, M. Do-Quang, E. Lauga, and L. Brandt, Phys. Rev. E

83, 011901 (2011).
[24] L. Zhu, E. Lauga, and L. Brandt, Phys. Fluids 24, 051902 (2012).
[25] S. Wang and A. Ardekani, Phys. Fluids 24, 101902 (2012).
[26] A. S. Khair and N. G. Chisholm, Phys. Fluids 26, 011902 (2014).

[27] N. G. Chisholm, D. Legendre, E. Lauga, and A. S. Khair, J. Fluid
Mech. 796, 233 (2016).

[28] A. Hamel, C. Fisch, L. Combettes, P. Dupuis-Williams, and C. N.
Baroud, Proc. Natl Acad. Sci. USA 108, 7290 (2011).

[29] W. M. Hamner, J. Crustac. Biol. 4, 67 (1984).
[30] M. E. Huntley and M. Zhou, Mar. Ecol. 273, 65 (2004).
[31] E. Kunze, J. Mar. Res. 69, 591 (2011).
[32] V. Ngo and M. J. McHenry, J. Exp. Biol. 217, 2740 (2014).
[33] E. Tuck, J. Fluid Mech. 18, 619 (1964).
[34] G. Batchelor, J. Fluid Mech. 44, 419 (1970).
[35] R. Cox, J. Fluid Mech. 44, 791 (1970).
[36] J. Tillett, J. Fluid Mech. 44, 401 (1970).
[37] R. E. Johnson, J. Fluid Mech. 99, 411 (1980).
[38] M. D. Van Dyke, Perturbation Methods in Fluid Mechanics

(Parabolic Press, Stanford, 1975).
[39] D. Degani and Y. Levy, J. AIAA 30, 2267 (1992).
[40] R. Khayat and R. Cox, J. Fluid Mech. 209, 435 (1989).
[41] G. Subramanian and D. L. Koch, J. Fluid Mech. 535, 383 (2005).
[42] M. Shin, D. L. Koch, and G. Subramanian, J. Phys. Fluids 18,

063301 (2006).
[43] M. Shin, D. L. Koch, and G. Subramanian, J. Phys. Fluids 21,

123304 (2009).
[44] T. Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 399 (2007).
[45] M. Theers, E. Westphal, G. Gompper, and R. G. Winkler, J. Soft

Matter 12, 7372 (2016).
[46] E. J. Hinch, Perturbation Methods (Cambridge University Press,

Cambridge, 1991).
[47] A. M. Leshansky, O. Kenneth, O. Gat, and J. E. Avron, New J.

Phys. 9, 145 (2007).
[48] G. Li, A. Ostace, and A. M. Ardekani, Phys. Rev. E 94, 053104

(2016).
[49] D. Homentcovschi, SIAM J. Appl. Maths 40, 99 (1981).
[50] O. Schnitzer, J. Fluid Mech. 768, R5 (2015).
[51] K. S. Yeo and S. J. A. Chu, Comput. Fluids 39, 403 (2011).
[52] C. Eloy, J. Fluids Struct. 30, 205 (2012).
[53] A. P. Maertens, A. Gao, and M. S. Triantafyllou, J. Fluid Mech.

813, 301 (2017).
[54] E. Barta, J. Fluid Mech. 688, 66 (2011).

043102-8

https://doi.org/10.1098/rspa.1951.0218
https://doi.org/10.1098/rspa.1951.0218
https://doi.org/10.1098/rspa.1951.0218
https://doi.org/10.1098/rspa.1951.0218
https://doi.org/10.1103/PhysRevLett.103.088101
https://doi.org/10.1103/PhysRevLett.103.088101
https://doi.org/10.1103/PhysRevLett.103.088101
https://doi.org/10.1103/PhysRevLett.103.088101
https://doi.org/10.1017/S0022112009994010
https://doi.org/10.1017/S0022112009994010
https://doi.org/10.1017/S0022112009994010
https://doi.org/10.1017/S0022112009994010
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1103/PhysRevE.80.051911
https://doi.org/10.1103/PhysRevE.80.051911
https://doi.org/10.1103/PhysRevE.80.051911
https://doi.org/10.1103/PhysRevE.80.051911
https://doi.org/10.1098/rspa.2009.0208
https://doi.org/10.1098/rspa.2009.0208
https://doi.org/10.1098/rspa.2009.0208
https://doi.org/10.1098/rspa.2009.0208
https://doi.org/10.1063/1.2751388
https://doi.org/10.1063/1.2751388
https://doi.org/10.1063/1.2751388
https://doi.org/10.1063/1.2751388
https://doi.org/10.1063/1.3086320
https://doi.org/10.1063/1.3086320
https://doi.org/10.1063/1.3086320
https://doi.org/10.1063/1.3086320
https://doi.org/10.1209/0295-5075/91/24002
https://doi.org/10.1209/0295-5075/91/24002
https://doi.org/10.1209/0295-5075/91/24002
https://doi.org/10.1209/0295-5075/91/24002
https://doi.org/10.1103/PhysRevLett.104.038101
https://doi.org/10.1103/PhysRevLett.104.038101
https://doi.org/10.1103/PhysRevLett.104.038101
https://doi.org/10.1103/PhysRevLett.104.038101
https://doi.org/10.1017/S0022112061000949
https://doi.org/10.1017/S0022112061000949
https://doi.org/10.1017/S0022112061000949
https://doi.org/10.1017/S0022112061000949
https://doi.org/10.1017/S0022112071000570
https://doi.org/10.1017/S0022112071000570
https://doi.org/10.1017/S0022112071000570
https://doi.org/10.1017/S0022112071000570
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1016/j.physleta.2010.06.043
https://doi.org/10.1016/j.physleta.2010.06.043
https://doi.org/10.1016/j.physleta.2010.06.043
https://doi.org/10.1016/j.physleta.2010.06.043
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1093/qjmam/56.1.65
https://doi.org/10.1093/qjmam/56.1.65
https://doi.org/10.1093/qjmam/56.1.65
https://doi.org/10.1093/qjmam/56.1.65
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1103/PhysRevE.83.011901
https://doi.org/10.1103/PhysRevE.83.011901
https://doi.org/10.1103/PhysRevE.83.011901
https://doi.org/10.1103/PhysRevE.83.011901
https://doi.org/10.1063/1.4718446
https://doi.org/10.1063/1.4718446
https://doi.org/10.1063/1.4718446
https://doi.org/10.1063/1.4718446
https://doi.org/10.1063/1.4758304
https://doi.org/10.1063/1.4758304
https://doi.org/10.1063/1.4758304
https://doi.org/10.1063/1.4758304
https://doi.org/10.1063/1.4859375
https://doi.org/10.1063/1.4859375
https://doi.org/10.1063/1.4859375
https://doi.org/10.1063/1.4859375
https://doi.org/10.1017/jfm.2016.239
https://doi.org/10.1017/jfm.2016.239
https://doi.org/10.1017/jfm.2016.239
https://doi.org/10.1017/jfm.2016.239
https://doi.org/10.1073/pnas.1016687108
https://doi.org/10.1073/pnas.1016687108
https://doi.org/10.1073/pnas.1016687108
https://doi.org/10.1073/pnas.1016687108
https://doi.org/10.1163/1937240X84X00507
https://doi.org/10.1163/1937240X84X00507
https://doi.org/10.1163/1937240X84X00507
https://doi.org/10.1163/1937240X84X00507
https://doi.org/10.3354/meps273065
https://doi.org/10.3354/meps273065
https://doi.org/10.3354/meps273065
https://doi.org/10.3354/meps273065
https://doi.org/10.1357/002224011799849435
https://doi.org/10.1357/002224011799849435
https://doi.org/10.1357/002224011799849435
https://doi.org/10.1357/002224011799849435
https://doi.org/10.1242/jeb.103895
https://doi.org/10.1242/jeb.103895
https://doi.org/10.1242/jeb.103895
https://doi.org/10.1242/jeb.103895
https://doi.org/10.1017/S0022112064000453
https://doi.org/10.1017/S0022112064000453
https://doi.org/10.1017/S0022112064000453
https://doi.org/10.1017/S0022112064000453
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1017/S002211207000215X
https://doi.org/10.1017/S002211207000215X
https://doi.org/10.1017/S002211207000215X
https://doi.org/10.1017/S002211207000215X
https://doi.org/10.1017/S0022112070001908
https://doi.org/10.1017/S0022112070001908
https://doi.org/10.1017/S0022112070001908
https://doi.org/10.1017/S0022112070001908
https://doi.org/10.1017/S0022112080000687
https://doi.org/10.1017/S0022112080000687
https://doi.org/10.1017/S0022112080000687
https://doi.org/10.1017/S0022112080000687
https://doi.org/10.2514/3.11214
https://doi.org/10.2514/3.11214
https://doi.org/10.2514/3.11214
https://doi.org/10.2514/3.11214
https://doi.org/10.1017/S0022112089003174
https://doi.org/10.1017/S0022112089003174
https://doi.org/10.1017/S0022112089003174
https://doi.org/10.1017/S0022112089003174
https://doi.org/10.1017/S0022112005004829
https://doi.org/10.1017/S0022112005004829
https://doi.org/10.1017/S0022112005004829
https://doi.org/10.1017/S0022112005004829
https://doi.org/10.1063/1.2205200
https://doi.org/10.1063/1.2205200
https://doi.org/10.1063/1.2205200
https://doi.org/10.1063/1.2205200
https://doi.org/10.1063/1.3274612
https://doi.org/10.1063/1.3274612
https://doi.org/10.1063/1.3274612
https://doi.org/10.1063/1.3274612
https://doi.org/10.1039/C6SM01424K
https://doi.org/10.1039/C6SM01424K
https://doi.org/10.1039/C6SM01424K
https://doi.org/10.1039/C6SM01424K
https://doi.org/10.1088/1367-2630/9/5/145
https://doi.org/10.1088/1367-2630/9/5/145
https://doi.org/10.1088/1367-2630/9/5/145
https://doi.org/10.1088/1367-2630/9/5/145
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1137/0140008
https://doi.org/10.1137/0140008
https://doi.org/10.1137/0140008
https://doi.org/10.1137/0140008
https://doi.org/10.1017/jfm.2015.123
https://doi.org/10.1017/jfm.2015.123
https://doi.org/10.1017/jfm.2015.123
https://doi.org/10.1017/jfm.2015.123
https://doi.org/10.1016/j.compfluid.2009.08.002
https://doi.org/10.1016/j.compfluid.2009.08.002
https://doi.org/10.1016/j.compfluid.2009.08.002
https://doi.org/10.1016/j.compfluid.2009.08.002
https://doi.org/10.1016/j.jfluidstructs.2012.02.008
https://doi.org/10.1016/j.jfluidstructs.2012.02.008
https://doi.org/10.1016/j.jfluidstructs.2012.02.008
https://doi.org/10.1016/j.jfluidstructs.2012.02.008
https://doi.org/10.1017/jfm.2016.845
https://doi.org/10.1017/jfm.2016.845
https://doi.org/10.1017/jfm.2016.845
https://doi.org/10.1017/jfm.2016.845
https://doi.org/10.1017/jfm.2011.365
https://doi.org/10.1017/jfm.2011.365
https://doi.org/10.1017/jfm.2011.365
https://doi.org/10.1017/jfm.2011.365



