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Almost-dispersionless pulse transport in long quasiuniform spring-mass chains:
A different kind of Newton’s cradle
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Almost-dispersionless pulse transfer between the extremal masses of a uniform harmonic spring-mass chain
of arbitrary length can be induced by suitably modifying two masses and their spring’s elastic constant at both
extrema of the chain. It is shown that a deviation (or a pulse) imposed to the first mass gives rise to a wave packet
that, after a time of the order of the chain length, almost perfectly reproduces the same deviation (pulse) at the
opposite end, with an amplitude loss that is as small as 1.3% in the infinite-length limit; such a dynamics can
continue back and forth again for several times before dispersion cleared the effect. The underlying coherence
mechanism is that the initial condition excites a bunch of normal modes with almost equal frequency spacing.
This constitutes a possible mechanism for efficient energy transfer, e.g., in nanofabricated structures.
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I. INTRODUCTION

Newton’s cradle is a toy that seems to have a perfect
behavior, explained in terms of the conservation of energy and
momentum in the pairwise elastic collision of equal spheres.
However, such a naïve theory only holds for two spheres:
For many spheres the underlying physics is complicated and
needs a detailed analysis of the collision mechanism. For
instance, observation gives the impression that the internal
spheres do not move, so one could imagine that gluing them
together would not affect the cradle. This is in contrast with the
conservation laws, for only a fraction of the momentum would
be transferred from the first colliding sphere; in any case, why
Newton’s cradle works, as it indeed does, is a well-settled issue
[1–3].

In this paper a different system is considered, namely a
chain of N masses connected by elastic massless springs, such
as that shown in Fig. 1, looking for the possibility that it
behaved in an analogous way, by this meaning that an initial
“pulse” located on the first mass travels along the chain and
reaches the last mass yielding a mirror image of the initial
configuration. This requirement is far from trivial. The simplest
choice, namely a uniform chain with identical masses and
identical springs, must be ruled out, since it is easily proven
that it cannot coherently transfer a pulse between its ends [4].
Indeed, only if the frequencies of the normal modes involved
in the dynamics had a greatest common divisor, i.e., they were
integer multiples of a finite frequency δω ≡ π/T , then after
a time 2T the system would be exactly back to the initial
configuration and (provided the chain be mirror symmetric)
at T the initial pulse would be found at the opposite end. The
uniform chain does not possess the above requisite, because
its frequencies ωn ∝ sin(cn), with c constant and n integer,
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cannot have a common divisor: An initial pulse would undergo
dispersion giving rise to a seemingly chaotic dynamics.

In order to achieve dispersionless pulse transmission, most
studies have been considering nonlinear chains: A uniform
array with suitable anharmonic terms can indeed support the
propagation of localized wave packets, sometimes dubbed
breathers [4–6]. However, the goal of coherent transmission
can be attained without invoking nonlinearity but rather al-
lowing for a slight modification from uniformity. An optimal
choice of the two masses and of the spring between them
at both chain ends results in an almost-coherent dynamics,
with the initial pulse traveling along the uniform bulk of the
chain and reconstructing itself with high fidelity at the opposite
end, thereafter bouncing back and forth many times, just as
the Newton cradle does, with the difference that propagation
along the chain takes a finite time, proportional to its length.
The optimal masses and spring values depend on N , but,
remarkably, the transmission quality is almost independent of
N : Beyond N ∼ 60 it even improves for increasing N . For
N → ∞ the optimized parameters can be studied analytically,
showing that the amplitude loss on transmission tends to
1.28%, a result confirmed by a numerical approach, necessary
for finite N . Among many experimental papers, Ref. [7]
considers a setup, involving an ion chain which is kicked at
one end, that is quite similar to the model studied here. In this
experiment it appears that the chain is well isolated from the
environment, so that friction can be assumed to be negligible.

The classical spring-mass chain can be realized in alter-
native ways, such as a sequence of bars or disks connected
by torsion wires, or an electrical circuit with capacitors and
inductances, where the role of the masses is played by the
moments of inertia or by the inductances, respectively.

In Sec. II the spring-mass chain model is presented and de-
scribed in terms of dimensionless parameters; the transmission
amplitude is introduced as the relevant quality factor, which can
be maximized to 100% in the analytically solvable cases with
N � 5. A general analytical approach to the normal modes
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FIG. 1. A perfect cradle with a 4-mass chain. The first and fourth
masses are 5/3 of the internal ones, while the external springs’
constants are 5/6 of the internal one: This setup yields perfect
end-to-end transmission (see Sec. II C). The auxiliary (green) external
masses, equal to the first and last ones, behave just like in a Newton’s
cradle, except for the finite transmission time. In Sec. V it is shown
that chains of arbitrary length can behave almost in the same way if
the extremal mass and spring values are chosen according to Table II.

of the quasiuniform chain for any N is used in Sec. III to
evaluate the main ingredient for calculating the transmission
amplitude, namely the mode density describing how much the
different normal modes are excited by the initial pulse. In
Sec. IV the behavior of the optimized parameters is studied
when varying one extremal mass only, while in Sec. V the
transmission is shown to be strongly improved by optimizing
two extremal masses and their connecting spring. Section VI
contains a summary of the achievements and suggestions for
possible applications.

II. TRANSMISSION IN THE SPRING-MASS CHAIN

A. The model

Consider a chain of masses connected by springs whose
Hamiltonian reads

H =
N∑

i=1

P 2
i

2mi

+ 1

2

N∑
i=0

Ki,i+1(Qi − Qi+1)2, (1)

with Q0 = QN+1 = 0, i.e., the extremal springs K01 and
KN,N+1 connect each one of the masses m1 and mN to a fixed
point, say a “wall.” Performing the canonical transformation
to mass-weighted variables, Pi = pi

√
mi and Qi = qi/

√
mi ,

the Hamiltonian turns into

H = 1

2

N∑
i=1

p2
i + K

2m

N∑
i,j=1

Bij qiqj , (2)

where m and K are the “typical” mass and elastic constant,
and the dimensionless N×N matrix B is symmetric and
tridiagonal,

B = m

K

⎡
⎢⎢⎢⎢⎢⎢⎣

K01+K12
m1

− K12√
m1m2

0 . . .

− K12√
m1m2

K12+K23
m2

− K23√
m2m3

0 − K23√
m2m3

K23+K34
m3

. . .
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

N

; (3)

and its elements are

Bii = m

K

Ki−1,i+Ki,i+1

mi

,

Bi,i+1 = −m

K

Ki,i+1√
mimi+1

= Bi+1,i . (4)

The chain is assumed to be mirror symmetric, i.e., the
transformation i → N+1−i is a symmetry,

Ki,i+1 = KN−i,N−i+1, mi = mN+1−i , (5)

or Bij = BN+1−i,N+1−j , and, more importantly, the bulk of the
chain is assumed to be uniform, i.e., the elastic constants and
the masses are all equal to the typical values, except for a few
ones at the endpoints: In particular, only the first (and last)
two masses, m1 = mN and m2 = mN−1, as well as the springs
attached to m1 and mN , K01 = KN,N+1 and K12 = KN−1,N ,
can differ from the typical values, while

m3 = m4 = · · · = mN−2 = m,

K23 = K34 = · · · = KN−2,N−1 = K. (6)

The bulk elements of B are then Bii = 2 and Bi,i±1 = −1; it
is more convenient to deal with the matrix A ≡ 2 − B, which
has a vanishing bulk diagonal,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z x

x 0 y

y 0 1
1 0 1

. . .
. . .

. . .
1 0 y

y 0 x

x z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N

. (7)

The advantage of considering an almost-uniform chain is that
the diagonalization of the quasiuniform matrix A(x,y,z) can
be analytically afforded [8,9].

When writing the matrix A in the form (7) a further
constraint has been implicitly imposed, namely that A22 be
vanishing: Indeed, the four nonuniform parameters m1, m2,
K01, and K12 are determined by three dimensionless variables
x, y, and z. By comparing with the matrix elements B23, B22,
B12, and B11 in Eq. (3) one has

y =
√

m

m2

x = m

K

K12√
m1m2

2 = m

K

K12 + K

m2

z = 2 − m

K

K01 + K12

m1
,

(8)

the second equality expressing the constraint mentioned above.
There will be no ambiguity if, from now on, one assumes the
typical values as measure units (equivalent to settingm = 1 and
K = 1), so the time unit is

√
m/K . The physical parameters

can be expressed in terms of the variables (x,y,z):

m2 = 1

y2

m1 = (2−y2)2

x2y2

K12 = 2−y2

y2
= 2m2 − 1

K01 = 2−y2

x2y2
[(2−y2)(2−z) − x2].

(9)
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Since these physical parameters have to be positive, the
possible values of the variables have constraints:

0 < y <
√

2, x > 0,

z � z0 ≡ 2 − x2

2−y2
.

(10)

Note that if x2 > 2 (2−y2), then z has to be negative. When
z = z0 the chain-wall elastic constant K01 vanishes and the
chain is isolated or free. In order that all elastic constants be
equal, it is necessary that y = 1 and that z = 2(1−x2).

The chain has two different uniform limits, both with equal
masses and equal internal elastic constants:

(x,y,z) = (1,1,1) uniform free (uf),

(x,y,z) = (1,1,0) uniform bounded (ub),

namely, the chain without or with the spring connecting to the
external walls, K01 = 0 or 1; in the first case the chain has to
have a zero-frequency (Goldstone) mode.

Let U = {Uni} be the orthogonal matrix that diagonalizes A
(and, of course, also B = 2 − A),∑

ij

UniAijUmj = λn δnm. (11)

Then, the diagonal form of the Hamiltonian (2) reads

H = 1

2

N∑
n=1

(
p2

n + ω2
n q2

n

)
, (12)

with the eigenfrequencies

ωn =
√

2−λn (13)

and the normal-mode coordinates and momenta

qn =
N∑

i=1

Uni qi, pn =
N∑

i=1

Uni pi. (14)

For given initial conditions q(0) = x and q̇(0) = v, the
chain dynamics is a superposition of the motions of the normal
modes,

qi(t) =
N∑

n=1

Uni

(
xn cos ωnt + vn

ωn

sin ωnt

)
, (15)

where xn and vn are the normal-mode initial values obtained
as in Eq. (14).

B. Transmission amplitude

The goal is to start from a static configuration where only
the first mass is displaced, q(0) = (x1, 0, 0, . . . , 0), and to look
for values of the chain parameters (9) such that the dynamics
leads in a certain time t∗ as close as possible to the mirror-
symmetric configuration q(t∗) = (0, 0, 0, . . . , x1). With these
initial conditions Eq. (15) becomes

qi(t) = x1

N∑
n=1

UniUn1 cos ωnt. (16)

Now, one can use an interesting property [10] arising from
the mirror symmetry of the matrix A: Assuming that the

eigenvalues {λ1, λ2, . . . , λN } are chosen in decreasing order
[11], it tells that UnN = (−)n−1Un1 = Un1 cos[π (n−1)]. This
gives, for the last mass in the array,

q
N

(t) = x1αN
(t), (17)

where the transmission amplitude

α
N

(t) ≡
N∑

n=1

Pn cos[π (n−1)−ωnt] (18)

has been defined. The positive numbers

Pn ≡ U 2
n1, (19)

satisfying
∑

n Pn = 1 by the orthogonality of U , can be
considered a probability distribution that can be dubbed the
mode density, since they weigh the contribution to α

N
(t) from

each normal mode. The transmission amplitude has the form
of the average over the mode density of time-dependent phase
factors. The difference δ

N
(t) = 1 − α

N
(t) will be dubbed the

transmission loss. Zero loss corresponds to perfect transmis-
sion and can only occur at some time instant t∗ if all phases are
coherent, i.e., they are equal or differ by integer multiples of
2π . For instance, if the eigenfrequencies were equally spaced,
say, ωn = δω (n−1), one would have

α
N

(t) =
N∑

n=1

Pn cos[(n−1)(π − δω t)], (20)

and at the time t∗ = π/δω (and odd multiples of it) there would
be perfect response, α

N
(t∗) = 1, i.e., the starting elongation

would be fully reproduced at the time t∗ in the opposite end of
the chain. Such ideal behavior is, however, almost impossible
in any discrete array, as the frequencies are not equally spaced
and the normal modes will not superpose coherently: This is
the phenomenon of dispersion. Nevertheless, the parameters
(x,y,z) can be tuned in such a way as to get α

N
(t∗

N
) quite close

to 1 at some time t∗
N

, as it will be shown in the following. In this
regime the overall dynamics described by Eq. (16) appears as
the formation of a localized wave packet that travels at constant
velocity along the chain and gives rise to the elongation of the
last mass; in the further evolution the wave packet comes back
to the first mass, and so on, like in a Newton cradle.

One can also imagine a different initial situation, start-
ing from the equilibrium configuration q(0) = 0, but with a
momentum given to the first mass, e.g., by an instantaneous
collision, so that q̇(0) = (v1, 0, . . . , 0), which is the case
experimentally studied in Ref. [7]. The dynamics is wanted
to lead to q̇(t∗) = (0, . . . , 0, v1), meaning that the same mo-
mentum is present at the opposite end. In this case, Eq. (15)
yields

q̇
i
(t) = v1

N∑
n=1

UniUn1 cos ωnt, (21)

and it follows that the relevant ratio q̇
N

(t)/v1 = α
N

(t) between
the transmitted and the initial momentum is given by the same
transmission amplitude (18).

If the chain is free, K01 = 0, then by momentum con-
servation the chain’s center of mass uniformly translates
with velocity V = P1/M , with M = ∑

i mi and P1 = v1
√

m1;
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if transmission is perfect, then the elastic energy is again
zero at time t∗, so all spacings must be preserved, and the
final configuration is shifted by δQ = V t∗. In Eq. (15) this
translation is accounted for by the zero-frequency mode.

Figure 1 shows a possible realization of a mass-spring cra-
dle, involving two auxiliary masses that periodically transmit
and receive momentum by hard-sphere collision with the chain
extrema; the mass on the right is a distance δQ apart. In the
case of N = 4 masses transmission can be perfect, as shown
in the next subsection. The following sections are devoted
to the maximization of the transmission amplitude (18) by
optimizing the values of the parameters (x,y,z). These optimal
values correspond to the extremal masses and springs that yield
almost-perfect transmission also for large N .

C. Perfect transmission for small N

Within the model (8) the chain can yield ideal transmission
if the masses are less than five. Indeed, for isolated chains
(K01 = 0) with three or four masses the free parameters can be
set such as to yield equally spaced frequencies [12]. The same
result can be obtained for N = 5 by allowing for a third free
parameter, i.e., releasing the constraint A22 = 0, equivalent to
the second of the relations (9). Longer chains can be made
“perfect” by allowing for more parameters: Of course, such
“engineered” chains are not uniform. Note that for perfect
chains any initial configuration evolves to itself after the period
2π/δω, where δω is the frequency spacing; if the chain is mirror
symmetric, then after a half period π/δω the perfectly reflected
configuration is attained.

For N = 3 the three masses are (m1,1,m1) and the two
spring constants are (1,1); there is only one adjustable param-
eter, m1. The interaction matrix is

B =

⎡
⎢⎣

x2 −x 0

−x 2 −x

0 −x x2

⎤
⎥⎦, (22)

with x = m
−1/2
1 corresponding to the notation (9) with y = 1.

The eigenvalues of B are solutions of

det(μ − B) = μ (μ−x2) (μ − 2−x2) = 0, (23)

so the eigenvalues are μ1 = 0, μ2 = x2, μ3 = 2+x2, and the
eigenfrequencies ωn = √

μn are equally spaced if ω3 = 2ω2,
i.e., 2+x2 = 4x2, that has the solution x2 = 2/3. So three
masses with two identical springs show perfect transmission
when

m1 = x−2 = 3
2 , (24)

namely the mass sequence is ∝ (3,2,3). The frequency spacing
is ω1 = √

2/3 and the arrival time is t3 = π/ω1 = √
3/2 π 	

3.848.
For N = 4 the sequence of masses is (m1,m2,m2,m1), con-

nected by the spring constants (K12,1,K12), so the interaction
matrix is

B =

⎡
⎢⎢⎢⎣

w −x 0 0

−x 2 −y2 0

0 −y2 2 −x

0 0 −x w

⎤
⎥⎥⎥⎦, (25)

where w ≡ x2/(2−y2); it is convenient to set r ≡ 2−y2,
so x2 = wr . The secular equation, 0 = det(λ − B), is easily
worked out and reads

0 = [(μ−w)(μ−2) − x2]2 − (μ−w)2y4

= μ [μ − (w+r)][μ2 − μ(w+4−r) + 2w(2−r)]; (26)

the eigenvalues of B are given, in the increasing order μ1 <

μ2 < μ3 < μ4, by

μ1 = 0

μ3 = w+r

μ2 + μ4 = w+4−r

μ2 μ4 = 2w(2−r).
(27)

In order that the frequencies ωn = √
μn be equally spaced one

has to require μn = (n−1)2μ2, giving

μ4 + μ2 = 5
2 μ3, μ4 μ2 = 9

16 μ2
3, (28)

which in terms of the parameters r and w reduce to the linear
system

3w + 7r = 8, 2w + r = 2. (29)

The solution is r = 10/11 and w = 6/11, hence y2 = 12/11
and x = √

60/11, so the 4-mass perfectly transmitting chain
must have

m1 = 55
36 , m2 = 11

12 , K12 = 5
6 . (30)

Basically, the mass sequence has to be ∝ (5,3,3,5) and
the spring sequence ∝ (5,6,5). The frequency spacing is
ω1 = √

w+r/2 = 2/
√

11, which entails the arrival time t4 =
π/ω1 = √

11π/2 	 5.210.
Also for N = 5 a perfect solution is known:

m1 = 35
18 , m2 = 10

9 , K12 = 7
9 . (31)

It is reported in Ref. [12] without proof (here given in Appendix
A); the frequencies are ωn = (n−1)/

√
5 for n = 1, . . . ,5, and

entail the arrival time t5 = √
5π 	 7.025. However, this solu-

tion does not belong to the constrained model (8) considered
in this paper in order to deal with the quasiuniform matrix (7).

III. ANALYTIC APPROACH

A. Characteristic polynomial and phase shifts

The N th-degree characteristic polynomial associated with
the N×N matrix A [Eq. (7)] is given by

χ
N

(λ; x,y,z) ≡ det[λ − A(x,y,z)]; (32)

by expanding it in the last column, one finds

χ
N

= [(λ−z)λ − x2]ξ
N−2 − (λ−z)y2ξ

N−3 , (33)

where ξ
N

is the characteristic polynomial of the matrix with
only one nonuniform endpoint,

ξ
N

(λ; x,z) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ − z −x

−x λ −y

−y λ −1
. . .

. . .
. . .

−1 λ −1
−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣
N

. (34)
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The same kind of expansion in the first column gives a similar
relation,

ξ
N

= [(λ−z)λ − x2]η
N−2 − (λ−z)y2η

N−3 , (35)

in terms of the characteristic polynomials

η
N

(λ) ≡ χ
N

(λ; 1,1,0) (36)

of the fully uniform matrices A
N

(1,1,0), which correspond to
the uniform-bounded chain. These polynomials are well known
in the literature, as their roots can be obtained in a simple way:
By column expansion one has the recursion relation

η
N

= λ η
N−1 − η

N−2 , (37)

which, using the initial conditions η0 = 1 and η1 = λ, can be
solved in terms of Chebyshev polynomials of the second kind:
Using, in the place of λ, the real variable k ∈ [0,π ] given by

λ ≡ 2 cos k = eik + e−ik (38)

they can be synthetically expressed as

η
N

(λ) = sin(N+1)k

sin k
= Im{ei(N+1)k}

sin k
. (39)

Hence, for the uniform-bounded chain, that has the secular
equation η

N
(λ) = 0, the N eigenvalues correspond to the

following values of k:

k(ub)
n = π n

N+1
, (n = 1, . . . ,N). (40)

Note that, keeping the notation (38), in terms of the pseudo
wave vector k the system frequencies (13) read

ωk = √
2 − 2 cos k = 2 sin

k

2
. (41)

For k � 1 (i.e., n� N ) they are almost linear in k and equally
spaced in n, i.e., ωk 	 k ∝ n, meaning that wave packets with
main components in the small-k zone travel with low dispersion
along the chain. This corresponds to the continuum limit,
namely the elastic string.

In order to work out Eq. (33) one first uses Eq. (35)

χ
N

= (λ2−zλ−x2)[(λ2−zλ−x2)η
N−4 − (λ−z)y2η

N−5 ]

− (λ−z)y2[(λ2−zλ−x2)η
N−5 − (λ−z)y2η

N−6 ],

and then by Eq. (39),

sin kχ
N

(k) = Im
{
ei(N+1)ku2

k

}
, (42)

where

uk ≡ e−2ik[(λ2−zλ−x2) − (λ−z)y2e−ik] (43)

is a complex variable whose dependence on k can be made
fully explicit using Eq. (38),

uk = 1 − ze−ik + (2−x2−y2)e−2ik

− z(1−y2)e−3ik + (1−y2)e−4ik. (44)

Equation (42) yields a compact expression of the secular
equation, χ

N
(k) = 0. For instance, in the uniform-bounded

case it is uk = 1, so its solution (40) is immediate. Setting

uk ≡ |uk| e−iϕk , (45)

the secular equation reads Im{ei[(N+1)k−2ϕk ]} = 0, so that the
eigenvalues λn = 2 cos kn correspond to those values of k = kn

such that (N+1)k − 2ϕk = π n and are given as corrections
to the uniform-bounded values, Eq. (40), due to the phase
shifts ϕk ,

kn = π n + 2ϕkn

N+1
, (n = 1, . . . ,N). (46)

By the way, this determines the sign of the real quantity in
braces in Eq. (42),

ei(N+1)knu2
kn

= eiπn
∣∣ukn

∣∣2 = (−)n
∣∣ukn

∣∣2
. (47)

Note that there is a one-to-one correspondence between the
N allowed values {kn} and the indices n = 1, . . . ,N , so it is
unambiguous to use the index k in the place of n, as mostly
done in the following.

B. The mode density has to be peaked at k = 0

The mode density (19) is calculated in Appendix B, where it
is shown that a compact expression can be worked out, namely:

Pk = 2x2y2 sin2 k

(N+1−2ϕ′
k) |uk|2 . (48)

In the uniform-bounded limit, where uk → 1 and ϕk → 0, this
agrees with the known result.

After the discussion of Sec. II B, it is clear that a high
transmission amplitude can be obtained only if the normal
modes selected by Pk , lie in a zone where the frequencies (41)
are almost equally spaced. This happens in the “linear region”
around k = 0, meaning that the parameters (x,y,z) have to be
chosen such that Pk be peaked around k = 0. Due to the sine
function in Eq. (48), for Pk=0 to be at least finite it must be
uk=0 = 0, i.e.,

1 − z + (2−x2−y2) − z(1−y2) + (1−y2) = 0. (49)

To satisfy this it is natural to keep x and y as free parameters,
while fixing the value of z,

z(x,y) ≡ 2 − x2

2−y2
. (50)

Note that the second of Eqs. (9) tells that this implies K01 = 0:
The chain ends do not interact with the walls. In other words, it
has been found that a requisite for coherent pulse propagation
is that the spring-mass chain be isolated. From now on the
condition (50) is assumed to hold.

As (44) shows that uk is a polynomial in e−ik , one can extract
from uk the factor (1−e−ik), obtaining

uk = (1−e−ik)ũk ≡ 2 sin
k

2
e−i(k−π)/2ũk, (51)

with

ũk ≡ 1 − (1−w)e−ik−(1−w)(y2−1)e−2ik+(y2−1)e−3ik,

(52)

where the new parameter

w ≡ x2

2−y2
, (53)

here introduced for brevity, will be useful in the following.
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C. Phase shifts for the free chain

The case x = y =1 with the choice (50) is to be under-
stood as the uniform-free limit, since z(1,1)=1. This means
that ũk = 1 and Eq. (51) tells that the phase shifts (45) are
ϕk = (k−π )/2. From Eq. (46) the allowed values of k take the
equally spaced values

k(uf)
n = π (n−1)

N
, (n = 1, . . . ,N); (54)

these include the Goldstone mode k1 = 0 with frequency
ω1 = 0, i.e., the translation mode expected for the isolated
chain. As observed in the previous subsection, being ωk 	 k

for k � 1, a situation close to that of perfect transmission,
Eq. (20), would arise if the mode density selected only low-k
modes: Indeed, in Eq. (18) the phases would be

π (n−1)−2t sin kn 	 π (n−1)

N
(N−t). (55)

Actually this is not the case, since in the uniform-free case
the density (48) is peaked in zero, indeed, but consists in a
too-broad distribution [13],

P (uf)
k = 2

N
cos2 k

2
; (56)

the purpose is to vary the parameters x and y in such a way to
deform this density and make it narrower; however, shrinking
Pk too much would definitely be disadvantageous, because the
phase shifts change with x and y and the spacings between
eigenvalues are deformed by Eq. (46). Therefore, one expects
that an optimal compromise will maximize the transmission
amplitude at some arrival time.

The phase ψk of

ũk = |ũk|eiψk (57)

turns out to give the phase-shift correction to the uniform-free
solution (54): Indeed, Eq. (51) gives ψk ≡ (k−π )/2 − ϕk , and
Eq. (46) becomes

kn = π (n−1) − 2ψkn

N
, (n = 1, . . . ,N). (58)

The Goldstone mode k1 = 0 is preserved, since ũk=0 is real and
the corresponding phase shift vanishes, ψk1 = 0.

In the following it will appear to be useful to define, besides
the variable w, Eq. (53), a further variable r ,{

r ≡ 2 − y2

w ≡ x2/r
⇐⇒

{
y2 = 2 − r

x2 = r w
, (59)

so that w and r can be used in the place of x and y; indeed,
it will be proven later that the optimal values of both r and w

decrease as a negative power of N . Note that the uniform limit
corresponds to r = w = 1. In Appendix C the dependence of
the mode density on w and r is worked out and made explicit
in Eq. (C9). By means of it and using the frequencies (41) the
transmission amplitude Eq. (18) is given by

α
N

(t) =
N∑

n=1

Pkn
cos

[
π (n−1) − 2t sin

kn

2

]
. (60)

where the discrete pseudo wave vectors {kn} are the solutions
of Eq. (58). In the following sections these formulas are used

for setting up a numerical approach in order to calculate the
optimal values of the parameters x∗ and y∗ which yield at some
time t∗ the maximum attainable transmission amplitude α∗. In
addition the asymptotic behaviors in the limit of large N will
be exactly derived.

IV. OPTIMIZING ONE MASS

In this section the simpler case when y = 1 (i.e., r = 1 and
w = x2) is considered, which, by Eqs. (9), corresponds to the
mass-spring chain with all spring constants and all masses
equal, except for the first and the last masses,

m1 = mN = 1

x2
. (61)

A. Mode density and phase shifts

Setting r = 1 and w = x2 in Eq. (C9), the density becomes
a pseudo-Lorentzian [13] peaked at k = 0,

Pk = 1

N+2ψ ′
k

�(1+�)

�2 + tan2 k
2

, (62)

with the parameter

� ≡ x2

2−x2
(63)

characterizing the distribution width. A convenient expression
for the phase shifts defined in Eq. (57) is found using Eq. (52),

ũk ≡ |ũk|eiψk = 1 − (1−x2)e−ik

= e−ik/2[eik/2 − (1−x2)e−ik/2]

= e−ik/2

[
x2 cos

k

2
+ i(2−x2) sin

k

2

]
, (64)

so

ψk = tan−1 tan k
2

�
− k

2
; (65)

inserting in Eq. (58) the set {kn} corresponding to the normal
modes is obtained. Note that ψk increases with k, which means
that the kn’s (n> 1) get a negative correction with respect to
the free case and the frequency spacings decrease. Taking the
derivative of ψk ,

2ψ ′
k = (1 − �)

� − tan2 k
2

�2 + tan2 k
2

, (66)

the mode density can be written in fully explicit way,

Pk = �(1+�)

(N�+1−�)� + (N−1+�) tan2 k
2

. (67)

Its exact normalization is a nontrivial outcome that can be
numerically verified, while for N → ∞ this agrees with an
analytic result [14].

B. Frequency spacings and group velocity

From the expression of Pk obtained above, the purpose of
making Pk narrower can be easily achieved by decreasing �,
namely choosing m1 larger than the other masses. However, as
mentioned in Sec. III C, this also affects the phase shifts ψk and
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the spacings between frequencies. In order to appreciate this
effect, one is led to look at (an analog of) the group velocity
(lattice spacings per time unit),

vk = N

π
∂nω = N

π
cos k

2∂nk, (68)

which is indeed proportional to the spacing between subse-
quent values ωn: The more constant is vk , the more likely is
that the initial pulse propagate coherently. In order to highlight
the full dependence of vk on k, note that from (58) one has
(N+2ψ ′

k) ∂nk = π , so

vk = N

N+2ψ ′
k

cos k
2 . (69)

This expression suggests a strategy to improve the transmis-
sion, since one could make vk flatter by a proper choice of a
small �; then, Eq. (66) can be expanded,

2ψ ′
k = 1−�

�
− 1−�2

4�3
k2 + O(k4), (70)

and also the group velocity

vk = N

t∗
1− 1

8k2

1 − 1−�2

4�3t∗ k2
+ O(k4). (71)

Here

t∗ ≡ N + 1−�

�
(72)

represents the end-to-end arrival time: Indeed, an excitation
traveling with the velocity vk=0 = N/t∗ would cover the
distance of N lattice spacings in a time t∗; in the uniform limit
v0 = 1 and t∗ = N : The correction to this value is the delay and
is positive since �< 1. To make vk flat, an obvious choice is
to cancel all quadratic terms in k imposing for � the condition

1−�2

4�3t∗
= 1

8
. (73)

This choice makes the group velocity almost constant in a
rather wide k-interval, but such a criterion could work only if
the involved modes, as weighted by Pk , mainly lie in this flat
region. The first panel of Fig. 2 (N = 50) shows that this is
not the case: While vk becomes particularly flat for the value
that satisfies Eq. (73), � 	 0.30, still the width of Pk is too
large and involves many modes with different group velocities.
Therefore, a sharper distribution must perform better, in spite
of the more deformed group velocity. Figure 2 illustrates
the conflict between the two effects, shrinking of Pk and
deformation of vk . What is to be learned here is that one would
like to optimize two effects, which is hard when having only
one free parameter: Two free parameters are expected to yield
better results, as is shown in Sec. V. In any case, Eq. (73) yields
the large-N behavior

� ∼ 21/3N−1/3, x ∼ 22/3N−1/6, (74)

a scaling that turns out to be correct, though with different
prefactors.

FIG. 2. The group velocity vk (red solid line) and the mode density
Pk (blue dashed lines, arbitrary units) for a chain of 50 masses.
The three panels correspond to � = 0.30, 0.1395, and 0.05. For the
uniform chain (� = 1) vk (dotted line) is initially flat and small-k
modes are almost coherent. Decreasing � selects low-k modes but
also deforms vk , destroying coherence. The middle panel shows the
optimal compromise given in Table I.

C. Transmission amplitude for large N

The transmission amplitude at the time t is given by Eq. (18);
using the frequencies (41), in the large-N limit one can write
the sum as an integral,

α∞(t) = lim
N→∞

∫ N

1
dnPkn

cos

[
π (n−1)−2t sin

kn

2

]
, (75)

with kn given by Eq. (58), which implies

π dn = (N + 2ψ ′
k)dk, (76)

so that

α∞(t) = lim
N→∞

∫ π

0

dk

π

�(1+�)

�2+ tan2 k
2

cos

(
Nk+2ψk−2t sin

k

2

)
.

(77)

Writing the arrival time as t = N + s, where s is the arrival
delay, and setting k = 2q,

α∞(s) = 2�(1+�)

π

∫ π/2

0
dq

cos{2[t(q− sin q) − sq + ψ2q]}
�2 + tan2 q

.

(78)
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TABLE I. Quasiuniform chain: Numerical optimization of the only extremal masses m1 = mN , considered in Sec. IV. For different N

the reported quantities are the optimal parameter x∗ that minimizes the transmission loss δ∗(x) ≡ 1−α∗(x), the corresponding time delay
s∗ ≡ t∗ − N , mass m∗

1, and width parameter �∗. For comparison, the last column reports the transmission loss for the fully uniform chain, i.e.,
for x = 1. Note that for N = 3 the outcome agrees with the perfect transmission analytically found in Sec. II C.

N x∗ δ∗(x∗) s∗(x∗) m∗
1 �∗ δ∗(1)

3 0.8165 0.0000 0.85 1.500 0.5000 0.0292
4 0.7731 0.0041 1.08 1.673 0.4261 0.0608
5 0.7414 0.0083 1.28 1.819 0.3790 0.0900
6 0.7171 0.0123 1.44 1.945 0.3461 0.1161
7 0.6975 0.0160 1.58 2.056 0.3214 0.1395
8 0.6811 0.0193 1.71 2.156 0.3020 0.1606
9 0.6670 0.0223 1.83 2.248 0.2861 0.1796
10 0.6548 0.0251 1.94 2.333 0.2728 0.1969
12 0.6341 0.0299 2.13 2.487 0.2517 0.2274
14 0.6173 0.0341 2.31 2.625 0.2353 0.2535
16 0.6031 0.0377 2.46 2.750 0.2223 0.2762
18 0.5908 0.0409 2.61 2.865 0.2114 0.2962
20 0.5801 0.0437 2.74 2.972 0.2023 0.3141
25 0.5580 0.0496 3.04 3.212 0.1844 0.3516
30 0.5406 0.0544 3.30 3.421 0.1711 0.3817
35 0.5263 0.0583 3.54 3.610 0.1608 0.4067
40 0.5143 0.0617 3.75 3.781 0.1524 0.4280
45 0.5039 0.0646 3.94 3.938 0.1454 0.4464
50 0.4948 0.0671 4.12 4.085 0.1395 0.4626
60 0.4794 0.0714 4.45 4.352 0.1298 0.4898
70 0.4667 0.0749 4.75 4.590 0.1222 0.5122
80 0.4561 0.0778 5.01 4.808 0.1161 0.5310
90 0.4469 0.0804 5.26 5.008 0.1109 0.5471
100 0.4388 0.0826 5.49 5.194 0.1065 0.5612
150 0.4090 0.0906 6.45 5.977 0.09129 0.6121
200 0.3892 0.0958 7.21 6.602 0.08195 0.6452
250 0.3745 0.0996 7.86 7.130 0.07541 0.6692
300 0.3629 0.1026 8.42 7.593 0.07049 0.6877
350 0.3534 0.1049 8.93 8.008 0.06660 0.7027
400 0.3454 0.1069 9.39 8.385 0.06342 0.7151
450 0.3384 0.1086 9.81 8.731 0.06074 0.7256
500 0.3323 0.1100 10.20 9.054 0.05845 0.7348
600 0.3221 0.1124 10.92 9.639 0.05471 0.7499
700 0.3137 0.1144 11.56 10.164 0.05174 0.7621
800 0.3066 0.1160 12.14 10.640 0.04931 0.7722
900 0.3004 0.1174 12.67 11.079 0.04727 0.7807
1000 0.2951 0.1186 13.17 11.486 0.04551 0.7881
2000 0.2621 0.1255 16.91 14.559 0.03556 0.8311
3000 0.2446 0.1289 19.53 16.717 0.03083 0.8522
4000 0.2329 0.1310 21.63 18.436 0.02788 0.8656
5000 0.2242 0.1326 23.39 19.889 0.02579 0.8752
10000 0.1994 0.1368 29.80 25.158 0.02028 0.9008
20000 0.1773 0.1401 37.88 31.804 0.01597 0.9212
30000 0.1656 0.1417 43.55 36.465 0.01390 0.9311
40000 0.1578 0.1428 48.06 40.180 0.01260 0.9374
50000 0.1520 0.1435 51.87 43.311 0.01168 0.9419
100000 0.1350 0.1455 65.76 54.870 0.00920 0.9539
500000 0.1032 0.1486 113.3 93.895 0.00535 0.9730

N → ∞ 0.9173 N− 1
6 0.1531 1.444 N

1
3 1.188 N

1
3 0.4207 N− 1

3 1.0000
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As by increasing N the distribution gets narrower and narrower
(�∼ N−1/3), it is convenient to make the substitution q = �ξ

to an integration variable ξ of the order of unity and then expand
in � keeping all leading terms:

2t (q − sin q) 	 1

3
t �3ξ 3,

ψ2q = tan−1 tan q

�
− q 	 tan−1 ξ,

�dq

�2 + tan2 q
	 dξ

1 + ξ 2
.

(79)

It is then natural to define rescaled counterparts of the arrival
time t 	 N and of the delay s ∼ N1/3,

τ ≡ �3

3
t, σ ≡ 2�s. (80)

Optimizing � is now converted into optimizing τ , i.e., the
coefficient of the asymptotic scaling law for � vs. t 	 N . The
final asymptotic expression is

α∞(τ,σ ) = 2

π

∫ ∞

0
dξ

cos(τξ 3 − σξ + 2 tan−1 ξ )

1 + ξ 2
. (81)

Using the variable ζ = tan−1 ξ , such that dξ = (1+ξ 2)dζ , the
integral becomes a summation of phase factors,

α∞(τ,σ ) = 2

π

∫ π/2

0
dζ cos(τ tan3 ζ − σ tan ζ + 2ζ ), (82)

and it is evident that the largest amplitude corresponds to the
parameters that minimize the phase, namely the argument of
the cosine. The same integral appeared in a different context in
Ref. [15], where it was evaluated numerically: The maximum
attainable amplitude amounts to

α∗
∞ = 0.846902 (83)

and corresponds to σ ∗ = 1.2152 and τ ∗ = 0.02483. From
Eq. (80) it follows that

�∗ 	 0.4208N−1/3, s∗ 	 1.444N1/3; (84)

hence, by Eqs. (63) and (61), the variable x and the correspond-
ing extremal mass m1 scale as

x∗ 	
√

2� 	 0.9173N−1/6

m∗
1 = 1

x2
	 1.188N1/3.

(85)

D. Numerical results for finite N

The numerical results have been obtained by a code that,
for given N and x, first evaluates and stores the set {kn} from
Eqs. (58) and (65) by an iterative algorithm and then uses the
density (67) to compute the amplitude α(s,x), Eq. (60), at dif-
ferent time delays s ≡ t − N finding the maximal α∗[s∗(x),x];
then an outer loop varies x until finding the best among
these maxima, α∗[s∗(x∗),x∗], so identifying the optimal x∗
and related delay s∗(x∗). The outcomes for a choice of finite
values of N are reported in Table I and illustrated in Figs. 3, 4,
and 5. There, the optimal amplitude loss δ∗ = 1 − α∗, which
tends to zero in the case of perfect transmission, is reported

FIG. 3. Minimal transmission loss δ∗ ≡ 1−α∗ reported vs. N

for the three cases: the uniform chain (green triangles), the chain
with optimization of one mass m1 (Sec. IV, blue squares), and that
with optimization of two masses and their spring, m1, m2, and K12

(Sec. V, red circles). The asymptotic limits are 1, 0.1531, and
0.01285, respectively. Open symbols are enlargements of the last two
cases; the curves are splines. The fully uniform chain is evidently
very dispersive, while the optimization of few parameters proves to
enormously enhance the quality of transmission: Even in the limit
of a (frictionless) infinite chain it is possible to efficiently transmit a
pulse.

in the place of α∗: The loss increases with N and reaches
the asymptotic value δ∗

∞ = 0.153098 according to the above
calculation. The last column of Table I is the amplitude loss for
the fully uniform chain (x = 1), also shown in Fig. 3: It appears
that the bare modulation of the extremal masses yields an
enormous improvement for any N . For instance, in a 20-mass
chain the loss can be reduced from 31% to 4.4%.

FIG. 4. Optimal parameters x∗ and y∗, defined in Eqs. (9),
reported vs. N in the case of Sec. IV, for which y = 1 is fixed (blue
squares), and the case of Sec. V (red circles). The curves are the
large-N asymptotics of Eqs. (85) and (101).
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FIG. 5. Optimal mass- and spring parameters m∗
1, m∗

2, and K∗
12,

defined in Eq. (1), are reported for the two cases, namely, the chain
of Sec. IV, for which m2 = 1 and K12 = 1 (blue squares) and that
of Sec. V (red circles). The curves are the large-N asymptotics of
Eqs. (85) and (102).

V. OPTIMIZING TWO MASSES AND THEIR SPRING

A. Transmission amplitude for large N

It will be justified at the end of this section that to attain
maximal transmission, at least in the large-N limit, the de-
nominator of the mode density (C9) must be quartic, namely
of the type of Eq. (89) below. To satisfy this assumption one
has to impose, between the parameters r and w, the following
constraint:

r2(2−w)2 − 32(1−r)w = 0. (86)

Looking for w(r) satisfying Eq. (86), one finds

w = 2

(
1−√

1−r

1+√
1−r

)2

= 2

r2
(1 − √

1−r)4, (87)

the first expression being useful for the numerics, the second
for expanding: For small r it gives w = r2

8 (1 + r + . . . ) and the
fact that x2 = rw 	 r3/8 suggests that for large N the optimal
values of r and w(r) tend to zero. Accounting for the choice
(86) one can simplify the denominator of the distribution (C9)
and write it as

Pk = 1

N+2ψ ′
k

× 2(2−r)rw

(2−r)2w2 + 32(1−r)(w tan2 q+2 sin2 q) sin2 q
,

(88)

where w = w(r) as given as in Eq. (87) and k = 2q. This
density can be expanded, taking into account Eq. (87), and
the relevant terms are

Pk 	 1

N

4r3/8

r4/16 + 64q4
	

√
2

N

�3

�4 + q4
, (89)

where the half-width at half maximum is now defined as

� ≡ r

4
√

2
. (90)

Proceeding as in Sec. IV C, the large-N transition amplitude
can then be transformed into the integral

α∞(t) = 2
√

2�3

π

∫ π/2

0
dq

cos{2[t(q− sin q)−sq+ψ2q]}
�4 + q4

,

(91)

where again the arrival time is t = N + s, with the delay
s. Note the qualitative difference represented by the quartic
distribution. Expanding Eqs. (C1) gives Ik 	 kr and Rk 	
2w−2k2, so the asymptotic behavior of the phase shift (C2) is

ψ2q 	 tan−1 2qr

r2/4−8q2
	 tan−1

√
2 ξ

1 − ξ 2
, (92)

which replaces the second of Eqs. (79) and here again q = �ξ .
Using the rescaled variables (80) gives

α∞(t) = 2
√

2

π

∫ ∞

0
dξ

cos
(
τξ 3−σξ + 2 tan−1

√
2 ξ

1−ξ 2

)
1 + ξ 4

. (93)

It is again convenient, for the numerical evaluation, to perform
the substitution ξ = tan ζ , so

2ξ

1−ξ 2
= 2 tan ζ

1− tan2 ζ
= tan 2ζ , (94)

yielding

α∞(τ,σ ) = 2
√

2

π

∫ π/2

0
dζ

1+ tan2 ζ

1+ tan4 ζ
cos θ (ζ )

θ (ζ ) ≡ τ tan3 ζ − σ tan ζ + 2 tan−1 tan 2ζ√
2

; (95)

the same integral appears, though in a different context,
in Ref. [8]. At variance with Eq. (82), this sum of phase
factors cos θ (ζ ) is weighted by a prefactor that becomes small,
∼(tan ζ )−2, in the region ζ � π/4 of large oscillations, so it
is to be expected that larger values of α∞ can be attained. In
order to give an idea of the kind of integral one is dealing
with, Fig. 6 reports the integrand of Eq. (95) for the values
which eliminate first- and third-order terms of θ (ζ ), namely
σ = 23/2 and τ = 23/2/3, and for those values which yield
the global maximum. The (algebraic) area below the curves
is just α∞(τ,σ ). It is clear that the main point is in avoiding
for as long as possible the onset of the rapid oscillations rather
than setting the phase close to zero for small ζ . It turns out
that for any fixed σ , α∞(τ,σ ) has a maximum, i.e., the loss
δ∞(τ,σ ) = 1 − α∞(τ,σ ) reported in Fig. 7 has a minimum
at τ = τm(σ ). Repeating for different σ one can find that the
overall minimum of δ∞[σ,τm(σ )] is

δ∗
∞ = 1 − α∗

∞ = 0.012847, (96)

corresponding to the asymptotic transmission amplitude

α∗
∞ = 0.987153, (97)

and occurs when

σ ∗ = 3.1645, τ ∗ ≡ τm(σ ∗) = 0.15545; (98)
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FIG. 6. Integrand of Eq. (95) for the parameter pair (τ,σ ) that
cancels the linear and cubic terms in the phase of Eq. (95) (blue, thin
line) and that (red, thick line) which maximizes α∞(σ,τ ). The dashed
curve is the weighting function.

as expected, using two adjustable parameters in the place of
one strongly improved the transmission found in Sec. IV C.
The scaling of Eq. (80) tells that asymptotically

�∗ 	 0.77548N−1/3, s∗ 	 2.0403N1/3. (99)

The optimal values of the parameters r and w behave as

r∗ 	 4.3868N−1/3, w∗ 	 2.4055N−2/3, (100)

entailing that

x∗ 	 3.2484N−1/2, y∗ 	
√

2 − 1.5510N−1/3. (101)

FIG. 7. Minimization of the asymptotic transmission loss
δ∞(σ,τ ). First, for different σ ’s one finds the values τm(σ ) (blue line,
left y axis) that minimize δ∞ ≡ 1 − α∞ to the value δ∞[σ,τm(σ )] (red
line, right y axis); the latter has its global minimum for σ = σ ∗.

For the optimal masses and spring, Eq. (9), one finds

m∗
1 = r

(2−r)w
	 0.9118N1/3

m∗
2 = 1

2−r
	 1

2
+ 1.0967N−1/3

K∗
12 = r

2−r
	 2.1934N−1/3.

(102)

Therefore, the best transmitting chain has a larger first mass,
while the second is about one half the bulk ones, and the spring
connecting them has to be weak, inversely proportional to m1.
The above asymptotic behaviors are reported in Figs. 3–5.

Note that without the assumption (86) the density de-
nominator would have a quadratic term and the dominant
part, Eq. (89), would have the same form of the preceding
section, leading to a similar asymptotic integral and to a much
worse limit of the transmission amplitude: This justifies the
elimination of the k2 terms by means of the constraint (87), as
also confirmed by the numerical results presented below.

B. Numerical results for finite N

The optimal values of r and w which maximize the
transmission amplitude have been numerically evaluated for
different values of N , as reported in Table II. Note that for
each pair (r,w) the algorithm has first to evaluate the allowed
kn, which is done for each n by iterating Eq. (58) starting
from the estimate kn = π (n−1)/N and using the expression
(C2) for the shift ψk; then, the maximum of α

N
(t), Eq. (18), is

found by scanning on the arrival delay s = t−N and taking the
maximal value α

N
(N+s). By studying these values on the (r,w)

plane (i.e., the numerical code contains three nested loops for s,
w, and r , respectively) the optimized transmission maximum
α∗(N+s∗) corresponding to the values r∗ and w∗ has been
found. The numerical outcomes shown in Fig. 8 confirm the
conjecture that w∗ approaches, for large N , the value w(r∗)
which makes the mode density quartic. The corresponding
transmission loss is reported in Fig. 3: At variance with the
monotonic increase with N found in the preceding section,
the transmission loss displays maximum δ∗ 	 0.0157 at about
N 	 60, followed by a decrease towards the asymptotic value.
The related parameters x∗ and y∗, as well as those of the two
masses and spring are shown in Figs. 4 and 5, respectively.

In Fig. 9 the shapes of the optimal mode density for N =
20 and N = 100 can be compared with the exact frequency
spacings δωn = ωn − ωn−1, explaining the basic mechanism of
coherence: Lowering r shrinks the density involving smaller-k
modes, but also deforms the frequency spacings, and there is a
best compromise between the two effects. Note that Nδωn/π

corresponds to the “group velocity” (71), whose value for the
uniform chain is reported as a dashed line.

VI. CONCLUSIONS

Highly efficient pulse transmission over a uniform discrete
elastic system, modelized as a chain of N masses connected by
springs, has been shown to be possible irrespective of N just
by symmetrically modifying, at both chain ends, two masses
and the spring between them. This result is far from trivial,
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TABLE II. Quasiuniform chain: Numerical optimization of the two extremal masses, m1 = mN and m2 = mN−1, and of the spring in
between K12 = KN−1,N , considered in Sec. V. For different N the reported quantities are the optimal parameters r∗ and w∗ which minimize the
transmission loss δ∗(r,w) ≡ 1−α∗(r,w) and the associated time delay s∗ ≡ t∗ − N . The last three columns report the corresponding optimal
masses and elastic constant, Eq. (102). Note that for N = 3 and N = 4 perfect transmission is found, in agreement with Sec. II C.

N r∗ w∗ δ∗(r∗,w∗) s∗ m∗
1 m∗

2 K∗
12

3 1.0000 0.6667 0.00000 0.85 1.500 1.0000 1.0000
4 0.9091 0.5455 0.00000 1.21 1.528 0.9167 0.8333
5 0.9151 0.5024 0.00304 1.40 1.679 0.9218 0.8435
6 0.9003 0.4610 0.00505 1.59 1.776 0.9093 0.8187
7 0.8853 0.4273 0.00664 1.77 1.859 0.8971 0.7942
8 0.8718 0.3996 0.00794 1.93 1.933 0.8863 0.7727
9 0.8595 0.3764 0.00902 2.08 2.002 0.8768 0.7536
10 0.8483 0.3565 0.00991 2.22 2.066 0.8683 0.7366
12 0.8285 0.3241 0.01130 2.47 2.182 0.8536 0.7073
14 0.8115 0.2986 0.01230 2.70 2.287 0.8414 0.6828
16 0.7965 0.2779 0.01305 2.91 2.382 0.8309 0.6619
18 0.7832 0.2606 0.01361 3.10 2.470 0.8218 0.6437
20 0.7713 0.2460 0.01405 3.28 2.552 0.8138 0.6277
25 0.7457 0.2173 0.01478 3.69 2.736 0.7973 0.5946
30 0.7248 0.1961 0.01519 4.04 2.898 0.7842 0.5684
35 0.7071 0.1797 0.01544 4.36 3.044 0.7735 0.5469
40 0.6917 0.1665 0.01559 4.65 3.176 0.7644 0.5288
45 0.6782 0.1555 0.01568 4.91 3.299 0.7566 0.5131
50 0.6661 0.1463 0.01572 5.16 3.413 0.7497 0.4994
60 0.6453 0.1316 0.01575 5.61 3.620 0.7382 0.4763
70 0.6277 0.1202 0.01572 6.02 3.805 0.7287 0.4574
80 0.6125 0.1111 0.01567 6.38 3.974 0.7207 0.4414
90 0.5992 0.1036 0.01561 6.72 4.130 0.7139 0.4277
100 0.5873 0.0972 0.01555 7.04 4.275 0.7079 0.4157
150 0.5421 0.0761 0.01524 8.36 4.883 0.6859 0.3718
200 0.5106 0.0639 0.01499 9.42 5.368 0.6714 0.3428
250 0.4866 0.0557 0.01479 10.31 5.778 0.6608 0.3215
300 0.4673 0.0497 0.01464 11.10 6.136 0.6525 0.3049
350 0.4513 0.0451 0.01451 11.80 6.457 0.6457 0.2914
400 0.4376 0.0415 0.01440 12.44 6.749 0.6400 0.2801
450 0.4257 0.0385 0.01431 13.03 7.018 0.6352 0.2704
500 0.4152 0.0361 0.01423 13.58 7.267 0.6310 0.2620
600 0.3973 0.0321 0.01410 14.57 7.720 0.6240 0.2479
700 0.3826 0.0291 0.01400 15.47 8.125 0.6183 0.2365
800 0.3700 0.0267 0.01392 16.28 8.493 0.6135 0.2270
900 0.3592 0.0248 0.01385 17.02 8.832 0.6095 0.2189
1000 0.3496 0.0232 0.01379 17.72 9.146 0.6059 0.2119
2000 0.2911 0.0148 0.01347 22.96 11.52 0.5852 0.1703
3000 0.2603 0.0114 0.01333 26.65 13.18 0.5748 0.1496
4000 0.2400 0.0094 0.01325 29.59 14.51 0.5682 0.1364
5000 0.2252 0.0081 0.01320 32.07 15.62 0.5634 0.1269
10000 0.1838 0.0051 0.01307 41.10 19.68 0.5506 0.1012
20000 0.1491 0.0032 0.01299 52.49 24.80 0.5403 0.0806
30000 0.1317 0.0025 0.01296 60.48 28.39 0.5352 0.0705
40000 0.1205 0.0021 0.01294 66.85 31.26 0.5321 0.0641
50000 0.1124 0.0018 0.01293 72.22 33.69 0.5298 0.0596
100000 0.0903 0.0011 0.01290 91.75 42.45 0.5236 0.0473
N → ∞ 4.387 N− 1

3 2.406 N− 2
3 0.01285 2.040 N

1
3 0.9118 N

1
3 1

2 +2K12 2.193 N− 1
3

since the dynamics of such a chain is almost invariably affected
by strong dispersion. The main point is in the analysis of the
normal modes which are excited by the initial pulse: Their
frequencies are made almost equally spaced, yielding coherent
transmission, by suitably tuning two free parameters.

A pulse starting from an end of such an elastic chain can
bounce back and forth several times before being “absorbed”
by dispersion. This suggests the possibility of creating a me-
chanical toy similar but alternative to the Newton cradle, e.g.,
like that depicted in Fig. 1. Its behavior would be somewhat
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FIG. 8. Optimal parameters r∗ (red squares) and w∗ (blue circles)
reported vs. N for the chain of Sec. V. The curves are the large-N
asymptotics of Eq. (100). The open circles are the values of the func-
tion w(r∗), Eq. (87): For N � 20 they are almost indistinguishable
from the optimal values w∗ confirming that optimal transmission
requires a quartic mode density.

bizarre due to the large duration of the bounces, of the order
of N

√
m/K (where m and K are the bulk masses and elastic

constants), as it would work also for a long spring-mass chain.
The array of electric LC circuits depicted in Fig. 10 can

also be described by the Hamiltonian (1), with capacitors
and inductors replacing springs and masses, respectively, i.e.,
setting

Ki,i+1 = C−1
i,i+1, mi = Li ; (103)

the role of the coordinate is played by the charge Qi flowing in
each loop yielding the current Ii = Q̇i . For instance, a current

FIG. 9. Mode density Pn (red squares, left y axis) and frequency
spacing δωn = ωn − ωn−1 (blue circles, right y axis) for N = 20
(filled symbols) and N = 100 (open symbols) in the optimized case
with parameters (r∗,w∗) as in Table II. The dashed curve is the
uniform-chain group velocity vk = cos k

2 . Since the mode density has
tiny tails, only modes with almost equally spaced frequencies are
involved in the dynamics.

FIG. 10. The electric circuit equivalent to the spring-mass chain
(1): Capacitances replace the elastic constants, Ci,i+1 ↔ K−1

i,i+1, and
inductances replace the masses Li ↔ mi .

pulse given, e.g., by an external inductive coupling to L1,
would travel back and forth through the electric array, provided
the extremal inductances and capacitances are suitably tuned,
while having the bulk uniform values L and C. The time scale
is

√
LC and the end-to-end time travel is about N times larger.

Other, more useful, applications can exploit the capability
of transferring a concentrated amount of energy between the
chain ends; for instance, one can imagine a wall, constituted
of an array of elastically coupled layers, that could efficiently
transmit heath or sound. The same idea can be transferred to
the nanoscale [16,17], for instance, to atomic chains [7] or
multilayers. For instance, ballistic phonon transport could be
engineered leading to different behavior, e.g., of the thermal
conductance. Finally, it is a suggestive idea that the same
simple mechanism be able to explain some features of energy
transport in biological structures.
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APPENDIX A: PERFECT 5-MASS CHAIN

For N = 5 the interaction matrix (3) reads

B =

⎡
⎢⎢⎢⎢⎢⎣

w −x 0 0 0
−x t −y 0 0

0 −y 2 −y 0
0 0 −y t −x

0 0 0 −x w

⎤
⎥⎥⎥⎥⎥⎦, (A1)

where

w = K12

m1
, t = 1 + K12

m2
,

x = K12√
m1m2

, y = 1√
m2

,

(A2)

and one actually has three free parameters, since w(t−y2) =
x2. This is more general than the model (8), which assumes
t = 2. To proceed, it is convenient to set r ≡ t−y2, so x2 =
wr . Calculated by expanding in the middle row or column,
the determinant giving the secular equation is obtained in
factorized form,

0 = det(μ− B) = P (μ) Q(μ) (A3)
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with

P (μ) = (μ−w)(μ−t) − x2

= μ2 − (w+t)μ + wy2

≡ (μ − μ2)(μ − μ4)

Q(μ) = (μ−2)[(μ−w)(μ−t) − x2] − 2(μ−w)y2

= μ[μ2 − (w+t+2)μ + wy2 + 2(w+r)]

≡ μ(μ − μ3)(μ − μ5); (A4)

the eigenvalues {μn,n = 1, . . . , 5} are in increasing order, and
to obtain equally spaced frequencies ωn = √

μn one imposes
μn = (n−1)2 u, which entails{

μ2 + μ4 = 10u = w + t

μ3 + μ5 = 20u = w + t + 2
=⇒

{
u = 1

5

w + t = 2
. (A5)

and also{
μ2μ4 = 9u2 = wy2

μ3μ5 = 64u2 = wy2+ 2(w+r)
=⇒

{
wy2 = 9

25

w + r = 11
10

. (A6)

It is then straightforward to obtain

w = 2
5 , t = 8

5 , r = 7
10 , x2 = 7

25 , y2 = 9
10 , (A7)

and the result (31) follows.

APPENDIX B: MODE DENSITY

The mode density (19) is given by the square components of
the first column of the orthogonal diagonalizing matrix Uki . For
this quantity Parlett reports a very useful formula (Corollary
7.9.1 of Ref. [18]), namely

Pk ≡ U 2
k1 = χ2:N (λ)

∂λχN
(λ)

= −2 sin kχ2:N (k)

∂kχN
(k)

, (B1)

where χ2:N (k) is the first minor of the determinant (32) and k is
a root of the characteristic polynomial, χ

N
(k) = 0. The minor

coincides with the part that multiplies (λ−z) in Eq. (33),

χ2:N = λξ
N−2 − y2ξ

N−3

= λ[(λ2−zλ−x2)η
N−4 − (λ−z)y2η

N−5 ]

− y2[(λ2−zλ−x2)η
N−5 − (λ−z)y2η

N−6 ]; (B2)

in the second line Eqs. (35) has been used, and then from
Eq. (39),

sin kχ2:N = Im{ei(N−3)k(λ − y2e−ik)

× [(λ2−zλ−x2) − (λ−z)y2e−ik]}
= Im{eiNkakuk}, (B3)

where

ak ≡ e−ik(λ − y2e−ik). (B4)

By deriving Eq. (42) with respect to k one has

∂k[χ
N

(k) sin k]

= sin k∂kχN
(k)

= Im
{
ei(N+1)k

[
i(N+1)u2

k + 2uku
′
k

]}
= (N+1) Re

{
ei(N+1)ku2

k

} + 2 Im{ei(N+1)kuku
′
k}; (B5)

the secular equation entails that the argument of Re is real and
Re can be omitted; then,

sin k∂kχN
(k) =

[
N+1 + 2 Im

{
u′

k

uk

}]
ei(N+1)k u2

k

= [N+1 + 2 Im{∂k ln uk}] ei(N+1)k u2
k

= [N+1 + 2 Im{∂k ln |uk| − iϕ′
k}] ei(N+1)k u2

k

= (N+1 − 2ϕ′
k) ei(N+1)k u2

k. (B6)

The Parlett formula (B1) becomes

Pk = − 2 sin k

N+1−2ϕ′
k

Im{eiNkakuk}
ei(N+1)ku2

k

= 2 sin k

N+1−2ϕ′
k

Im{eikuka
∗
k }

|uk|2 ; (B7)

comparing Eqs. (43) and (B4) one has

uke
2ik = (λ − z)ake

ik − x2 (B8)

and it follows

Im{eikuka
∗
k } = Im{(uke

2ik)(ake
ik)∗}

= Im{(λ − z)|ak|2 − x2(λ − y2eik)}
= x2y2 sin k. (B9)

This yields Eq. (48). Note that

u∗
k u′

k = u∗
k ∂k(|uk| e−iϕk )

= u∗
k e−iϕk (∂k|uk| − i|uk|ϕ′

k)

= |uk|∂k|uk| − i|uk|2ϕ′
k (B10)

implies the identity

|uk|2ϕ′
k = −Im{u∗

k u′
k}, (B11)

and the density can also be written in the alternative form

Pk = 2x2y2 sin2 k

(N+1)|uk|2+2Im{u∗
k u′

k}
. (B12)

APPENDIX C: EXPLICIT EXPRESSION OF Pk

From Eq. (52) one writes the real and imaginary parts of
ũk ≡ Rk + iIk ,

Rk ≡ 1−(1−w) cos k−(1−w)(1−r) cos 2k+(1−r) cos 3k

Ik ≡ (1−w) sin k + (1−w)(1−r) sin 2k − (1−r) sin 3k
(C1)

and since [19]

ψk = tan−1 Ik

Rk

(C2)

it follows that

|ũk|2ψ ′
k = RkI

′
k − R′

kIk. (C3)

An expression analogous to Eq. (B11) holds for ψ ′
k ,

ũ∗
k ũ′

k = ũ∗
k ∂k(|ũk| eiψk )

= ũ∗
k eiψk (∂k|ũk| + i|ũk|ψ ′

k)

= |ũk|∂k|ũk| + i|ũk|2ψ ′
k, (C4)
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while Eq. (51) entails |uk|2 = 4 sin2 k
2 |ũk|2; eventually, the

density (48) turns into

Pk = 2(2−r)rw

N+2ψ ′
k

cos2 k
2

|ũk|2 = 2(2−r)rw cos2 k
2

N |ũk|2+2 Im{ũ∗
k ũ′

k}
. (C5)

Setting k ≡ 2 q and using the identities

cos 3q = cos q(1 − 4 sin2 q),

sin 3q = sin q(4 cos2 q − 1),
(C6)

one has

e3iq ũk = [e3iq + (1−r)e−3iq] − (1−w)[eiq + (1−r)e−iq]

= [(2−r) cos 3q + ir sin 3q] − (1−w)[(2−r) cos q + ir sin q]

= (2−r)(w − 4 sin2 q) cos q − ir(2−w − 4 cos2 q) sin q; (C7)

from this one can work out the square modulus needed to calculate Eq. (C5),

|ũk|2 = (2−r)2(w − 4 sin2 q)2 cos2 q + r2(2−w − 4 cos2 q)2 sin2 q

= (2−r)2[w2 − 8(w−2 sin2 q) sin2 q] cos2 q + r2[(2−w)2 − 8(2−w−2 cos2 q) cos2 q] sin2 q

= [(2−r)2w2 + r2(2−w)2 tan2 q − 32(1−r)(w−2 sin2 q) sin2 q] cos2 q. (C8)

Eventually, from Eq. (C5),

Pk = 1

1 + δk0

1

N+2ψ ′
k

2(2−r)rw

(2−r)2w2 + r2(2−w)2 tan2 q − 32(1−r)(w−2 sin2 q) sin2 q
,

(
q ≡ k

2

)
. (C9)

The first term halves the value of P0 and is needed to restore the correct distribution. The reason for it can be more easily
understood in the uniform limit w = r = 1, where one obtains the density (56), but with the correct value for k = 0 being P0 = 1

N
.

Indeed, an accurate derivation of the free-chain limit z → 1− gives for the lowest k-mode the shift ψk1 	 − (1−z)/k1, and by
Eq. (58) one has k1 	 √

2(1−z)/N → 0; therefore, all shifts and their derivatives ψ ′
k tend to zero, but with the exception of a

finite limit for 2ψ ′
k1

	 2(1−z)/k2
1 → N . Actually, one can analytically verify that with this caveat the distribution (56) is correctly

normalized. It has been numerically checked that the more general distribution (C9) requires the the value at k = 0 to be halved
in order to be exactly normalized.
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