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Generation of intermittent gravitocapillary waves via parametric forcing
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We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting
with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law
in frequency for a wide range of forcing parameters. We compute the probability density function of the local
surface height increments, which show that they change strongly across time scales. The structure functions of
these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear
functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent
spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally,
some interpretations are proposed to explain the appearance of this intermittent spectrum.
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I. INTRODUCTION

The nature, generation, properties, and evolution of
turbulent fields in extended out-of-equilibrium systems are
the subject of continuous research due to its implications in
the transport of conserved quantities across scales in fluid
dynamics, condensed matter, plasma and astrophysics. In the
case of wave systems, this research has been strongly driven
by the development of tools of wave turbulence (WT) [1].
WT deals with the long-time out-of-equilibrium statistical
properties of dispersive waves in weakly nonlinear interaction,
in which injection and dissipative scales are clearly separated,
and energy is transferred without loss among scales (in the
so-called inertial window). In the WT framework, waves
are thus solely described by their scale-invariant stationary
spectrum of wave amplitudes S,(f) = (|77f|2> o« f7Y, where
f is the frequency and v the Kolmogorov-Zakharov exponent.
This spectrum has been theoretically predicted, numerically
computed, and experimentally observed in gravity [2-5] and
capillary [6-8] surface waves in fluids, bending waves in elastic
plates [9,10], and nonlinear optics [11,12]. Applications of WT
to a larger number of other fields can be found in [1].

It may seem that WT is a robust and complete theory that
can be applied to any weakly dispersive nonlinear wave system,
but this is not the case, as it is almost never valid over all
length scales [13]: there is a breakdown of WT at very large
or very low wave numbers. When the breakdown occurs, a
new type of spectrum develops, as well as new properties of
the turbulent fluctuations [14], which are different from the
WT prediction. This type of breakdown spectrum, which is
named after Phillips’ seminal work on the breakup of gravity
surface waves by wind forcing [15], has been observed in situ
on the sea surface, in very large tanks [16,17], and in laboratory
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experiments [5,18]. It has been generalized to other situations
where WT breaks down [19] such as the generation of rough
sea foam in the ocean [20] and the d-cone spectra in vibrating
elastic plates [21]. It has also motivated new ideas on the spectra
generated by singularities [22] to describe the properties of
fluctuating wave fields.

WT can also break down when the locality of interactions
between wave vectors is forbidden. In the WT framework,
a conserved quantity is transported by local interactions in
wave-vector space from large scales to small scales. However,
this is not always achieved in real systems. Kelvin waves in
superfluids are known to interact nonlocally through the Biot-
Savart equation [23,24]. In strongly magnetized plasma, it has
been proven that its dynamics is dominated by the nonlinear,
nonlocal interaction between the large-scale condensate and
small scales [25-27]. Wave turbulence in quantum field theory
(QCD) can also be described by nonlocal interactions in
momentum space [28].

Here, we present an experimental study of intermittency
in which spatially extended standing waves of wave vector
k, (Faraday waves) interact nonlinearly with a random set
of long waves generating a scale-invariant wave spectrum
which differs from the Kolmogorov-Zakharov predictions for
gravity wave turbulence or capillary wave turbulence. The local
measurement of the wave amplitude field displays singular
events which can be related to singularities generated due to the
advection Faraday waves by random surface gravitocapillary
waves. In this configuration, the local temporal fluctuations
of the surface wave amplitude n(z) display a power-law
spectrum, S,(f) = <|T}f|2> [i.e., the Fourier transform of the
autocorrelation function of 7(¢)], over more than half a decade
for a wide range of forcing parameters. The observed spectrum,
S,(f) oc f72, differs from the one predicted by the WT theory,
S,(f) o f —4 The wave field displaying this spectrum is inter-
mittent, which is shown by computing the probability density
function (PDF) of the local vertical height increments and their
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corresponding structure functions. The PDFs change strongly
across timescales, increasing their flatness. The structure func-
tions of these increments display power laws as a function of
the time lag, with exponents that are not linear with the order
of the structure function. We argue that the origin of this scale-
invariant intermittent spectrum is the Faraday wave pattern
breakup due to its advection by the propagating gravity waves.

II. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 1. A plexiglass
square cell (lateral dimensions L, = L, = 10 cm and height
L, = 4.5 cm) is filled with distilled water up to a height 7 = 3
cm. The experimental cell with the working fluid is mounted
on an electromagnetic shaker driven sinusoidally by a function
generator via a power amplifier. The vertical modulation of the
acceleration a(t) = a sin (27 f.t) is measured by a piezoelec-
tric accelerometer via a charge amplifier. The accelerometer
is fixed to the base of the cell, allowing measurement of the
imposed modulation with a resolution of 0.1 m/s2. For a given
excitation frequency f., when the acceleration modulation
a surpasses a certain threshold a., standing waves develop
on the fluid surface oscillating at f./2 through a parametric
instability: the so-called Faraday waves [29]. These standing
waves interact with a set of propagating waves generated by
the horizontal motion of a rectangular plunging acrylic wave
maker (6x 13 cm?) 1.5 cm inward from one of the corners of
the cell and driven by another electromechanical shaker via a
power amplifier. The wave maker is excited with random noise
supplied by a function generator filtered in the frequency range
2-5 Hz by means of a band-pass filter. The output colored
noise has a standard deviation V, € [0.69,1.30] V. The local
wave height 1(¢) is measured 5 cm away from the wave maker
with a capacitive wire sensor, plunging perpendicular to the
fluid surface at rest and adjoined to the experimental cell.
The capacitance of the wire gauge, which changes linearly
with the fluid level, is measured using an LRC circuit and a
DSP lock-in amplifier [30] (time constant, 0.3 ms; and roll-off,
24 dB/oct). The linear sensing range of the wire gauge allows
measurements from 10 um up to 30 mm with 80 mV/mm
sensitivity. The data on both the fluid level and the vertical
acceleration are recorded through an NI acquisition card and
then analyzed in Matlab. In the experiments reported in this

FIG. 1. Schematic of the experimental setup: (1) square cell; (2)
vertical shaker; (3) horizontal shaker; (4) accelerometer; (5) wave
maker; (6) capacitive wire gauge.

paper, the acquisition time is 1, the acquisition frequency is
fadq = 1 kHz, the excitation frequency is f. =20 Hz, and
a € [1,2] m/s%.

III. PROBABILITY DENSITY FUNCTION
AND FREQUENCY POWER SPECTRUM

In the case where only Faraday waves are excited by
vertical vibrations (once the critical acceleration to develop
the parametric instability a. = 1.08 m/s? is surpassed), n(z)
displays a discrete set of excited frequencies: the harmonics
of the fundamental parametric wave frequency f,./2. At f. =
20 Hz, the typical wavelength of the standing patternis 1.5 cm.
In these experimental runs, the vertical acceleration was set to
a=1.57 m/s2 [e = (a —a.)/a. = 0.45]. In the case where
only random waves are excited by the horizontal motion of
the wave maker, no WT spectra (for either gravity or capillary
waves) develop due to the low forcing intensity [5]. The typical
wavelengths of the random waves in the frequency forcing
range are between 6 and 16 cm, and these waves are deep-water
waves [2].

In the case where random waves are placed in interaction
with Faraday waves, the PDF of the wave amplitude, displayed
in Fig. 2, is Gaussian, which shows that nonlinearities in the
wave amplitude are small. Besides, a scale-invariant spectrum
S,(f) o« f~3 develops from f, to 90 Hz. This type of spectrum
is observed for € > 0 (when the parametric instability has
already set in the experimental system) and for a large range
of V, (in particular, the one reported here for ¢ = 0.45). In
Fig. 3(a) we show S, () for the three configurations described
above. For the last two cases, for frequencies higher than 90 Hz,
dissipation over the wire gauge is relevant, which changes the
slope of the spectra.

Two important comments related to the observation of this
scale-invariant spectrum must be noted. First, although such
a large value of € may sustain droplet ejection in Faraday
waves [31], this is not observed in our experiments (either
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FIG. 2. Probability density functions of the local amplitude fluc-
tuation height n/o, for the case where random gravity waves interact
with Faraday waves (circles). A normal curve (solid line) is plotted
for comparison.
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FIG. 3. (a) Log-log plot of the spectra S, (f) for Faraday waves,
random waves, and interacting random and Faraday waves as a
function of the frequency f. The solid line is an £~ best-fit slope. (b)
Compensated spectra S,(f) x f3 for interacting random and Faraday
waves.

alone or coupled to randomly excited gravity waves). Thus,
no wave breaking is observed. Second, experimental runs with
similar values for h, f., V,, and a. were also performed on
a larger cylindrical container (30 cm in diameter), displaying
the same scale-invariant spectrum. Data from these runs are
not presented here because, due to the large size and weight
of the experimental cell, an off-axis motion appeared once the
parametric waves were coupled with the random ones, which
led to a slow change in the acceleration modulation delivered
by the shaker and inhomogeneities of the wave pattern.

In the case where random waves are placed in interaction
with Faraday waves, the signal presents some “anomalies,”
which are not displayed in the other two cases. An example
of this is shown in Fig. 4. It can be seen that these events
do not display discontinuities in 7(¢) or in its derivative, but
they do display a strongly erratic behavior. We believe that the
appearance of these events is responsible for the £~ spectrum,
as observed in [32], though a thorough analysis is required to
conclude on this point.

The steep spectrum might arise for a couple of reasons. First,
finite-size effects might occur. As has been shown [33-35],
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FIG. 4. (a) Temporal trace of the local surface wave amplitude
of randomly excited waves in interaction with parametrically excited
waves over the temporal window of Ar =5 s for V, = 1.0 V and
€ = 0.45. The zoomed-in region shows one of the “anomalies” in the
signal, which we believe yield the £~ spectrum. (b) Temporal trace
of the local surface wave amplitude of randomly excited waves over
the temporal window of At =5sforV, =1.0 V.

in finite-size systems some quantized wavelengths cause a
depletion of pure resonances, making the spectrum steeper.
However, as we explained above, in our system, the f -5
spectrum is observed in either the small container (where we
can fit one-half of the largest available wavelength) or the larger
one (where we can fit 2 times the largest available wavelength).
Second, nonlinear coherent structures might be present, such
as breaking or sharp-crested waves [22]. Depending on the
spatial dimensionality of the structures, the spectrum can be
f~* (coinciding with WT) or f~>, the Phillips spectrum.
These structures are known to provide the main mechanism for
dissipation of energy and to be related also to the phenomenon
of intermittency [18]. In our case, though, we do not observe
wave breaking or droplet ejections. This discrepancy between
theory and experiments reminds us of other works on gravity
wave turbulence [36-39] and on flexural wave turbulence on a
metallic plate [40—44], which have shown that the occurrence
of dissipation at all scales causes the energy flux to be noncon-
stant through the scales, in contrast to the WT assumptions,
thus making the inertial window ill defined, leading to a steeper
spectrum. Nonlocal interactions might also be responsible for
the steep spectrum. It is known that the interaction of a slow
mode with the small scales can be interpreted as a condensate
state that displays a steep spectrum [45]. Determination of
the actual reason for the development of the observed f~—>
spectrum requires further studies.

IV. INTERMITTENCY

When a singularity spectrum develops, the statistical prop-
erties of the wave field should be affected and intermittency
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may appear (as in the case of the breakdown of WT). To probe
this hypothesis, we calculate the higher-order cumulants of
n(¢) when it displays the f~> spectrum. Due to the steepness
of the spectrum, to probe intermittency at least third-degree
increments 853)770) =n(t+3t)—-3nt+2t)+3n(t+ 1) —
n(t) have to be computed to remove the local linear trends in
the time lag T coming from the differentiable part of 1(¢) [46].
Accordingly, in order to study the intermittent properties of the
signal n(t), we computed the structure functions of degree d
and order p, S(z) = (|6n(r)|7). In the case of a power-
law spectrum, S,(f) oc f~” (such as the one we observed
with v = 5), S;d)(t) is expected to be scale as rgf(’d), and in

particular, S;d)(r) ~ t"~! InFig. 5(a) we show the behavior of
S;f)(r) = (|8§4)r/(t)|1’ ). It is observed that the structure factors
are indeed power laws as a function of t (for any degree
d). Thus, we can compute the exponents {'? as a function
of pford=1, 2, 3, and 4 by best fitting a power law in
the interval 5.6 ms < T < 25 ms (the inertial window). These
exponents are shown in Fig. 5(b). It can be observed that
for d =1 and 2, a linear relationship is obtained between
the exponent and p, which shows the differentiable part of
n(t). However, when we look at the higher-degree exponents
we realize that these exponents are nonlinear functions of p,
which is a clear signature of the intermittent nature of the
wave system. Moreover, these exponents are in good agreement
with the theoretical prediction ¢'* = Ap— %ng) p? [46].
Additionally, we note that whereas when d = 1 or 2 is used
the exponents lead to an underestimated value of v = 5, the
exponents {2(3) =3.58 and ;2(4) = 3.79, which show that when
d is increased the observed spectral exponent is approached.
Another feature of the intermittent nature of the acquired signal
can be observed by computing the PDFs of the normalized
increments §n(t) for different values of 7. In our case,
since we concluded above that we should use d =4, we
computed §¥n(r) for different time lags v and with them
we calculated their PDFs, which are shown in Fig. 6. We
note that their shapes deform continuously as the time lag ©
changes, showing an evolution across scales. Within the inertial
window, for small t the tails of the PDF show a very mild
slope which decreases for larger values of §n(z), while for
larger 7 the tails become much steeper. This effect reaffirms
the previous results on the intermittent nature of the wave
field, which shows larger fluctuations for smaller time lags
(i.e., small-scale intermittency). Thus, the observed wave field
displays a scale-invariant power-law spectrum between 20 and
90 Hz and it is intermittent at small scales.

The origin of this intermittent wave field lies in the inter-
action between random and parametric waves. The randomly
moving piston generates gravity waves which distort the
pattern of Faraday waves, changing locally its amplitude and
wavelength, and even creating defects. These distortions pass
over the wire gauge, oscillating at a much higher frequency
than the random waves, which act as low-frequency carriers.
In that sense, it follows the same idea developed by Phillips
[15], but without the need for wave breaking. In fact, no wave
breaking or droplet ejection was observed in experimental runs.
It must be notd that a similar spectrum can be constructed
by following the amplitude defects of Faraday waves which
are self-generated as a is increased above the threshold of
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FIG. 5. (a) Normalized structure factors S;‘”(r)/ S$P(0) for p =
[1,2,3,4,5]. They all show power-law behavior in the inertial
window 5.6 ms < t < 25 ms (besides, the behavior is the same for
different values of d). (b) Exponents {;”’) as a function of p ford =1,
2,3, and 4, obtained by fitting power laws S%(z) ~ %" Solid lines
are best fits following the quadratic relation ¢\ = p— %cgd) P
For d = 1 and 2, the quadratic parameter is negligible. Fitting ¢\

with the above relations yields c(14) =2.21and c(24) =0.32.

defect turbulence [32]. This suggests a connection between
the observed spectrum and the spectrum of wave amplitudes
in the defect-mediated dynamics of pattern-forming systems.
In those systems, nonlocality is needed to generate turbulent
states. In our experimental configuration it is observed that
the control parameter range for the appearance of this scale-
invariant spectrum is very large and insensitive to the values of
fes ac (as long as it is large enough to sustain Faraday waves
over random ones), and V,, which shows the robustness of this
type of spectrum.
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FIG. 6. Semilog plot of PDFs of the normalized increments
89n(1)/(18Wn(t)|*)"/? as afunction of §9n(t)/{|8Wn(1)|*)/* for time
lagsof 6.3 ms < 7 < 25 ms. Curves are displaced by a multiplying
factor for better presentation. The arrow shows the direction of
increasing 7.

V. CONCLUSION

In conclusion, we have shown that a simple tabletop experi-
ment can display a power-law spectrum driven by singularities
when a standing wave pattern arising from a parametric
instability is coupled with randomly excited gravity waves.
The wave field generated by this coupling is intermittent,
as demonstrated by the nonlinear dependence of the ;I(f”
exponents of order p and by the change in the shape of the
PDF of the normalized increments §n(¢) when t changes.
Some questions related to the wave-field spectrum remain
unanswered (such as the possible multifractal structure of
the intermittent increments and its structural relation with
the breakdown of the WT spectrum or the mechanisms in-
volved behind the steep spectrum). To answer some of them,
spatiotemporal measurements will be needed. Work is being
performed in that direction.
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