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Experiments and characterization of low-frequency oscillations in a granular column
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The behavior of a vertically vibrated granular bed is reminiscent of a liquid in that it exhibits many phenomena
such as convection and Faraday-like surface waves. However, when the lateral dimensions of the bed are confined
such that a quasi-one-dimensional geometry is formed, the only phenomena that remain are bouncing bed and
the granular Leidenfrost effect. This permits the observation of the granular Leidenfrost state for a wide range
of energy injection parameters and more specifically allows for a thorough characterization of the low-frequency
oscillation (LFO) that is present in this state. In both experiments and particle simulations we determine the
LFO frequency from the power spectral density of the center-of-mass signal of the grains, varying the amplitude
and frequency of the driving, the particle diameter, and the number of layers in the system. We thus find that the
LFO frequency (i) is inversely proportional to the fast inertial timescale and (ii) decorrelates with a typical decay
time proportional to the slow dissipative timescale in the system. The latter is consistent with the view that the
LFO is driven by the inherent noise that is present in the granular Leidenfrost state with a low number of particles.
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I. INTRODUCTION

Granular materials are observed on a daily basis; they
are present in many natural phenomena such as avalanches,
landslides, or the formation of dunes, and they have a wide
range of applications [1]. The exploration of the similarities
between the behavior of granular materials and that of ordinary
fluids has motivated much appealing research. An important
example is a vertically shaken granular bed, which exhibits
fluidlike behavior [2] that in turn depends, in part, on the
injected energy, the number of particle layers, and the system
geometry. As the shaking energy is increased, the system
transits from (i) a bed of grains bouncing with the base to
(ii) bursts; (iii) undulations [3–7] (which are analogous to
Faraday waves in regular liquids [8,9]); (iv) density inversion
[10–12], where a dense layer of grains floats on top of a gaseous
layer, a state referred to as the Leidenfrost state due to its
similarity to a liquid droplet floating on its own vapour above
a hot plate [13]; (v) buoyancy driven convection rolls [14,15]
and, for very high shaking energy, to (vi) a granular gas (a dilute
granular system with particles moving randomly throughout
the container).

For a sufficiently large number of particle layers the granular
bed transits from the Leidenfrost state to the convection state
as the energy input is increased. Recently, an oscillation was
observed in the motion of the dense part of the Leidenfrost
state [16,17]. The frequency of these oscillations is typically
much lower than the frequency of the injected energy and
becomes dominant in the dynamics of the system when
the energy input increases. Recently, these so-called low-
frequency oscillations (LFO) were indirectly observed in a
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three-dimensional vibrofluidized granular bed by tracing the
movement of a single particle through the bulk using positron
emission particle tracking [18], showing a good agreement
with numerical simulations, where the effect was first observed
[16].

How the above fluidlike behaviors in a granular bed depend
on the container’s geometry can be represented in a phase
diagram, as shown in Fig. 1 [16]. Here the occurrence of
the phenomena is schematically indicated as a function of the
container width and the energy injection. When the container is
large enough (larger than approximately 20 particle diameters)
and filled with a sufficiently large amount of particles, the
system can exhibit any of the above-mentioned behaviors
depending on the energy injection parameters. But for nar-
rower containers many of these phenomena are suppressed
by the geometry of the container, since bursts, undulations,
and convection rolls are extended in the horizontal direction.
These patterns are frustrated by the presence of the side walls,
which can be attributed to, e.g., effective viscosity and lateral
heat conduction [19]. Therefore, in a quasi-one-dimensional
container only the bouncing bed and Leidenfrost states are
present.

The possibility to keep the system in the Leidenfrost regime
by using a narrow container and thus observe LFO’s for a
wide range of shaking strengths has motivated this work. We
experimentally study the behavior of the LFO’s and their role
in the dynamics of the system. The results are compared with
simulations showing a very good agreement between both.
Moreover, we analyze the timescales present in the system
and relate them to the LFO frequency, finding that when
using suitable dimensionless quantities the LFO frequencies
collapse onto a single curve independent of the number of
layers and particle diameter. Finally, we analyze the strength
of the LFO by describing the system by means of a Langevin
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FIG. 1. Schematic phase diagram of a vibrated quasi-two-
dimensional granular bed as a function of the energy injection and
the container’s length. Here, B.B. indicates the bouncing bed state
and the granular gas state is reached for very high energy injection
which lies outside the range of the phase diagram.

equation of a noise-driven harmonic oscillator. We find that the
measured LFO’s strength and the strength scaling derived from
the Langevin equation are consistent, and we show that the
energy equipartition is increasingly violated with the increment
of the shaking strength.

This article is organized as follows. In Sec. II, the exper-
imental setup and the simulations are detailed. In Sec. III,
we analyze the experimental results and compare them to the
simulations; in addition the different timescales presented in
the system are explained and analyzed. Finally, in Sec. IV a
summary of this study is presented.

II. SYSTEM DESCRIPTION

A. Experimental setup

The experimental setup consists of a quasi-one-dimensional
transparent acrylic container, with base dimensions (LX,LY )
much smaller than the height (height × LX × LY = 150 ×
5 × 5 mm3), as shown in Fig. 2(a). The container is partially
filled with monodispersed stainless steel beads of three dif-
ferent diameters, d = 0.5, 1.0, and 2.5 mm, i.e., the container
width L = LX = LY corresponds to L = 10d, 5d, and 2d,
respectively. The system is mounted on a sinusoidally vibrating

FIG. 2. (a) A full picture and a zoomed-in view of the experimen-
tal setup: The container is mounted on top of the mechanical shaker,
with the bottom located at approximately 1 cm above the socket. Note
that the granular material above it is at rest. (b) A schematic of the
container, where the dimensions of the container and the filling height
H , related to the filling factor F and particle diameter d , are indicated.
(c) Typical images of the partially filled container under shaking for
the three different particle diameters, d = 0.5, 1.0, 2.5 mm.

TABLE I. Experimental parameters, the shaker amplitude a0, its
frequency f0, the diameter of the particles d , and the number of
particle layers F used in the experiment.

a0 (mm) f0 (Hz) d (mm) F

1, 2, 3, 4 40–110 0.5, 1, 2.5 8, 12, 16

electromechanical shaker with tuneable frequency f0 and
amplitude a0, i.e., the vertical position of the bottom is given
by

z0(t) = a0 sin(2πf0t). (1)

Front view images are obtained using a high-speed camera
capturing 500 frames per second during 2 min; examples for
every particle size are shown in Fig. 2(c). For every set of
parameters 5 to 10 acquisitions were performed, in order to
reduce the statistical error.

Two dimensionless numbers have been previously found
to be relevant in the Leidenfrost state [10], which we choose
as control parameters: (i) the number of monolayers at rest
F = Nd2/L2, with N the total number of particles, and
(ii) the dimensionless shaking strength S = (2πa0f0)2/g�,
where � corresponds to the typical displacement of the particles
and g is the gravitational acceleration. Both dimensionless
numbers, F and S, are varied by changing the parameters a0,
f0, N , and d. The experimental parameters used in this study
are summarized in Table I.

In Fig. 3(a), a sequence of images shows the system in the
Leidenfrost regime, where a dense volume of grains is seen to
float over a much less dense gaseous layer. From the images
it is not possible to obtain the position of all the particles as it
is not feasible to distinguish individual particles for such high
densities. Therefore, in order to obtain the vertical coordinate
of the center of mass (zCM) we compute the horizontal intensity
average of every image, obtaining a vertical density profile at
each point in time, as shown in Fig. 3(b). We then define the
vertical positions of the center of mass zCM(t) of the granular
bed as that of the center of mass of the density profile at each
individual point in time [cf. Figs. 3(b) and 3(c)]. To verify this

FIG. 3. (a) A sequence of images of the system in different phases
of the driving showing a dense cluster floating over a dilute, gaseous
granular layer. This sequence corresponds to one period of oscillation
of the shaker. (b) Average of the black and white pixels on every
horizontal level for each frame as a function of time, referred to as
density profile. (c) Time-averaged density profile of the system.
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FIG. 4. A comparison of the vertical position of the center of mass
zCM(t) computed directly from the position of the particles (blue line)
and using the experimental method, i.e., from the density profile (red
line); data obtained using numerical simulations. The frequency that
dominates the main plot corresponds to that of the LFO, whereas in
the region that is magnified in the inset the driving frequency f0 can
also be appreciated.

procedure we use data from numerical simulations (detailed
further below) to compute the zCM(t) using two approaches:
(i) from the exact position of the particles and (ii) from the
density profile as done in experiments. As shown in Fig. 4, there
is a quite good agreement in the computed zCM(t) using both
approaches. However, the density profile approach consistently
overpredicts zCM(t) since it does not differentiate between a
single particle in the gaseous regime and a series of particles
stacked in the y direction in the dense region. Nonetheless, the
frequency of oscillation of the zCM(t) is accurately captured.

B. Simulations

Simulations are performed using event-driven (ED) molec-
ular dynamics [20]. Particles are considered as hard spheres,
which implies binary collisions, no overlap, and no long-range
forces between them. Collisions are modelled by normal and
tangential velocity-dependent restitution coefficients, follow-
ing the expression in Ref. [21]. This is the same simulation
code used in the original study of LFO [16], where a more
detailed description of the algorithm can be found. Material
properties were chosen such that, at a typical particle velocity
v̄ = 0.3 m/s, the relevant coefficient of restitution is r̄ = 0.93
for both particle-particle and particle-wall collisions. Velocity-
dependent r̄ ensures that dissipation is not overestimated at
high particle densities, as can occur when using constant
coefficients [22]. Static and dynamic friction coefficients (μs

and μd , respectively) are also considered and held constant at
μs = μd = 0.08 also for both types of collisions. In general,
variation of these parameters influences the values of the mea-
sured quantities (as will be discussed later), but the qualitative
aspects remain the same, even if periodic boundary conditions
are used and friction is set to zero. These particular values
of μ and ε were taken as fitting parameters to obtain a good
agreement with the experimental data and are in the range of
measured values for millimetric stainless steel spheres.

C. Shaking strength

The definition of the typical particle displacement �, and
hence the dimensionless shaking strength S, is not straight-

forward, since it sensitively depends on the system state.
When the granular bed is only slightly fluidized the typical
displacement is highly correlated with the shaking amplitude,
therefore � = a0 is a good approximation, and the shaking
strength becomes the dimensionless acceleration

Sa0
= � = a0(2πf0)2

g
. (2)

On the other hand, when the granular bed is strongly
fluidized this length scale is decoupled from the shaking
amplitude a0 and therefore an intrinsic parameter, namely
the particle diameter � = d, becomes a more sensible choice
[2,10,23]. With this choice, the dimensionless shaking strength
becomes

Sd = (2πa0f0)2

d g
. (3)

For states with a high energy injection rate, such as the
Leidenfrost regime, where it is clearly observed that particles
near the bottom typically travel distances which are larger than
the shaking amplitude, Sd appears as the proper dimensionless
parameter to describe such a driven system (as long as the parti-
cle diameter d is kept constant), as confirmed by experiments
and a theoretical hydrodynamic model [2]. In the following
section, we will, however, see that in our case, where d is
actually varied, we will need to reconsider the choice of the
dimensionless control parameter.

III. ANALYSIS OF RESULTS

The granular Leidenfrost state is an example of sponta-
neous segregation or symmetry breaking where an initially
homogeneous, monodisperse granular material separates into
a dense and a dilute region. This is the result of interparticle
collisions being dissipative and of a stochastic nature [24–27].
More specifically, in the granular Leidenfrost state a dense,
liquidlike, or even almost solidlike cluster is floating on top
of a dilute, gaseous region. Such a system is analogous to a
piston (the cluster) that encloses an amount of gas. Since the
piston is free to move up and down, the enclosed gas responds
as a spring: When the cluster moves down, it is compressed
and tries to push the cluster upwards, thereby trying to restore
the equilibrium situation. Clearly, when the cluster moves
upwards, the gas expands, the force on the cluster decreases,
and the equilibrium is again restored. Qualitatively, this is the
phenomenon that lies at the basis of the LFO. As mentioned
before, and as was observed in previous works [16–18], by
studying a quasi-one-dimensional geometry most of the phe-
nomena in the rich phase diagram can be suppressed, leaving
only the bouncing bed and Leidenfrost state to develop. This
allows us to directly observe these collective oscillations of the
particles in a relatively large parameter window. In this section
we will first study how the frequency fLFO of the Leidenfrost
oscillation depends on the parameters of the system, where we
predominantly vary the particle size d, the filling factor F and
the dimensionless shaking strength Sd . From an analysis of the
relevant timescales in the system we subsequently determine a
natural scaling for fLFO and show that with an appropriate
choice of dimensionless parameters the data can be made
to collapse onto a single curve. Subsequently, we study the
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FIG. 5. The PSD of the time evolution of the center of mass zCM(t)
for (a) different shaking strengths Sd with constant particle diameter
d = 1 mm and (b) different particle diameters d with constant shaking
strength Sd = 81, obtained from experimental data for F = 12. The
LFO is clearly distinguished as a broad peak around the 10-Hz region
and its frequency fLFO can be determined from the location of the
peak’s maximum. The black dashed lines represent theoretical results
calculated from the Langevin model [Eq. (11)].

coherence time and the amplitude of the oscillation and show
that the mechanism that drives the LFO is connected to the
stochastic character of the system.

A. LFO frequency

As can be seen in Fig. 4, the time evolution of the center
of mass zCM(t) shows oscillations with two clearly distinct
frequencies: a fast one, corresponding to the frequency of the
shaker f0, and a much slower one, fLFO, which corresponds to
the low-frequency Leidenfrost oscillations. To determine this
last frequency, we compute the power spectral density (PSD)
of zCM(t), shown in Fig. 5 for (a) different shaking strengths
Sd and (b) different particle diameters d. The frequency from
the shaker f0 and its harmonics are immediately recognized
as well-defined, narrow peaks in the PSD. In addition, there is
an equally clear wide and shallow peak, which corresponds to
the LFO. Surprisingly, the frequency fLFO decreases when the
injected energy increases; in other words, the typical period
of the collective oscillation of the system is larger when the
injected energy increases. Furthermore, the peak correspond-
ing to the LFO becomes narrower and higher with increasing
injected energy and with decreasing particle diameter. This
suggests that this collective behavior becomes more coherent
in time as Sd increases and d decreases.

The fLFO was determined from the PSD as a function
of the driving strength Sd for different numbers of layers
F and particle diameters d, the result of which is shown
in Figs. 6(a) and 6(b), respectively. The plot contains both
experimental (closed symbols) and numerical (open symbols)
data, where the different symbols correspond to different
values of the vibration amplitude a0. The fact that the data
collapse irrespective of the value of a0 proves that fLFO indeed
only depends on the combination Sd and not on a0 and f0

separately. Our data are consistent with the scaling proposed
by Rivas et al. [16], namely fLFO(Sd ) ∼ S−α

d , with α ≈ 0.3.

B. A simple model for the LFO

A key question we want to address is as follows: How does
the frequency of the LFO scale with the parameters in the

FIG. 6. The LFO frequency fLFO is plotted versus the dimen-
sionless shaking strength Sd for (a) different numbers of layers
F and a constant particle diameter d = 1 mm, and (b) different
particle diameters and a constant number of layers F = 8. The
different symbols correspond to different amplitudes of the shaker,
◦ = 1.0 mm, � = 2.0 mm, � = 3.0 mm, � = 4 mm. The solid
symbols represent experimental data and the open symbols numerical
simulation results.

system? We find an answer by turning to a highly simplified
mass-spring model of the Leidenfrost state (cf. Ref. [16], where
a more elaborate model was introduced in the same spirit).

The dense high packing fraction region at the top acts as a
solid plug with a total mass Mplug, while the gaseous region
below is equivalent to a spring, which applies a force to the
plug that is proportional to its compression. Once the spring
constant k is known, the frequency of oscillation of the spring
is obtained from the force balance Mplugü = −ku, where u

is the vertical displacement of the plug with respect to its
equilibrium position. This leads to the well-known relation
fLFO = 1/2π

√
k/Mplug.

To estimate k we use the fact that in steady state the pressure
of the plug Pplug must be equal to the pressure Pgas in the
gaseous region just below the plug

Pgas = Pplug = gMplug

L2
, (4)

where L2 is the bottom area of the container. Using the (admit-
tedly bold) assumption that the gaseous region is compressed
in accordance with Boyle’s law for ideal gases, we write
Vgas�Pgas = −Pgas�Vgas, where the equilibrium gas volume
Vgas is the typical heightλ times the bottom area of the container
L2, the differential volume can be written as �Vgas = uL2, and
the differential gas pressure �Pgas is written as the differential
gas force per area �Fgas/L

2. This leads to

�Fgas = −
(

gMplug

λ

)
u, (5)

which is recognized as the force term in the equation for an
harmonic oscillator with k = gMplug/λ.

The size of the gaseous region is proportional to the typical
kinetic energy gain of a particle when colliding with the bottom
and gravity, i.e., λ ∼ T0/g. The granular temperature T0 will
be set by the temperature of the vibrating bottom T0 ∼ a2

0f
2
0 .

This linear relation is verified using numerical simulations,
as shown in Fig. 7(a), where the granular temperature T is
calculated as the average temperature of the whole system [28].
Inserting this approximation in the above expressions for k and
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FIG. 7. (a) The granular temperature T and (b) the ratio of the
kinetic energy of the center of mass zCM to the kinetic energy per
particle, K̄CM/K̄pp, are plotted versus (a0f0)2 for different numbers of
layers F and a constant particle diameter d = 1 mm, both correspond
to numerical simulation results. The different symbols correspond
to different amplitudes of the shaker, ◦ = 1.0 mm, � = 2.0 mm,
� = 3.0 mm, � = 4 mm.

fLFO, we find that Mplug cancels out and

fLFO ∼ g

T
1/2

0

∼ g

a0f0
⇒ f̃LFO ≡ fLFOa0f0

g
, (6)

providing us with a natural frequency scale for the LFO which
directly leads to the above definition of the dimensionless LFO
frequency f̃LFO.

The control parameter Sd , however, also requires some
thought. In fact, the choice of the particle diameter d as a typical
intrinsic length scale in Eq. (3) had so far been motivated by the
fact that it was a convenient length scale which was kept fixed
in the work in which it was introduced. Since we actually vary
d, we are in need of a control parameter that better corresponds
to the physics of the system we are studying. Let us therefore
make a few assumptions about the granular Leidenfrost state.
First, let us assume that the dissipation in the gaseous region is
negligible in comparison with that in the dense region above it.
This can be motivated from the fact that particles in the latter
region are very close and therefore collisions very frequent. In
a steady state, this means that the particles in the gaseous region
are just transporting energy from the bottom to the plug, where
it is subsequently dissipated. This is reminiscent of a famous
work from the Kadanoff group [29,30] where a single particle
transports energy from a hot wall to a granular cluster. Now,
in our case suppose that a single particle picks up a kinetic
energy ∼ T0 ∼ a2

0f
2
0 at the bottom. This energy needs to be

dissipated in the plug, and since in height there are typically
F particles to do so, the dissipated energy should scale as
F 2T0 ∼ (Fa0f0)2. It is therefore plausible that for Leidenfrost
states with a similar gaseous region (and therefore similarfLFO)
we have the same value of Fa0f0. Nondimensionalizing the
latter parameter with the velocity scale

√
gL, we obtain the

following control parameter [31]

B = a0f0F√
gL

. (7)

In Fig. 8 the data of Fig. 6 are plotted using the new
dimensionless parameters f̃LFO and B. We see that all realized
experiments and numerical simulations collapse onto a single
curve. This collapse is in agreement with the observations of

FIG. 8. The dimensionless frequency of the low-frequency oscil-
lations f̃LFO as a function of the shaking parameter B collapses all
simulational data (as shown in Fig. 6) onto a single curve. Different
symbols correspond to different numbers of layers F and different
colors to different particle diameters d . As in Fig. 6, the solid
symbols represent experimental data and the open symbols numerical
simulation results. The dashed-dotted line serves as a guide to the eye.

Rivas et al. [16], where the container length Lx is varied and
seen to have no influence on the normalized fLFO, as long as
the system stays in the Leidenfrost state.

C. Time autocorrelation

Now that we qualitatively understand the physics behind
the LFO, we turn our attention to the driving mechanism.
When one identifies an oscillation it is namely not sufficient to
identify the oscillating object itself; we must also know what
keeps the oscillation going, e.g., a bow needs to be drawn
across a violin string in order for the latter to produce sound.
To answer this question, we note that the LFO is quasiperiodic
rather than purely harmonic, i.e., it is not a clear periodic signal
in time. Moreover it appears to be decoupled from the driving in
the sense that for constant a0f0 the amplitude and frequency
of the LFO are independent of a0 or, equivalently, f0 which
can therefore be ruled out as the direct driving mechanism. We
compute the autocorrelation function of the center of mass

ξ (t0) = 〈zCM(t + t0)zCM(t)〉t
〈(zCM(t))2〉t , (8)

where 〈...〉t indicates a time average. The result is shown in
Fig. 9(a). Clearly, the autocorrelation function of the pure
signal is dominated by the frequency of energy injection, which
is the highest frequency present in the blue curve. Thus, the
damped low-frequency oscillation that appears as a modulation
of the high frequency signal is quite hard to recognize. We
therefore choose to first low-pass filter the zCM(t) signal,
with a cutoff frequency fc = fLFO + (f0 − fLFO)/2, that is,
in between the frequencies of the LFO and the shaker. The
autocorrelation function of the filtered signal accurately cap-
tures the autocorrelation on a larger timescale, as shown in
Fig. 9(a). The location of the maxima and minima of ξ (t0) are
verified to correspond with the period τLFO = 1/fLFO of the
LFO. Furthemore, we observe that the maxima (and minima)
of ξ (t0) decay exponentially in time. The corresponding typical
decay timescale τ is obtained by fitting the successive maxima
to an exponential y(t0) = e−t0/τ , as shown in Fig. 9(b). This
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FIG. 9. (a) Autocorrelation function of the original center-of-
mass signal zCM(t) (blue line) and of the low-pass-filtered center
of mass (red line) for a0 = 4 mm, f0 = 55.7 Hz, Sd = 200, and
F = 12. (b) The autocorrelation function of the low-pass-filtered
center-of-mass signal is plotted versus time for different number of
layers and shaking strength Sd = 200. The dashed line represents the
fit of the maxima for F = 8.

time decay can be readily interpreted as a decorrelation time,
i.e., it is a measure for how fast the oscillating system looses
phase information or, conversely, what the typical coherence
time of the signal is.

The decorrelation time increases with Sd , as was suggested
by the narrowing peaks of the spectra of zCM(t) (Fig. 5).
Moreover, we see that the correlation is inversely proportional
to both d and F , suggesting that, in general, correlations are
higher for systems with a higher number of particles, as seen
in Fig. 10 for experimental and numerical data.

D. Time scales

In the literature three different timescales have been iden-
tified in (dilute) vertically driven granular systems from hy-
drodynamic descriptions [17,19]. These three timescales are
associated to the different processes that take place in a driven
granular system. The first and fastest inertial timescale is
associated to the mechanical response of the system and is
identical to the one we introduced to nondimensionalize the
LFO frequency, namely τosc = a0f0/g. The second timescale
is connected to heat conduction and was shown to be equal
to τheat = Fa0f0/g and, finally, the third and largest timescale
corresponds to dissipative processes and can be approximated
as τdiss ∼ a0f0/(gεF ). Here the inelasticity coefficient ε =
1 − e2 is given in terms of the (nominal) normal coefficient
of restitution e. Since, although unknown, ε can be assumed
to be constant in the experiments conducted in this work, we
just use τd ≡ ∑

τdiss = a0f0/(gF ) as a reference timescale.
When the decorrelation time τ is rescaled with τd it is

roughly independent of any parameter, as can be appreciated
in Fig. 10(c), where the dimensionless decorrelation time
τ̂ ≡ τ/τd is plotted versus the shaking parameter B. Therefore,

τ ∼ τd ∼ a0f0

gF
, (9)

which implies that the system becomes more coherent with
increasing shaking strength (i.e., when a0f0 increases) and
loses its coherency when the number of layers in the system

FIG. 10. Decorrelation time τ determined from the autocorrela-
tion function ξ (t0) of the center of mass signal zCM(t). (a) Experi-
mental data for τ as a function of the dimensionless shaking strength
Sd for different values of the number of layers F and the particle
diameter d (see legend at the bottom). (b) Numerical data for τ ,
again as function of Sd . (c) τ nondimensionalized with the dissipative
timescale τd = a0f0/(gF ) plotted versus the shaking parameter B.
The horizontal lines correspond to the averaged value of τ/τd for
the numerical simulations and the experiments. As in previous plots,
different symbols correspond to different numbers of layers F and
different colors to different particle diametersd , and the solid and open
symbols represent experimental and numerical data, respectively.

F increases. This is consistent with the view that the LFO is
driven by the noise in the system, which increases with the
driving strength a0f0 but decreases when the number of layers
F in the system increases.

Note that the large value of the dimensionless decorrelation
time (τ/τd ∼ 50), in both experiment and numerical simula-
tions, is connected to the fact that τd needs to be divided by the
inelasticity ε, which is typically much smaller than 1, to obtain
the dissipative timescale τdiss. In addition, the constant value of
τ/τd is larger for numerical simulation than experimental data,
which can be attributed to differences between simulation and
experiment as, e.g., the role of particle-wall dissipation.

E. LFO intensity

Finally, we turn to the strength of the oscillation by mea-
suring the oscillation intensity ILFO, namely the amplitude of
the PSD at the oscillation frequency fLFO. This quantity is
plotted in Fig. 11 for (a) the experiments and (b) the numerical
simulations as a function of the shaking strength Sd . We
observe that ILFO (for any fixed F and d) increases with the
shaking strength Sd and that there is a dramatic influence of the
number of layers F , with ILFO dropping quickly as a function
of F .
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FIG. 11. Intensity ILFO obtained from the PSD of the center-of-
mass signal zCM(t). Top left: Experimental data for ILFO as a function
of the dimensionless shaking strength Sd for different values of the
number of layers F and the particle diameter d (see legend at the
bottom). Top right: Numerical data for ILFO, again as function of
Sd . Bottom: ILFO nondimensionalized by (a0f0)5d2/(L2g3F ) plotted
versus the shaking parameter B. The dashed-dotted line serves as a
guide to the eye. As in previous plots, different symbols correspond
to different numbers of layers F , different colors to different particle
diameters d , and the solid and open symbols represent experimental
and numerical data, respectively.

The shape of the PSD (Fig. 5) and the time-autocorrelation
function (Fig. 8) suggests an approximate description in terms
of a Langevin equation of a noise-driven harmonic oscillator
(also known as Brownian motion in a harmonic potential)
which is textbook material in nonequilibrium statistical me-
chanics [32],

ζ̈ = −ηζ̇ − ω2
LFOζ + ξ , (10)

where ωLFO = 2πfLFO, ζ (t) = zCM(t) − 〈zCM〉 is the vertical
deviation of the center-of-mass location from its time average
〈zCM〉, η = 2/τ corresponds to twice the inverse decorrela-
tion time, and ξ (t) is delta-correlated white noise, obeying
a fluctuation-dissipation relation 〈ξ (t)ξ (t ′)〉 = 2ηV 2

T δ(t − t ′).

Here VT stands for the thermal velocity of the center of mass. In
fact, such a Langevin approach had been suggested by Wakou
and Isobe in Ref. [17], where a Langevin description of a dilute
vibrated granular gas (i.e., without density inversion and the
clearly observable Leidenfrost oscillation) was proposed.

The PSD S(ω) corresponding to Langevin Eq. (10) is readily
calculated theoretically [32]

S(ω) = 2ηV 2
T[

(ω2
LFO − ω2)2 + η2ω2

] . (11)

Using the measured values for ILFO, fLFO, and τ we plot
the above expression together with the experimental PSDs in
Fig. 5 and find very good agreement for frequencies around
and lower than the Leidenfrost oscillation frequency but also
that Eq. (11) significantly underpredicts the participance of the
higher frequencies in the experimental PSD.

Clearly, the numerator being constant, S(ω) is maximum
when the denominator obtains its smallest value, which gives:

ILFO = 2V 2
T

η
(
ω2

LFO − 1
4η2

) ≈ τV 2
T

ω2
LFO

, (12)

where the last approximation originates from the expectation
that η 
 ωLFO. The only quantity of which the scaling behavior
is unknown is the thermal velocity of the center of mass, VT .

Figure 7(b) shows the ratio of the kinetic energy of the
center of mass zCM to the kinetic energy per particle, i.e.,
K̄CM = K̄pp, for the simulation data. It can be seen that there
is an approximate equipartition of energy, i.e., K̄CM ≈ K̄pp ≈
kBT0 ≈ 1, and hence VT is linked to the thermal velocity vT ∼
a0f0 of the grains by 1

2MtotV
2
T ≈ 1

2mv2
T , with the total mass

Mtot = Nm given by the product of the number of particles N

and the grain mass m. This leads to

V 2
T ≈ m

Mtot
v2

T ∼ a2
0f

2
0

N
. (13)

Using the above result with the previously corroborated τ ∼
a0f0/(gF ) and ωLFO ∼ g/(a0f0) provides the scaling

ILFO ∼ (a0f0)5

g3FN
∼ (a0f0)5d2

g3F 2L2
, (14)

where in the last step we have used that N = FL2/d2. In
Fig. 11(c) we rescale ILFO with the right-hand side of Eq. (14)
and plot it as a function of the shaking parameter B and find a
fair data collapse for both the experimental and the numerical
data. Moreover, it can be seen that the dimensionless ILFO

data decay exponentially with B. Since τ̂ is approximately
constant andfLFO has nonexponential behavior (Fig. 7 suggests
that it increases as a power law of B), this exponential decay
appears to be connected to the violation of energy equipar-
tition, as might be anticipated for this far-from-equilibrium
system. More specifically, we find that the ratio of the thermal
energy of the center of mass and that of the particles decays
exponentially, i.e.,

V 2
T = 4π2 a2

0f
2
0

N
φ(B), (15)

where φ(B) is an exponentially decaying function of the
shaking parameter B.
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To test the above, we use Eq. (12) to express V 2
T in terms

of the measured quantities ILFO, fLFO, and τ and subsequently
nondimensionalize with a2

0f
2
0 /N and obtain the result plotted

in Fig. 11(d), which corroborates our expectation: There indeed
appears to be an exponential decay of the ratio of the thermal
energy of the center of mass and that of the particles. There
are many probable causes why energy equipartition may
deteriorate for larger B. The most obvious one is dissipation,
which makes it unlikely for the thermal energy of the gas
particles and that of the plug to be equilibrated. A more
subtle effect is that the plug is not a fixed entity moving as a
Browian particle but itself consists of many particles that will
respond to collisions with the particles in the gaseous layer.
This will lead to the observed much stronger participation of
the higher frequencies in the PSD than expected based on the
simple Langevin model Eq. (10). And a stronger participation
of the higher frequencies directly implies a lower intensity
at the resonance frequency fLFO, even if there would be
equipartition.

IV. CONCLUSIONS

We have experimentally and numerically studied the LFO in
a vibrated quasi-one-dimensional column of granular material
in the Leidenfrost state. This LFO manifests itself as a vertical
oscillation of the dense top layer of the Leidenfrost state.
We determined the LFO frequency from the power spectral
density of the center-of-mass signal for different amplitude

and frequency of the driving, particle diameters, and number
of layers in the system.

In search of scaling laws, we constructed a simplified mass-
spring model of the Leidenfrost state and argued that the LFO
frequency should be inversely proportional to the fast inertial
timescale, which is independent of the particle diameter and the
number of layers. The dimensionless oscillation frequency is
found to depend on the shaking parameter B = a0f0F/

√
gL,

which was motivated qualitatively from the balance of energy
input and dissipation in the dense layer. Experimental and
numerical results are in fair agreement with each other.

Subsequently, we studied the time autocorrelation function
of the center-of-mass signal and found that the LFO
decorrelates with a typical decay time τ , which was found to
be proportional to the dissipative timescale τdiss = a0f0/(gF )
and otherwise independent of any other parameter in the
system. Such a decorrelation is consistent with the view that
the LFO is driven by the inherent noise in the system, which
increases with the driving strength a0f0 but decreases with
the number of layers F .

Finally, we argue that the vertical position of the center of
mass can be approximately described by a Langevin equation
with weak white noise. We find that the amplitude of the
oscillation, measured as the oscillation intensity in the PSD,
scales consistently with that expected from the Langevin
description. We find that energy equipartition is violated in
this far-from-equilibrium system and that the portion of energy
partitioned with the oscillating dense top layer is decaying
significantly with increasing shaking strength.
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