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Rheology of dilute cohesive granular gases
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Rheology of a dilute cohesive granular gas is theoretically and numerically studied. The flow curve between the
shear viscosity and the shear rate is derived from the inelastic Boltzmann equation for particles having square-well
potentials in a simple shear flow. It is found that (i) the stable uniformly sheared state only exists above a critical
shear rate and (ii) the viscosity in the uniformly sheared flow is almost identical to that for uniformly sheared flow
of hard core granular particles. Below the critical shear rate, clusters grow with time, in which the viscosity can
be approximated by that for the hard-core fluids if we replace the diameter of the particle by the mean diameter
of clusters.
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I. INTRODUCTION

Granular materials, having dissipative interactions between
particles, are ubiquitous in daily life as unusual solids, liquids,
and gases [1]. It is important to know rheological properties
of granular flows to control the granular materials [2–10]. The
rheological properties of granular flows strongly depend on
their densities ranging from dilute gases to the jammed solids.
When we focus on the rheology of granular flows for the
density below the volume fraction ϕ < 0.5, the description in
terms of the Boltzmann-Enskog equation gives quantitatively
correct results [11–16], while the appropriate theory for the
description of denser flow is still controversial [17,18].

So far, most of the previous studies on dry granular flows
assume that the interactions between grains can be described
by repulsive and dissipative forces. Attractive interactions,
however, are not negligible for fine powders and wet granular
particles [19–22]. The origins of such cohesive forces are,
respectively, van der Waals force for fine powders and capillary
force for wet granular particles. Such attractive forces cause
the liquid-gas phase transition and the clustering instability
as well as the enhancement of the jamming transition [23–30].
Therefore, to know the rheology of flows consisting of cohesive
granular particles is important not only for engineers but also
for physicists.

In our previous paper [31], we have developed the system-
atic kinetic theory of freely cooling dilute cohesive granular
particles in terms of the inelastic Boltzmann equation for
particles having square-well potentials. Nevertheless, we still
need to analyze the rheology of cohesive granular particles
under a simple shear flow, because (i) we are interested in
a nonequilibrium steady state under the balance between an
external force such as shear and the energy dissipation due
to inelastic collisions, and (ii) the viscosity of granular flows
under a simple shear differs from that for freely cooling
granular gases [32,33]. Moreover, we have to consider the
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contribution of clustering caused by the attractive interaction
between grains to the rheology systematically.

In this paper, we try to clarify the rheological properties of
dilute granular gases having an attractive interaction described
by the square-well potential. The organization of this paper
is as follows. In the next section, we explain the setup and
the results of the event-driven simulation by DYNAMO [34]. In
Sec. III, we derive the shear viscosity in terms of the Boltzmann
equation to compare the results with those from the simulation.
We also briefly explain the result of the linear stability analysis.
In Sec. IV, we summarize our results. Technical details are
described in Appendixes A–H.

II. MOLECULAR DYNAMICS SIMULATION
UNDER A SIMPLE SHEAR

In this section, we explain our model and the setup of our
event-driven simulation in terms of DYNAMO [34] for dilute
cohesive granular gases under a uniform shear in Sec. II A. We
present the results of our simulation in Sec. II B.

A. Our model

We consider a collection of monodisperse particles in which
the mass and the diameter are, respectively, given by m and d.
We assume that the interaction between particles is described
by the square-well potential,

U (r) =

⎧⎪⎨
⎪⎩

∞ (r � d)

−ε (d < r � λd)

0 (r > λd)

, (1)

where r , ε, and λ are the distance between particles, the well
depth, and the ratio of the whole potential range to the hard-core
repulsive range, respectively. We assume that each collision is
inelastic when two particles collide at r = d, and collisions
are elastic otherwise. Here, the inelasticity is characterized
by the restitution coefficient e, which is the ratio of the
post-collisional relative normal speed to the pre-collisional
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FIG. 1. We present the relationship between the temperature and
the shear rate for e = 0.99 and λ = 1.5 (open circles). The dashed
line expresses Bagnoldian expression Eq. (3). The shaded region
represents the absence of steady state.

one. Note that the detailed expressions of collision processes
by this potential are presented in Ref. [31]. We also note that
we are mainly interested in nearly elastic cases, i.e., e � 1
because the applicability of the kinetic theory for cohesive
granular gases is limited in this region [31]. A simple shear
flow characterized by the shear rate γ̇ is applied in the x

direction under the Lees-Edwards boundary condition [35].
(We show the results under the flat boundary condition and to
clarify the artifacts caused by the periodic boundary condition
in Appendix A.) The time evolutions of the position r i and the
velocity vi of the ith particle are updated by the event-driven
simulation for hard-core particles. We mainly simulate the
systems of N = 1372 particles in a cubic box, whose size
is L = 41.6d. We also simulate the system of N = 10 976
particles in a cubic box corresponding to L = 83.1d to check
finite size effects. Throughout this paper, we fix the packing
fraction as ϕ = N (πd3/6)/L3 = 0.01 � 1, the inelasticity
1 − e = 0.01,0.1, and 0.3, and the ratio characterizing the
potential well λ = 1.5. We measure various quantities by
changing the dimensionless shear rate γ̇ ∗ ≡ γ̇

√
md2/ε. We

show the results for 1 − e = 0.01 in the main text and present
the results for 1 − e = 0.1 and 0.3 in Appendix B to clarify
the role of inelasticity.

B. Results

Let us present the results of our MD. Figures 1 and 2
exhibit the results of the dimensionless kinetic or granular
temperature T ∗ ≡ T/ε and the shear viscosity η∗ ≡ ηd2/

√
mε

against the dimensionless shear rate γ̇ ∗, respectively, in steady
states above the critical shear rate for e = 0.99. Here, the shear
viscosity is defined by η = −P k

xy/γ̇ , where the time-averaged

kinetic part of the stress tensor
←→
P is expressed as [34,36]

←→
P k = 1

L3

N∑
i=1

mV i V i . (2)

Here, V i = vi − γ̇ yi êx is the peculiar velocity of the ith
particle with the unit vector in the x direction êx . Note that

FIG. 2. We present the shear rate dependence of the shear vis-
cosity for e = 0.99 and λ = 1.5 (open circles), where the dashed line
represents Bagnoldian temperature Eq. (4). The shaded area expresses
the region which does not have any steady state.

the stress tensor for dilute gases should be dominated by the
kinetic part even if clustering takes place (see Appendix C).
To obtain stabilized data, the stress is time averaged during the
dimensionless time interval 100.

Figures 1 and 2 indicate the existence of the critical shear
rate γ̇ ∗

c (≡γ̇c

√
ε/md2 = 0.023) above which there exist steady

states. We also plot steady Bagnoldian expressions for the
kinetic temperature and the viscosity,

T ∗
B = 5π (2 + e)

432(1 − e)(1 + e)2(3 − e)2

1

ϕ2
γ̇ ∗2, (3)

η∗
B = 5(2 + e)

72(1 + e)2(3 − e)3

√
5(2 + e)

3(1 − e)

1

ϕ
γ̇ ∗, (4)

of hard-core dilute granular gases in Figs. 1 and 2 [32]. It
is remarkable that Eqs. (3) and (4) give precise results for
γ̇ ∗ > γ̇ ∗

c except for the region in the vicinity of γ̇ ∗
c . These

results can be understood as follows: When the shear rate
is sufficiently larger than the critical one, the temperature
determined by the energy balance is also larger than the well
depth, where the attractive force is negligible. This is the reason
why the flow curve reduces to Bagnoldian expressions in the
high shear regime.

For small shear rate, there does not exist any steady state.
Figure 3 is the time evolution of the clustering process observed
in our MD for γ̇ ∗ = 0.01. The time evolution of the mean
cluster size is plotted in Fig. 4, in which two particles belong
to the same cluster when the distance between them is less
than λd. The mean cluster size is almost unity for large shear
rate (γ̇ ∗ > γ̇ ∗

c ), while it drastically increases after t∗ = 180
for small shear rate (γ̇ ∗ < γ̇ ∗

c ), where we have introduced the
dimensionless time t∗ ≡ t/

√
md2/ε and the second moment

of the cluster size M2 =∑∞
k=1 k2ck with the size distribution

ck of the size k. It should be noted that the growth rate of the
mean cluster size becomes smaller after t∗ = 250. It should
be noted that M2 can be regarded as the mean cluster size
because M1 =∑∞

k=1 kck is always equal to the unity. Note

042902-2



RHEOLOGY OF DILUTE COHESIVE GRANULAR GASES PHYSICAL REVIEW E 97, 042902 (2018)

FIG. 3. Typical snapshots of the system for γ̇ ∗ = 0.01 at (i) t∗ = 0, (ii) 190, and (iii) 315, where the arrow indicates the direction of the
shear.

that this tendency seems to be insensitive to the system size
from the comparison of the results of N = 1372 with those of
N = 10 976. The inset of Fig. 4 tries to compare the cluster
growth with

1

M2
= α1 − α2(t∗ − t∗c ), (5)

for t∗ > t∗c = 180. Here, we have introduced the fitting param-
eters α1 and α2, where the fitting range is 0 � t∗ − t∗c � 15.
The justification of this fitting curve will be discussed later.

Let us introduce the effective shear viscosity and the effec-
tive shear rate scaled by M2. We adopt two assumptions: First,
each cluster can be replaced by a sphere which has the identical
size. Next, we ignore the size distribution or size fluctuation
of clusters. From these assumptions, the diameter and the
mass of the clusters are, respectively, given by dcl = M

1/3
2 d

and mcl = (dcl/d)3m = M2m. Therefore, we can introduce the
effective shear viscosity and the effective shear rate,

η∗
eff = η∗

cM
−1/6
2 , (6)

γ̇ ∗
eff = γ̇ ∗

c

√
1

(mcl/m)(dcl/d)2
= γ̇ ∗

c M
−6/5
2 , (7)

FIG. 4. The time evolution of the mean cluster size M2 for
γ̇ ∗ = 0.01 and N = 1372 (open circles) as well as the data for
γ̇ ∗ = 0.01 and N = 10 976 (dashed line). The inset shows the time
evolution after t∗

c = 180 for γ̇ ∗ = 0.01, where the dashed line is a
fitting function (5).

respectively, where η∗
c is the critical shear viscosity at γ̇ ∗

c . We,
respectively, plot the time evolution of the temperature versus
γ̇eff introduced in Eq. (7) and the relationship between Eqs. (6)
and (7) in Figs. 5(a) and 5(b). In our simulation, the initial
temperature T0 satisfies Eq. (3) at given γ̇ ∗. It is noteworthy
that the effective viscosity is approximately represented by
Bagnoldian expressions in the ranges 10−3 � γ̇ ∗ � γ̇ ∗

c , though
the flow curves evolve with time to access the origin. Note that
the kinetic temperature T ∗ is not well approximated by such a
crude treatment [see Fig. 5(a)].

We also investigate the cluster size distribution when the
clustering proceeds. For small clusters, ck can be well fitted by
a power law as

ck ∝ k−β, (8)

for 1 � k � 10, where the exponent is β 
 2.67 (see Fig. 6).
This broad size distribution, though the cutoff size is not
large, is incompatible with the assumption (ii) in which the
sized distribution is negligible. It should be noted that β is
almost independent of time in the range 180 � t∗ � 250 and
the system size as shown in Fig. 6, when the mean cluster

FIG. 5. Plots of (a) the temperature and (b) the effective shear
viscosity Eq. (6) against the effective shear rates Eq. (7) for several
shear rates, respectively. The arrow indicates the time evolution, and
all quantities decrease with time.

042902-3



SATOSHI TAKADA AND HISAO HAYAKAWA PHYSICAL REVIEW E 97, 042902 (2018)

FIG. 6. The cluster size distribution at (i) t∗ = 150 (open circles),
(ii) 180 (open squares), and 210 (open triangles) for γ̇ = 0.01
and N = 1372 as well as the data for γ̇ ∗ = 0.01 and N = 10 976
(corresponding solid marks). The black dashed line represents ck ∝
k−β with β 
 2.67.

size drastically increases. We also note that this exponent is
insensitive to the shear rate within the range 0.003 � γ̇ ∗ �
0.015 and the system size.

We discuss the evolution of cluster size described by Eqs. (5)
and (8) in the unstable region. This process might be explained
by Smoluchowski’s rate equation [37–39],

dck(t∗)

dt∗
= 1

2

∑
i+j=k

Ki,j ci(t
∗)cj (t∗) − ck(t∗)

∞∑
j=1

Kk,j cj (t∗).

(9)

Judging from Eqs. (5) and (8), we may use the corresponding
coagulation kernel Ki,j = K0ij . It is noted that this kernel
can be applied to systems where all the elements are equally
reactive in polymerization processes [37–39]. Because the
time evolution of M2(t∗) can be explicitly solved as M2(t∗) =
M2(0)/(1 − 2M2(0)t∗) [37], the mean cluster size is given by

M2(t∗) = M2(0)

1 − 2M2(0)K0t∗
, (10)

which qualitatively agrees with Eq. (5). We also note that the
size distribution in the vicinity of the gelation satisfies ck ∼
k−5/2 which is similar to Eq. (8). At present, the applicability
of Smoluchowski’s Eq. (9) to our clustering process is not clear.
Further investigation along this line will be needed.

Before closing this section, let us briefly summarize the
results for smaller e such as e = 0.7 and 0.9 (see Appendix B).
Even if we are interested in moderately dissipative situations,
the qualitative behavior is common, i.e., (i) Bagnoldian ex-
pressions can be used for highly sheared cases, and (ii) there
is a critical shear rate that the uniform state is unstable. In
particular, we should note that the Bagnoldian expression for
η∗

eff is still valid in the clustering regime for γ̇ ∗
eff > 10−3.

III. KINETIC THEORY

In the previous section, we numerically found the existence
of the critical shear rate γ̇c, below which there is no steady

state. In this section, let us consider the Boltzmann equation for
granular gases having the square-well potential Eq. (1) under a
simple shear flow. Although we have considered a shear driven
by the Lees-Edwards boundary condition in the simulation, we
consider a bulk shear in the treatment of the kinetic theory for
simplicity. Thus, we evaluate the steady observables in terms
of the Boltzmann equation and compare the theoretical results
with those obtained by the simulation in the previous section.
We also clarify what determines this critical shear rate. Note
that such a theoretical analysis is only possible for nearly elastic
cases e � 1.

Let us begin with the Boltzmann equation [40],(
∂

∂t
+ v1 · ∇

)
f (r,v1,t) = J (v1|f ), (11)

for a dilute gas consisting of particles interacting through the
square-well potential in Eq. (1), where J (v1|f ) is the collision
integral,

J (v1|f ) =
∫

dv2

∫
d k̂�(min(λ,N) − b̃)v12

× [J σ (χ,v′′
12)f (r,v′′

1,t)f (r,v′′
2,t)

− σ (χ,v12)f (r,v1,t)f (r,v2,t)]

+
∫

dv2

∫
d k̂�(b̃ − min(λ,N))v12

× [σ (χ,v′′
12)f (r,v′′

1,t)f (r,v′′
2,t)

− σ (χ,v12)f (r,v1,t)f (r,v2,t)]. (12)

Here, we have introduced the step function �(x) = 1 for
x � 0 and �(x) = 0 otherwise, the refractive index N ≡
(1 + 4ε/mv2

12)1/2 [41,42], b̃ = b/d, v12 = |v12| = |v1 − v2|,
the Jacobian J of the transformation between pre-collisional
velocities (v′′

1, v′′
2) and the post-collisional velocities (v1, v2),

and the collision cross section σ (χ,v12) between particles 1
and 2 at the scattering angle χ . For the square-well potential,
the relationship between (v′′

1,v
′′
2) and (v1,v2) is written as [31]{

v1 = v′′
1 − A(v′′

12 · k̂)k̂

v2 = v′′
2 + A(v′′

12 · k̂)k̂
, (13)

where

A =
⎧⎨
⎩1 − 1

2
(1 − e)N2 cos2 θc

cos2 θ
(b̃ � min(λ,N))

1 (b̃ > min(λ,N))
, (14)

with the angle θ between v12 and k̂, and θc satisfies cos θc =
{1 − b2/(N2d2)}1/2. This process is equivalent to that used in
Ref. [31]. It should be noted that the expression (14) is only
valid for nearly elastic cases 1 − e � 1.

Let us consider a uniformly sheared flow characterized by
ux = γ̇ y,uy = uz = 0 to derive observables in the steady state.
Using the peculiar velocity as Vx = vx − γ̇ y, Vy = vy , Vz =
vz, we can rewrite the Boltzmann equation (11) as(

∂t − γ̇ V1y

∂

∂V1x

)
f (V 1,t) = J (V 1|f ), (15)
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where we have ignored the spatial fluctuations in Eq. (11).
Multiplying mV1αV1β with Eq. (15) and integrating over V 1,
we obtain the time evolution of the kinetic stress tensor,

∂tP
k
αβ + γ̇

(
δαxP

k
yβ + δβxP

k
αy

) = −�αβ, (16)

where P k
αβ = ∫ dvmVαVβf (V ,t) is used for the kinetic stress

tensor defined in Eq. (2) and �αβ is defined by

←→
� ≡ −m

∫
dv1V 1V 1J (V 1|f ). (17)

We assume that the velocity distribution function is given
by Grad’s moment method [6,7,43–52],

f (V ) = fM(V )

[
1 + m

2T

(
P k

αβ

pk
− δαβ

)
VαVβ

]
, (18)

where we adopt Einstein’s rule for Greek indices where
duplicated indices take summation over x, y, and z. Here, we
have introduced the pressure pk defined by pk ≡ (P k

xx + P k
yy +

P k
zz)/3 which satisfies the equation of state for the ideal gas

pk = nT . We have also introduced the Maxwellian distribution
function fM(V ):

fM(V ) = n
( m

2πT

)3/2
exp

(
−mV 2

2T

)
. (19)

Using the ansatz Eq. (18),
←→
� can be divided into two parts:

diagonal and nondiagonal parts as

←→
� = ν(

←→
P k − pk←→1 ) + ζpk←→1 (20)

(the derivation is given in Appendix D), where 1αβ = 1 for
α = β and 0 otherwise. Here, ν and ζ are, respectively, the
frequency given by Eq. (E5) and the dissipation rate given by
Eq. (E1) in Appendix E.

From Eqs. (16) and (20), we obtain the time evolution
equation of the pressure, the normal stress difference �P k ≡
P k

xx − P k
yy , and the shear stress P k

xy as

∂tp
k + 2

3 γ̇ P k
xy = −ζpk, (21)

∂t�P k + 2γ̇ P k
xy = −ν�P k, (22)

∂tP
k
xy + γ̇

(
pk − 1

3�P k
) = −νP k

xy. (23)

Unfortunately, the observables in Eqs. (21)–(23) cannot be
expressed as functions of γ̇ explicitly. We note that the second
normal difference P k

yy − P k
zz is not included in the above

treatment, which is known to exist not only in denser systems
[16,55] but also in dilute systems [56]. However, as shown
in Appendix F, P k

yy − P k
zz is much smaller than �P k in this

system. Moreover, if we adopt the linearized approximation
from the Maxwellian in the evaluation of the nonlinear collision
integral, the second normal stress difference disappears in the
dilute gas. This is the reason why we only consider the set of
pk , P k

xy , and �P k .

Let us focus on the steady state. From Eqs. (21)–(23), we can
express the shear rate, shear stress tensor, and stress difference
as a function of T in the steady state as

γ̇ =
√

3

2

ν2ζ

ν − ζ
= nd2

√
πε

m

( ε

T

)3

× [(1 − e)1/2γ̇ (1)∗ + O((1 − e))], (24)

P k
xy = −pk

ν

√
3

2
ζ (ν − ζ ) = nε

(
T

ε

)3/2

× [(1 − e)1/2P k(1)∗
xy + O((1 − e))

]
, (25)

�P k = 3ζ

ν
pk = 3nε

(
T

ε

)3/2

× [(1 − e)�P (−1)∗ + O((1 − e)2)], (26)

respectively, where the quantities with an asterisk are dimen-
sionless variables such as

γ̇ (1)∗ ≡
√

3

2
ν

(0)∗
1 ζ

(1)∗
1 , (27)

P k(1)∗
xy ≡ 1

ν
(0)∗
1

√
3

2
ν

(0)∗
1 ζ

(1)∗
1 , (28)

�P (1)∗ ≡ ζ
(1)∗
1

ν
(0)∗
1

. (29)

Here, ν
(0)∗
1 and ζ

(1)∗
1 are given by Eqs. (E8) and (E4), respec-

tively. From Eqs. (24) and (25), we obtain the shear viscosity,

η = (ν − ζ )pk

ν2

= 1

d2

√
mε

π

(
T

ε

)9/2

× [η(0)∗ + (1 − e)η(1)∗ + O((1 − e)2)], (30)

where

η(0)∗ ≡ 1

ν
(0)∗
1

, (31)

η(1)∗ ≡ − 1

ν
(0)∗2
1

[
ν

(1)∗
1 + ν

(1)∗
2 + T

ε
ζ

(1)∗
1

]
. (32)

Here, ν
(1)∗
1 and ν

(1)∗
2 are given by Eqs. (E9) and (E10),

respectively. We note that Eq. (24) determines the relationship
between the shear rate and the temperature, where it is easy
to express the shear rate as a function of the temperature,
though the actual control parameter is the shear rate. Then, the
relationships between the shear rate and the other observables
are also parametrically plotted in terms of the temperature
in Figs. 7–9. Figure 10 plots the temperature dependence of
ν∗ ≡ ν

√
md2/ε and ζ ∗ ≡ ζ

√
md2/ε whose expressions are

presented in Appendix E. The steady expressions in the simple
shear flow can only exist above the lower bound temperature
TLB which is determined by ν = ζ [see Eqs. (24) and (25)]. For
our choice of parameters e = 0.99,λ = 1.5, the lower bound
temperature is given by T ∗

LB(≡TLB/ε) = 0.0144.
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FIG. 7. The relationship between the temperature and the shear
rate (open circles) and that from the kinetic theory (solid line) for
e = 0.99 and λ = 1.5. The dashed lines express Bagnoldian scaling
(3). The crosses show the linearly unstable steady solution. The shaded
area exhibits an unreachable region, where there is no steady state.
The inset shows the zoom in the vicinity of the critical shear rate.

There are two branches for the theoretical η above the
critical shear rate, though η on the lower branch is linearly
unstable as explained in Appendix G. The shear rate and the
stable viscosity, respectively, tend to γ̇ 2/ω2

HC → (5/4)(1 − e)
and η/ηHC → 1 − (5/6)(1 − e) for T > Tc and e → 1, where
ωHC = (16/5)nd2√πT/m and ηHC = 5/(16d2)

√
mT/π are

the collision frequency and the shear viscosity of dilute hard-
core gases, respectively [32]. It is remarkable that the upper
branches in Figs. 7 and 8 reproduce well the simulation results.
We also note that the temperature difference �T = �P k/n

obtained from both the simulation and the kinetic theory of

FIG. 8. The shear rate dependence of the shear viscosity for e =
0.99 and λ = 1.5. The dashed lines represent Bagnoldian scaling (4).
The cross points express the linearly unstable region. The dotted line
shows the expansion around the critical shear rate γ̇c given by the
quadratic function (H12). The shaded area exhibits an unreachable
region, where there is no steady state. The inset shows the zoom in
the vicinity of the critical shear rate.

FIG. 9. The relationship between the temperature difference and
the shear rate obtained from the simulation (red open circles) and that
from the kinetic theory (blue solid line) for e = 0.99 and λ = 1.5.
The black dashed lines exhibit Bagnoldian scaling. The shaded area
exhibits an unreachable region, where there is no steady state. The
inset shows the zoom in the vicinity of the critical shear rate.

hard-core dilute granular gases,

�T = 25π (2 + e)

432(1 + e)2(3 − e)3

1

ϕ2
md2γ̇ 2, (33)

agree in the high sheared regime, though the theoretical
prediction does not agree with the simulation in the low shear
regime (this relationship can be derived easily by Ref. [32]),
while the deviations become large near the critical shear
rate γ̇ ≈ γ̇c. Then, �T/T = 5(1 − e)/(3 − e) with the aid of
Eq. (3) (Fig. 9).

Let us evaluate the critical shear viscosity γ̇c below which
the steady state does not exist. The critical condition is
given by ∂η/∂γ̇ = (∂η/∂T )/(∂γ̇ /∂T ) → ∞ at γ̇c, which is
reduced to ∂γ̇ /∂T = 0. As shown in Appendix H, this critical
temperature Tc(≡Tc/ε) = 0.910 corresponds to the critical

FIG. 10. The temperature dependence of ν (solid line) and ζ

(dashed line) for e = 0.99 and λ = 1.5. The inset shows the tem-
perature dependence of ζ/

√
T for high temperature.
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shear rate γ̇ ∗
c = 0.0228. The theoretical critical shear viscosity

agrees with the numerical critical shear viscosity.
We perform the linear stability analysis for the sheared

uniform state (the detailed explanation is given in Appendix G).
For simplicity, we ignore the spatial degree of freedom. From
the set of Eqs. (21)–(23), the uniform shear state is stable for
T > TCL(=0.04ε) in our choice of parameters. We plot the
linearly unstable region as crosses in Figs. 7–9.

IV. CONCLUSION

In this paper, we have performed the event-driven molecular
dynamics simulation for cohesive granular gases under a
uniform shear and clarified the rheological properties of these
particles. We have found that there exists a steady state when
the shear rate is larger than the critical shear rate, while the
clustering proceeds for the lower shear rate. Even for the lower
shear rate, introducing the effective shear rate and the shear
viscosity, we have found that the flow curve can be approxi-
mately expressed as the Bagnoldian expression if we replace
the diameter of the particle by the mean diameter of clusters.
We have obtained two branches for the steady uniformly
sheared state from the analysis of the inelastic Boltzmann
equation, one of which is consistent with the simulation, and
the other branch is linearly unstable.
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APPENDIX A: SIMULATION UNDER THE
FLAT BOUNDARY CONDITION

In this Appendix, we examine the applicability of the
Lees-Edwards boundary condition from the comparison of
the simulations under the flat boundary condition [27]. We
prepare two flat walls at y = ±L/2, moving in the x direction
with the velocities ±γ̇ L/2. When a particle having (vx,vy,vz)
hits the walls at y = ±L/2, the velocity changes to (vx ±
γ̇ L/2, − vy,vz) after the collision, respectively.

Figure 11(a) plots the shear viscosity against the shear rate
(7) for γ̇ > γ̇c and Fig. 11(b) the effective flow curve for γ̇ < γ̇c

which gives the relationship between ηeff and γ̇eff . The result
under the flat boundary condition for γ̇ > γ̇c almost agrees
with that under the Lees-Edwards boundary condition and the
Bagnoldian expression (4), which is contrary to the previous
studies under the bumpy boundary condition [45,53,54]. For
γ̇ > γ̇c, the density and velocity gradient are almost constant
except for the boundary layers as shown in Fig. 11(c). We also
note that the effective viscosity obtained from the simulation
under the flat boundary condition becomes much smaller than
that under the Lees-Edwards boundary condition for γ̇ < γ̇c.

FIG. 11. (a) We present the shear viscosity against the shear
rate obtained from the simulation under the Lees-Edwards boundary
condition (open circles) and those under the flat boundary condition
(open squares) for e = 0.99 and λ = 1.5. (b) We also plot the effective
shear viscosity Eq. (6) against the effective shear rate Eq. (7) for γ̇ ∗ =
0.015. The dashed line expresses Bagnoldian expressions Eq. (4).
The shaded area expresses the region which does not have any steady
state. The arrow indicates the time evolution. (c) We plot the density
and velocity profiles obtained from the simulation under the physical
boundary condition for γ̇ ∗ = 0.05.

In conclusion, to adopt the Lees-Edwards boundary condition
does not cause any artifact for γ̇ > γ̇c while it is controversial
for γ̇ < γ̇c.

APPENDIX B: RESULTS FOR HIGHLY
DISSIPATIVE CASES

In this Appendix, we present the results for larger inelastic-
ity, especially for e = 0.9, and 0.7. Figure 12 shows the results
of the shear viscosity against the shear rate and the effective
shear viscosity (6) against the effective shear rate (7). Even
for the moderately inelastic case, Bagnoldian expressions (3)
and (4) give precise results if the steady state exists above the
critical shear rate.

042902-7
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FIG. 12. (a) The relationships between the shear viscosity and the
shear rate for various restitution coefficient e = 0.99 (open circles),
0.90 (open squares), and 0.70 (open triangles) and λ = 1.5. The
dashed lines express Bagnoldian expressions Eq. (4) for various
e. (b) We present the effective shear viscosity Eq. (6) against the
effective shear rates Eq. (7) for (e,γ̇ ∗) = (0.99,0.01) (filled circles),
(0.90,0.05) (filled squares), and (0.70,0.1) (filled triangles). The
arrow indicates the time evolution. The vertical lines indicated by
A, B, and C show the critical shear rate γ̇ ∗

c (e) for various e = 0.99,
0.90, and 0.70, respectively. Here, γ̇ ∗

c (e = 0.99) = 0.0228, γ̇ ∗
c (e =

0.90) = 0.0745, and γ̇ ∗
c (e = 0.70) = 0.152.

However, the time evolutions of the temperature and the
effective shear viscosity (6) against the effective shear rate (7)
in Fig. 12 cannot be used, if the steady state is unstable for
γ̇ < γ̇c for larger inelasticity.

APPENDIX C: COMPARISON OF THE STRESS TENSOR
WITH THE KINETIC STRESS TENSOR

In this Appendix, we verify whether the stress tensor is
dominated by the kinetic stress. To validate this, we measure
the ratio of the stress tensor (2) to the kinetic part of the stress
tensor by using our full scratched simulation code. Here, the
stress tensor is defined as

←→
P = ←→

P k + ←→
P c, (C1)

where
←→
P c is the collisional contribution of the stress tensor,

defined by

←→
P c = 1

L3�τ

event∑
i,j

� pij r ij . (C2)

FIG. 13. The ratios of the pressure, the shear stress, and the
pressure difference to the kinetic part of each of them for e = 0.99.
The arrow indicates the time evolution.

Here, � pi is the change of the momentum of the ith particle
during a collision, and �τ is set to 100

√
md2/ε. We have

confirmed that the results are insensitive to the time interval �τ

in the range 10
√

md2/ε to 100
√

md2/ε. Figure 13 represents
the ratios for the pressure, the shear stress, and the pressure
difference. All quantities satisfy

0.98 <
P k

P
,

P k
xy

Pxy

,
�P k

�P
� 1, (C3)

for γ̇ > γ̇c, and

0.9 <
P k

P
,

P k
xy

Pxy

,
�P k

�P
� 1.1, (C4)

for γ̇ < γ̇c. in our simulations. Although the data are a little
scattered for the unstable regime (γ̇ < γ̇c), we conclude that
the collisional contribution to the stress tensor is negligible
even for γ̇ < γ̇c.

APPENDIX D: DERIVATION OF EQ. (20)

In this Appendix, let us show the detailed derivation of
←→
� .

From the collision rule Eq. (13), the following relationship is
satisfied:

c′
1c′

1 + c′
2c′

2 − c1c1 + c2c2

= −A(c12 · k̂)(c12 k̂ + k̂c12) + 2A2(c12 · k̂)2 k̂k̂. (D1)

Here, we introduce the dimensionless velocity ci ≡
vi/(2ε/m)1/2. Inserting Eq. (D1) into Eq. (17) and integrating
over C = (c1 + c2)/2, � is expressed as

←→
� = − 1

2
π−3mn2d2

(πε

m

)3/2( ε

T

)5/2

×
∫

dc12

∫
d k̂σ̃ (χ,c12)c12 exp

(
−1

2
c2

12

)

×
[

1 + 1

2
(P ∗

αβ − δαβ)c12,αc12,β

]

× [−A(c12 · k̂)(c12 k̂ + k̂c12) + 2A2(c12 · k̂)2 k̂k̂]
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≡ − 1

2
mn2d2

( ε

πm

)3/2( ε

T

)5/2

× (
←→
�∗

1 + ←→
�∗

2 + ←→
�∗

3 + ←→
�∗

4 ), (D2)

where c12 = c1 − c2, P ∗
αβ = Pαβ/(nT ), and we have intro-

duced
←→
�∗

i (i = 1,2,3,4) as

←→
�∗

1 = −
∫

dc12

∫
d k̂σ̃ (χ,c12)c12 exp

(
− ε

2T
c2

12

)
×A(c12 · k̂)(c12 k̂ + k̂c12), (D3)

←→
�∗

2 = 2
∫

dc12

∫
d k̂σ̃ (χ,c12)c12 exp

(
− ε

2T
c2

12

)
×A2(c12 · k̂)2 k̂k̂, (D4)

←→
�∗

3 = −1

2

∫
dc12

∫
d k̂σ̃ (χ,c12)c12 exp

(
− ε

2T
c2

12

)
×(P ∗

αβ − δαβ)c12,αc12,βA(c12 · k̂)(c12 k̂ + k̂c12),

(D5)

←→
�∗

4 =
∫

dc12

∫
d k̂σ̃ (χ,c12)c12 exp

(
− ε

2T
c2

12

)
×(P ∗

αβ − δαβ)c12,αc12,βA2(c12 · k̂)2 k̂k̂, (D6)

respectively. Here, χ is the scattering angle and we expand χ

in terms of the small inelasticity 1 − e as

χ = χ (0) + (1 − e)χ (1) + O((1 − e)2). (D7)

The explicit forms of χ (0) and χ (1) are, respectively, given by
[31]

χ (0) =

⎧⎪⎨
⎪⎩

χ
(0)
inelastic (b̃ � min(λ,N))

χ
(0)
grazing (min(λ,N) < b̃ � λ)

0 (b̃ > λ)

, (D8)

χ (1) =
{

χ
(1)
inelastic (b̃ � min(λ,N))

0 (b̃ > min(λ,N))
, (D9)

with the dimensionless collision parameter b̃ ≡ b/d and

χ
(0)
inelastic = π − 2 sin−1 b̃

λ
− 2 sin−1 b̃

N
+ 2 sin−1 b̃

Nλ
,

(D10)

χ
(0)
grazing = 2 sin−1 b̃

Nλ
− 2 sin−1 b̃

λ
, (D11)

χ
(1)
inelastic = −

[
b̃N2√
λ2 − b̃2

+ b̃√
N2 − b̃2

− b̃√
N2λ2 − b̃2

]

× cos2 θc. (D12)

To evaluate
←→
�∗

i (i = 1,2,3,4), the following relations are
useful:∫

d k̂σ̃ (χ,c12)(c12 · k̂)k̂ = 2π

∫ ∞

0
db̃b̃ sin2 χ

2
c12, (D13)

∫
d k̂σ̃ (χ,c12)(c12 · k̂)2 k̂k̂

= π

∫ ∞

0
db̃b̃ sin2 χ

2

×
[
c2

12 cos2 χ

2
←→
1 +

(
2 sin2 χ

2
− cos2 χ

2

)
c12c12

]
.

(D14)

It should be noted that these relations can be derived if we
choose c12 as the z axis and use polar coordinates to k̂. Inserting

Eq. (D13) into Eq. (D3), we rewrite
←→
�∗

1 as

←→
�∗

1 = −4π

∫
dc12

∫ ∞

0
db̃

×Ab̃c12 sin2 χ

2
exp
(
− ε

2T
c2

12

)
c12c12

= −16

3
π2
∫ ∞

0
dc12

∫ ∞

0
db̃

×Ab̃c5
12 sin2 χ

2
exp
(
− ε

2T
c2

12

)←→
1 . (D15)

Similarly, from Eqs. (D4) and (D14),
←→
�∗

2 reduces to

←→
�∗

2 = 2π

∫
dc12

∫ ∞

0
db̃A2b̃c12 sin2 χ

2
exp
(
− ε

2T
c2

12

)
×
[
c2

12 cos2 χ

2
1 +

(
2 sin2 χ

2
− cos2 χ

2

)
c12c12

]

= 16

3
π2
∫

dc12

∫ ∞

0
db̃A2b̃c5

12 sin2 χ

2
exp
(
− ε

2T
c2

12

)←→
1 .

(D16)

Similarly,
←→
�∗

3 and
←→
�∗

4 are, respectively, given by

←→
�∗

3 = −16

15
π2
∫

dc12

∫ ∞

0
db̃

×Ab̃c7
12 sin2 χ

2
exp
(
− ε

2T
c2

12

)
(
←→
P ∗ − ←→

1 ), (D17)

←→
�∗

4 = 16

15
π2
∫

dc12

∫ ∞

0
db̃Ab̃c7

12 sin2 χ

2

×
(

1 − 3

2
cos2 χ

2

)
exp
(
− ε

2T
c2

12

)
(
←→
P ∗ − ←→

1 ).

(D18)

Inserting Eqs. (D15)–(D18) into Eq. (D2), we can obtain
Eq. (20).

APPENDIX E: DERIVATION OF THE ENERGY
DISSIPATION RATE ζ AND THE FREQUENCY ν

In this Appendix, we derive the expression for the energy
dissipation rate ζ and the frequency ν in terms of the
Boltzmann equation.

First, let us evaluate the energy dissipation rate ζ . The
energy dissipation rate can be expanded in terms of the series
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of the small inelasticity 1 − e as

ζ (T ) = 8

3
nd2

√
πε

m

( ε

T

)5/2
∫ ∞

0
dc12

∫ ∞

0
db̃

×A(1 − A)b̃c5
12 sin2 χ

2
exp
(
− ε

2T
c2

12

)
≡ ζ (0)(T ) + (1 − e)ζ (1)(T ) + O((1 − e)2), (E1)

where ζ (0) and ζ (1) are, respectively, given by [31]

ζ (0)(T ) = 0, (E2)

ζ (1)(T ) = nd2

√
πε

m

( ε

T

)5/2
ζ

(1)∗
1 (T ), (E3)

with

ζ
(1)∗
1 (T ) ≡ 4

3

∫ ∞

0
dc12

∫ b̃max

0
db̃

× b̃(N2 − b̃2)c5
12 exp

(
− ε

2T
c2

12

)
, (E4)

where b̃max = min(N,λ) with the introduction of a function
min(x,y) to select the smaller one between x and y.

Next, let us derive ν. From Appendix D, the frequency ν is
written as

ν(T ) = 8

15
nd2

√
πε

m

( ε

T

)7/2
∫ ∞

0
dc12

∫ ∞

0
db̃Ab̃c7

12

×
[

(1 − A) + 3

2
A cos2 χ

2

]
sin2 χ

2
exp
(
− ε

2T
c2

12

)
≡ ν(0)(T ) + (1 − e)ν(1)(T ) + O((1 − e)2), (E5)

where ν(0) and ν(1) are, respectively, given by

ν(0)(T ) = nd2

√
πε

m

( ε

T

)7/2
ν

(1)∗
1 (T ), (E6)

ν(1)(T ) = nd2

√
πε

m

( ε

T

)7/2(
ν

(1)∗
1 (T ) + ν

(1)∗
2 (T )

)
, (E7)

with

ν
(0)∗
1 (T ) = 1

5

∫ ∞

0
dc12

∫ ∞

0
db̃

× b̃c7
12 sin2 χ (0) exp

(
− ε

2T
c2

12

)
, (E8)

ν
(1)∗
1 (T ) ≡ 4

15

∫ ∞

0
dc12

∫ ∞

0
db̃b̃(N2 − b̃2)c7

12

×
(

1 − 3 cos2 χ (0)

2

)
exp
(
− ε

2T
c2

12

)
, (E9)

ν
(1)∗
2 (T ) ≡ 2

5

∫ ∞

0
dc12

∫ ∞

0
db̃

× b̃c7
12χ

(1) sin 2χ (0) exp
(
− ε

2T
c2

12

)
. (E10)

Unfortunately, ζ (T ) and ν(T ) cannot be expressed explicitly.
Therefore, we adopt the numerical integrals in Eqs. (E1)–(E10)
over b̃ and c12 for each T/ε.

FIG. 14. The ratio of the second kinetic normal stress difference
to the first kinetic normal stress difference �P for e = 0.99.

APPENDIX F: THE NORMAL STRESS DIFFERENCES

In this Appendix, let us show that the second normal stress
difference P k

yy − P k
zz is much smaller than the first normal

stress difference �P k in our simulations. Figure 14 represents
the shear rate dependence of the ratio of the second normal
difference to the first normal stress difference obtained from
the simulations, which shows that the ratio satisfies∣∣∣∣∣P

k
yy − P k

zz

�P k

∣∣∣∣∣ < 0.05. (F1)

This result also validates our treatment that we only consider
the set of pk , P k

xy , and �P k in our theoretical treatment.

APPENDIX G: LINEAR STABILITY ANALYSIS

In this Appendix, we study the linear stability of the uniform
shear state without any spatial fluctuation [52]. Let us consider
the steady state of the dimensionless temperature T ∗, the
dimensionless pressure difference �P ∗ = �P/(nε), and the
dimensionless shear stress P ∗

xy ≡ Pxy/(nε). We add a per-
turbation around the steady state as δφ ≡ (δT ∗,δ�P ∗,δP ∗

xy).
Introducing the dimensionless quantities γ̇ ∗ ≡ γ̇ t0, ζ ∗ = ζ t0,
and ν∗ ≡ νt0 with t0 ≡

√
md2/ε, the time evolution of the

fluctuation is linearized as

∂

∂t∗
δφ = Mδφ, (G1)

where the matrix M is defined by

M =⎛
⎜⎜⎜⎜⎝

−
(

2

3
γ̇ ∗

T P ∗
xy + ζ ∗ + ζ ∗

T T

)
0 −2

3
γ̇ ∗

−(2γ̇ ∗
T P ∗

xy + ν∗
T �P ∗) −ν∗ −2γ̇ ∗

−
(

γ̇ ∗ + γ̇ ∗
T T ∗ − 1

3
γ̇ ∗

T �P ∗ + ν∗
T P ∗

xy

)
1

3
γ̇ ∗ −ν∗

⎞
⎟⎟⎟⎟⎠,

(G2)
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FIG. 15. The temperature dependence of the real part of the
eigenvalue whose absolute value is smallest (solid line). The open
circles are the linear solution of Eq. (G8). The inset also shows the
other two eigenvalues s2 (dashed line) and s3 (cross marks). The
painted area exhibits an unreachable region, where there is no steady
state.

with γ̇ ∗ + γ̇ ∗
T δT ∗, ζ ∗ + ζ ∗

T δT ∗, and ν∗ + ν∗
T δT ∗ with γ̇ ∗

T ≡
(∂γ̇ ∗/∂T ∗)T , ζ ∗

T ≡ (∂ζ ∗/∂T ∗)T , and ν∗
T ≡ (∂ν∗/∂T ∗)T . The

Laplace transform of Eq. (G1) is expressed as

ϕ(s) = (s
←→
1 − M)−1δφ(0), (G3)

where ϕ(s) = L[δφ(t)] is the Laplace transform of δφ(t). Let
us assume si (i = 1,2,3) as the eigenvalues of the matrix M.
This yields that the matrices (s

←→
1 − M) and (s

←→
1 − M)−1

have eigenvalues s − si and 1/(s − si) (i = 1,2,3), respec-
tively. The inverse Laplace transform of 1/(s − si) is given by
exp(si t)�(t), where �(t) is the step function, i.e., �(t) = 1 for
t � 0 and �(t) = 0 otherwise. The system becomes unstable
if any one of the eigenvalues have positive real part. Let
us calculate the eigenvalues numerically. The determinant of
si

←→
1 − M is given by

det(si

←→
1 − M) = s3

i + A1s
2
i + A2si + A3 = 0, (G4)

where A1, A2, and A3 are, respectively, given by

A1 = 2
3 γ̇ ∗

T P ∗
xy + ζ ∗ + ζ ∗

T T ∗ + 2ν∗, (G5)

A2 = ν∗2 + 2ν∗( 2
3 γ̇ ∗

T P ∗
xy + ζ ∗ + ζ ∗

T T ∗)
− 2

3 γ̇ ∗(γ̇ ∗
T T ∗ − 1

3 γ̇ ∗�P ∗ + ν∗
T P ∗

xy

)
, (G6)

A3 = ( 2
3 γ̇ ∗2 + ν∗2

)(
2
3 γ̇ ∗

T P ∗
xy + ζ ∗ + ζ ∗

T T ∗)
− 2

9 γ̇ ∗2(2γ̇ ∗
T P ∗

xy + ν∗
T �P ∗)

− 2
3ν∗γ̇ ∗(γ̇ ∗ + γ̇ ∗

T T ∗ − 1
3 γ̇ ∗

T �P ∗ + ν∗P ∗
xy

)
. (G7)

We also focus on the eigenvalue whose absolute value is
smallest. Neglecting the terms proportional to s2

i and s3
i in

Eq. (G4), we can obtain the linear approximation solution of
Eq. (G4) as

slinear = −A3

A2
. (G8)

Figure 15 presents the temperature dependence of the real
part of each eigenvalue si (Res1 > Res2 � Res3), where Resi

FIG. 16. The temperature dependence of Eq. (H3) for e = 0.99.
The shaded area exhibits an unreachable region, where there is no
steady state.

indicates the real part of si . We also plot the linear approxi-
mation solution (G8). This linearized eigenvalue in Eq. (G8)
gives a good description of the full linear stability analysis.
Note that the real part of the eigenvalue becomes positive
for T < TCL ≡ 0.04ε in which the steady state is unstable.
Near the critical temperature, the magnitude of the smallest
eigenvalue is approximately 10−5. We note that approximately
105 collisions per particle are needed to reach the steady state
in this regime.

APPENDIX H: CRITICAL BEHAVIOR

In this Appendix, we calculate the critical temperature for
the linear stability analysis, where ∂γ̇ /∂T becomes zero. From
Eq. (24), ∂γ̇ /∂T satisfies

2γ̇
∂γ̇

∂T
= 3

2

ν

(ν − ζ )2

[
(ν − 2ζ )ζ

∂ν

∂T
+ ν2 ∂ζ

∂T

]
. (H1)

This means that ν = 0 or

(ν − 2ζ )ζ
∂ν

∂T
+ ν2 ∂ζ

∂T
= 0, (H2)

should be satisfied at the temperature satisfying ∂γ̇ /∂T = 0.
As shown in Fig. 10, ν becomes zero at T 
 0.00451ε.
Let us calculate other temperatures where ∂γ̇ /∂T becomes
zero. Using the dimensionless quantities, the left-hand side of
Eq. (H2) can be rewritten as

F (T ∗) = (ν∗ − 2ζ ∗)ζ ∗ ∂ν∗

∂T ∗ + ν∗2 ∂ζ ∗

∂T ∗ . (H3)

Figure 16 shows that Eq. (H3) has only one solution Tc =
0.910ε. The corresponding shear rate becomes γ̇ ∗

c = 0.0228
and any steady state does not exist for γ̇ < γ̇c.

Let us expand the shear viscosity around the critical tem-
perature Tc. First, the quantities ν and ζ are expanded as

ν = νc + ν ′
c(T − Tc) + 1

2ν ′′
c (T − Tc)2 + O((T − Tc)3), (H4)

ζ = ζc + ζ ′
c(T − Tc) + 1

2ζ ′′
c (T − Tc)2 + O((T − Tc)3), (H5)
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respectively, where νc = ν(Tc), ν ′
c = (dν/dT )Tc ,

ν ′′
c = (d2ν/dT 2)Tc , ζc = ζ (Tc), ζ ′

c = (dζ/dT )Tc , and
ζ ′′

c = (d2ζ/dT 2)Tc , respectively. Inserting into Eq. (24)
and Eq. (30), the shear rate and the shear viscosity are,
respectively, expressed as

γ̇

γ̇c
= 1 + C1(T − Tc)2 + O((T − Tc)3), (H6)

η

ηc
= 1 + C2(T − Tc) + O((T − Tc)2), (H7)

where γ̇c, ηc, C1, and C2 are, respectively, given by

γ̇c =
√

3

2

ν2
c ζc

νc − ζc
, (H8)

ηc = νc − ζc

ν2
c

nT ′
c , (H9)

C1 = ζc(νc − 2ζc)ν ′′
c + ν2

c ζ ′′
c

4νcζc(νc − ζc)

− (νc − 4ζc)(ζcν
′
c − νcζ

′
c)2

8νcζ 2
c (νc − ζc)2

, (H10)

C2 = 1

Tc
− (νc − 2ζc)ν ′

c + νcζ
′
c

νc(νc − ζc)
. (H11)

In the vicinity of the critical temperature Tc, the relationship
between the shear viscosity and the shear rate becomes

η − ηc = ±
√

C2
2

C1

η2
c

γ̇c
(γ̇ − γ̇c)1/2. (H12)

Figure 8 shows this expansion which well agrees with both
the results of our simulation and the relationship obtained by
Eqs. (24) and (30).
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