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A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been
used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal
phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both
the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered
orientationally mainly in the boundary region between the domains and the nematic order parameter possesses
opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction
between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly
selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration
profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction
centers and also determined using the results of computer simulations. A number of phase diagrams have been
obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various
phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram
has been constructed in coordinates’ nanoparticle concentration–copolymer composition. Orientational ordering
of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a
polymer nanocomposite, which is important for various applications.
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I. INTRODUCTION

Various soft matter nanocomposites based on anisotropic
fluids and doped by metal, dielectric, and semiconductor
nanoparticles (NPs) are considered to be very promising
materials which attract significant attention at present. To a
large extent this interest is determined by the possibility to
modify thermodynamic, optical, and dielectric properties of
such systems by adding a small fraction of NPs [1]. For
example, switching voltages and times of nematic liquid crystal
cells can be reduced by adding only a few volume percent of
metal NPs (see, for example, Refs. [2–6]). Doping of nematics
with strongly polar ferroelectric NPs also leads to an increase
of their dielectric constant and enhances the electro-optic
response [7–11]. In nanocomposites based on side-chain liquid
crystal polymers, the semiconductor quantum dots may posi-
tionally order in self-assembled periodic structures [12,13].

Anisotropic NPs acquire orientational order from various
liquid crystal host phases and in turn affect the thermodynamic
stability of these phases. Indeed, the nematic-isotropic (N -I )
phase transition temperature is decreased when the nematic
liquid crystal is doped with isotropic silver [14], gold [15] or
Aerosil [16,17] NPs. At the same time, doping with strongly
anisotropic NPs leads to an increase of the N -I transition
temperature, which has been observed using nanotubes [18],
magnetic nanorods (NRs) [19], and ferroelectric NPs [7,8].
Recently, the effect of NPs on the N -I phase transition and on

the dielectric properties of nematic nanocomposites has been
described in terms of molecular statistical theory [20–24].

Introduction of NPs can also improve mechanical, thermal,
and dielectric properties of composite polymer nanomaterials
based on block copolymers [25–31]. Microphase separation in
block copolymers can stabilize spatially inhomogeneous NP
distribution, which paves the way for the design of materials
to be used as smart membranes and in nanophotonics. The
self-assembling of such nanostructures will be of advantage
compared to the production by lithographic techniques. From
the liquid crystal science viewpoint, interesting effects are
related to the orientational ordering of small anisotropic NPs in
various phases of block copolymers. Hexagonal and lamellar
phases of block copolymers are macroscopically uniaxial
and this structural anisotropy can, in principle, induce some
orientational order of sufficiently anisotropic NRs. On the other
hand, the macroscopic anisotropy of diblock copolymers is
expected to be rather weak because the bulk of each block
is isotropic and the anisotropy is only determined by the
block boundaries. As a result, NRs can order orientation-
ally only in the interfacial regions between adjacent blocks,
where they interact with the monomers of both blocks. The
orientational ordering of NRs in diblock copolymers has been
indeed observed experimentally. In particular, poly(ethylene
glycol) functionalized gold NRs have been aligned paral-
lel to the domain boundary in the lamellar phase [32],
while the polystyrene functionalized NRs have been aligned
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perpendicular to the cylindrical domain boundary in the hexag-
onal phase of the same block copolymer [33]. At the same
time, the alkyl phosphonic acid capped semiconductor NPs
have been ordered parallel to the cylindrical boundary in a
different block copolymer [34,35].

In general, the effect of NPs on the structure and properties
of block copolymers can be rather complicated. On the one
hand, anisotropic NPs may spontaneously order both spatially
and orientationally in the anisotropic lamellar and hexagonal
phases. On the other hand, they may also affect the thermo-
dynamic stability of these phases and shift the corresponding
transition points. The distribution of anisotropic NPs in block
copolymers has recently been studied theoretically by the
authors [36,37], assuming fixed phase-separated structures of
the lamellar and hexagonal phases. Similarly to the molecular
theory of nematic liquid crystals in the external field, the
orientational order of NPs in this case is induced by the
anisotropic mean field created by the interaction between
the NPs and the monomers of the two different blocks. In
the simplest model, a NP was assumed to be of spherical
shape but its interaction with a monomer was the sum of
the isotropic and anisotropic parts. The anisotropic part of
the model potential was determined by the effective particle
anisotropy due to, for example, the polarizability anisotropy
or the quadrupole moment. Numerical calculations have been
employed to show that anisotropic NPs are orientationally
ordered in the interfacial regions [36] and that the NPs are
aligned parallel and perpendicular to the domain wall on
different sides of the boundary.

Coarse-grained simulations with dissipative particle dy-
namics (DPD) [37] allowed us to explicitly consider anisomet-
ric NPs (and NRs) and to study the effect of their concentration,
length, stiffness, and selectivity of their interactions with the
copolymer blocks on the orientational order of NPs and phase
stability of the whole composite. In our recent theoretical
paper [38], a dumbbell NP has been considered, which is
composed of two equal spheres separated by a certain distance
and interacting individually with the monomers. Such a model
NP possesses an anisotropic shape and is rather similar to the
model NR, composed of several rigidly connected spheres,
which was employed in the computer simulations [37]. It has
been shown that in the context of this model, the orientational
order parameter of the NPs appears to be significantly higher
than in the previous model [36] and the NPs are orientationally
ordered in a broader interfacial region, which is closer to the
results of computer simulations.

In this paper we use both analytical theory and computer
simulations to focus on the effect of the NRs on the relative
stability of the lamellar and hexagonal phases with respect
to each other and to the isotropic phase. We combine the
expansion of the free energy of the pure block copolymer
in terms of the order parameters of the monomer distribution
with a molecular-field theory which describes the interaction
of the NRs with the monomers and their ordering in block
copolymers. In parallel, we carry out extensive DPD simula-
tions to construct partial phase diagrams of the composite in
the coordinates NR molar fraction polymer composition at a
fixed strong immiscibility of the copolymer blocks. Different
morphologies are identified by analyzing the static structure
factor and visually from the system snapshots. Orientational

and positional order of the NRs are evaluated in lamellar and
hexagonal phases. The paper ends with a discussion bridging
the model theoretical and simulation results.

II. MOLECULAR FIELD THEORY OF POLYMER
NANOCOMPOSITES

In the context of the existing molecular statistical the-
ory of block copolymers, the polymer nanocomposites with
anisotropic NPs can be described combining field-theoretic
approaches, including the self-consistent field theory [39], with
an explicit treatment of NPs using the density functional theory
[40]. In principle, such an approach can be used to consider
NPs of arbitrary shape and size, but the number of publications
in this field is very limited [41], which is related to inherent
problems associated with high computational cost and with
the difficulties in combining numerical computer simulations
with the solutions of complex partial differential equations with
both translational and orientational degrees of freedom. On the
other hand, at relatively weak segregation between different
monomers the block copolymer matrix can be described
qualitatively by using the Landau expansion of the free energy
of the chains in terms of the translational order parameters of
the monomers in the lamellar and hexagonal phases as first
proposed by Leibler [42]. Although more sophisticated mean-
field theories encompassing block copolymers with stronger
segregation have been also developed [43,44], we choose here
to take the advantage of the simplicity and clarity of Leibler’s
approach and combine the free-energy expansion in terms
of the translational order parameter with the NP-monomer
interaction accounted for in the molecular field approximation.

Assuming that the molar fraction of NPs is sufficiently
small, one can neglect the interaction of NPs and write the
free-energy density of a block copolymer doped with NPs with
three terms

F = Fp + VNP − T SNP, (1)

Here the free energy of pure host copolymer consists of the
contribution from the entropy of noninteracting chains and of
the repulsive interaction of monomers A and B,

Fp = −kBT ln Z0 + kBT

∫
χ0〈ρA(r)〉〈ρB(r)〉dr, (2)

where Z0 is the chain partition function and χ0 > 0 is the
effective monomer repulsion parameter. The energy of the NP
interaction with the monomers A and B reads

VNP =
∫

〈ρA(r1)〉VA(r12,a2)ρNP(r2,a2)dr1dr2da2

+
∫

〈ρB(r1)〉VB(r12,a2)ρNP(r2,a2)dr1dr2da2, (3)

while the last term in Eq. (1) corresponds to the contribution of
the orientational and translational entropy of anisotropic NPs:

SNP = kB

∫
ρNP(r,a) ln[ρNP(r,a)]dr da. (4)

We denote by ρA(r) and ρB(r) the density profiles of
monomers of types A and B, respectively, while ρNP(r,a) is
the one-particle density describing the positional and orien-
tational distribution of the NPs normalized by their number:
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NNP = ∫
ρNP(r,a)dr da. The potentials VA(r12,a2) and

VB(r12,a2) describe the interaction between an anisotropic NP
and the monomers A and B, respectively, and they are assumed
to depend on the distance r12 = r1 − r2 and the NP orientation
specified by the unit vector a in the direction of the NP main
axis.

A. Free-energy expansion of the pure host phase

In the limit of zero polymer compressibility, ρA(r) +
ρB(r) = ρm, where ρm is the average monomer number den-
sity. Then the order parameter of the microphase separated
structure in a diblock copolymer can be introduced as

ψ(r) = 1

ρm

〈δρA〉 = 1

ρm

〈ρA〉 − f = 1 − f − 1

ρm

〈ρB〉, (5)

where f is the relative composition ratio of the diblock
copolymer chain. This order parameter can be sought in the
form of the general expression valid for different phases [42]

ψ(r) = n−1/2ψn

n∑
j=1

[exp(iQj · r + ϕn) + c.c.], (6)

where ψn is the amplitude, ϕn is the phase, and the density
distribution is characterized by a set of n wave vectors Qj ,
j = 1, . . . ,n. In the lamellar phase, there is only one wave
vector, i.e., n = 1 and |Q1| = q∗. In the hexagonal phase, n =
3 and all three wave vectors Q1,2,3 are expressed in terms of
the same q∗ as Q1 = q∗(1,0,0), Q2 = q∗/2(−1,

√
3,0), and

Q3 = q∗/2(−1, − √
3,0).

Now the free energy Fp per chain of the pure copolymer
host phase can be expanded in terms of the order parameter as
originally proposed by Leibler [42],

Fp

kBT Nch
= 2N (χs − χ )ψ2

n − αnψ
3
n + βnψ

4
n , (7)

where χ = ρmχ0 and N is the number of monomers in a
polymer chain so that the total number of polymer chains reads
Nch = Nm/N , where Nm = ρmV is the total monomer number.
The coefficients of the expansion depend on the fraction f of
the monomers A and on the product qR of the wave number
q and the gyration radius R = s

√
N/6 of the polymer chain,

where s is the monomer length (the Kuhn segment length).
Explicit expressions for the coefficients χs , αn, and βn are
presented in [42]. In particular, the quadratic term in this
expansion has the same mathematical form for both phases
and the coefficient χs can be written in the form

Nχs = 1
2g1(1,x)

/{g1(f,x)g1(1 − f,x)

− 1
4 [g1(1,x) − g1(f,x) − g1(1 − f,x)]2}, (8)

where g1(f,x) = 2[f x + exp(−f x) − 1]/x2 is the Debye
function which depends on the wave number q of the phase
separated structure via the nondimensional parameter x =
q2R2. The equilibrium wave number q∗ at the transition into
the disordered phase can be obtained by minimizing Eq. (8)
with respect to x, and the higher-order coefficients α1,α3 and
β1,β3 are calculated using this equilibrium value q∗. We note
that it follows from the symmetry of the lamellar phase that
α1 = 0.

The higher-order coefficients in the free-energy expansion
have been explicitly expressed in [42]. In particular, in the
lamellar phase

β1 = N	4(0,0)/4 (9)

and in the hexagonal phase

α3 = − 2

3
√

3
N	3 (10)

and

β3 = N [	4(0,0) + 4	4(0,1)]/12. (11)

The particular values of the parameters 	3, 	4(0,0), and
	4(0,1) used below are extracted from Ref. [42], where they
have been evaluated for various copolymer configurations.

B. The NP contribution to the free energy of the composite

The NP distribution function ρNP(r,a) can be obtained by
minimizing the total free energy (1). Expressing the average
monomer density in terms of the order parameter (5) and using
Eq. (6), one obtains

ρNP(r2,a2) = 1

Z
exp

{
− ρm

kBT

∫
ψ(r1)

×[VA(r12,a2) − VB(r12,a2)]dr1

}

= 1

Z
exp

{
− ρm

kBT
n−1/2ψn

×
n∑

j=1

[exp(iQj · r2)δV (Qj ,a2) + c.c.]

}
, (12)

where δV (Qi ,a2) = ∫
[VA(r12,a2) − VB(r12,a2)] exp(iQi ·

r12)dr12. Substituting this expression into the free energy (1),
one obtains the contribution of NPs to the total free energy

FNP

V kBT
= −ρNP ln Z

= −ρNP ln
∫

exp

{
− ρm

kBT
n−1/2ψn

×
n∑

i=1

[exp(iQi · r)δV (Qi ,a) + c.c.]

}
dr da, (13)

where ρNP is the average number density of NPs and V is the
system volume. The free-energy contribution determined by
NPs can now be expanded in powers of ψn using the equation
for the order parameter ψ(r) for the lamellar and hexagonal
phases

FNP

V kBT
= −ρNP

∑
k

ρk
m

k!(kBT )k
n−k/2Gkψ

k
n, (14)

where

G1 = I1, G2 = I2 − I 2
1 , G3 = I3 − 3I1I2 + 2I 3

1 ,

G4 = I4 − 4I1I3 − 3I 2
2 + 12I 2

1 I2 − 6I 4
1 , (15)
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with

Ik = 1

4πV

×
∫ ⎡

⎣ n∑
j=1

[exp(iQj · r)δV (Qj ,a) + c.c.]

⎤
⎦

k

dr da.

(16)

We note that in this expression only the exponential functions
exp(iQj · r) are to be integrated over r, which makes the
integration rather straightforward. For example, in the lamellar
phase, n = 1 and there is a single nonzero wave number
|Q1| = q∗. In this case, the quantities Ii and Gi are given by
the expressions

I
(l)
1,3 = 0, I

(l)
2 = 1

2π

∫
δV (Q1,a)δV (−Q1,a)da,

I
(l)
4 = 3

2π

∫
[δV (Q1,a)δV (−Q1,a)]2da (17)

and, accordingly, G
(l)
1,3 =0, G

(l)
2 =I

(l)
2 , and G

(l)
4 =I

(l)
4 − 3I

(l)
2

2
.

In the hexagonal phase, n = 3 and there are three wave
vectors which have the same absolute value |Q1,2,3| = q∗ and
Q1 + Q2 + Q3 = 0. In this case, one also obtains I

(h)
1 = 0 and

the even-order integrals are very similar to those obtained in
the case of the lamellar phase. At the same time, the third-order
integral I

(h)
3 is nonzero as the product of the three exponential

functions does not vanish upon integration over r if it involves
all three different wave vectors. As a result, one obtains

I
(h)
2 = 1

2π

3∑
m=1

∫
δV (Qm,a)δV (−Qm,a)da, (18)

I
(h)
3 = 3

2π

∫
[δV (Q1,a)δV (Q2,a)δV (Q3,a) + c.c.]da, (19)

I
(h)
4 = 3

2π

3∑
m=1

∫
[δV (Qm,a)δV (−Qm,a)]2da, (20)

where the expressions for I
(h)
2 and I

(h)
4 are composed of

three equal contributions, and I
(h)
2 =3I

(l)
2 and I

(h)
4 =3I

(l)
4 . The

free-energy expansion coefficients in the hexagonal phase are

G
(h)
1 =0, G

(h)
2 =3I

(l)
2 , G

(h)
3 =I

(h)
3 , and G

(h)
4 =3I

(l)
4 − 27I

(l)
2

2
.

Therefore, in both phases, the free-energy expansion coeffi-
cients are expressed in terms of the three integrals of the Fourier
transforms of the potential: I

(l)
2 , I

(l)
4 , and I

(h)
3 . More detailed

expressions can be obtained using a particular model of the
interaction potential. In this paper we use the dumbbell model
of the nanoparticle which is composed of the two spheres with
their centers separated by a distance l. The spheres interact
isotropically with monomers via the exponential potential
Vα(r) = Jα exp(−r2/r2

0 ), where r is the distance between the
center of the sphere and the monomer of the type α = A,B. In
this case, the energy of interaction of a NP composed of two
spheres with a monomer is expressed as

Vα(r12,a) = Jα exp
(−r2

+
/
r2

0

) + Jα exp
(−r2

−
/
r2

0

)
, (21)

where r+ = r12 + la/2 and r− = r12 − la/2. Here the unit
vector a is parallel to the NP axis. The Fourier transform of
this potential can be evaluated in an explicit form

V +
α (Q,a)

=
∫

Jα exp
(−r2

+
/
r2

0

)
exp(iQ · r12)dr12

= exp(−iQ · al/2)
∫

Jα exp
(−r2

+
/
r2

0

)
exp(iQ · r+)dr+

= π3/2 r3
0 Jα exp(−iQ · al/2) exp

(−Q2r2
0

/
4
)

(22)

and hence

δV (Q,a) = 2π3/2 r3
0 (JA − JB)

× cos(Q · a l/2) exp
(−Q2r2

0

/
4
)
. (23)

Then the quantities relevant for the free-energy coefficients in
the lamellar and hexagonal phases take the form

I
(l)
2 = 4π3 r6

0 (JA − JB)2 exp
(−q∗2

r2
0

/
2
)(

1 + sin q∗l
q∗l

)
,

(24)

I
(l)
4 = 6π6 r12

0 (JA − JB)4 exp
(−q∗2

r2
0

)
×

(
6 + 8 sin q∗l + sin 2q∗l

q∗l

)
, (25)

I
(h)
3 = 96π9/2 r9

0 (JA − JB)3 exp
(−3q∗2

r2
0

/
4
)
. (26)

Note that the latter integral is independent of the NP anisotropy.

III. PHASE TRANSITIONS OF THE COMPOSITE

The total free energy of the copolymer-NP composite is
given by the sum of the polymer chains free energy (7) and
the NP contribution (14), F = Fp + FNP. The free energy per
chain for the lamellar phase can be written in the form of the
following expansion:

F (l)

kBT Nch
= aψ2

1 + c(l)ψ4
1 . (27)

The free-energy expansion in the hexagonal phase can be
expressed as

F (h)

kBT Nch
= aψ2

3 − bψ3
3 + c(h)ψ4

3 , (28)

where the quadratic term

a = 2N (χs − χ ) − NρNPρm

2(kBT )2
I

(l)
2 (29)

is the same for both phases. The third-order coefficient is
nonzero only in the hexagonal phase

b = α3 − NρNPρ
2
m

18
√

3(kBT )3
I

(h)
3 . (30)
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The fourth-order coefficients are different in different phases

c(l) = β1 − NρNPρ
3
m

24(kBT )4

(
I

(l)
4 − 3I

(l)
2

2)
, (31)

c(h) = β3 − NρNPρ
3
m

72(kBT )4

(
I

(l)
4 − 9I

(l)
2

2)
(32)

and should stay positive to ensure the system stability.
Equations (27) and (28) can now be used to evaluate the free

energies of different phases. At the first stage, the coefficient a

is minimized to obtain the equilibrium microphase separation
wave number q∗. This wave number is then substituted into
other coefficients and finally the free energies are to be
minimized with respect to the corresponding order parameters.

The lamellar phase is thermodynamically profitable com-
pared to the disordered phase as long as

a < 0. (33)

Indeed, then the equilibrium order parameter ψ̃1 =
√

−a/2c(l)

minimizes the corresponding free energy and the latter being
expressed as

F (l)
eq

kBT
= − a2

4c(l)
(34)

is always lower than the free energy of the disordered phase
F = 0.

The hexagonal phase corresponds to a local free-energy
minimum with nonzero ψ3 when a < 9/8(b2/4c(h)). However,
it is favorable compared to the disordered state only when

a <
b2

4c(h)
. (35)

The equilibrium order parameter of the hexagonal phase
corresponds to the global minimum of the free energy (28)
and can be obtained by direct minimization

ψ̃3 = 3b

8c(h)

(
1 +

√
1 − 32ac(h)

9b2

)
. (36)

The equilibrium free energy of the hexagonal phase can be
expressed as

F (h)
eq

kBT
= −1

3
ψ̃2

3

(
c(h)ψ̃2

3 − a
)
. (37)

Accordingly, the hexagonal phase has the lower free energy
compared to the lamellar phase when

3a2

4c(l)
< ψ̃2

3

(
c(h)ψ̃2

3 − a
)
. (38)

Thus the phase boundaries are determined by the lines
defined by Eqs. (33), (35), and (38), which generally are
to be resolved numerically. At the same time, the above
relations can be used to derive some qualitative conclusions.
In particular, one can readily see from Eq. (29) that the NPs
destabilize the isotropic phase due to the last term, which
is proportional to the NP number density and is negative if
I2 > 0. The physical meaning of this contribution is related
to the effective interaction between two monomers via a NP
which increases the effective monomer interaction constant
χ∗ = χ + NρNPρm

2(kBT )2 I
(l)
2 .

A. Model phase behavior

There are several length scales in the present model which
have different orders of magnitude. First, there are two polymer
scales: the polymer segment length s and the chain gyration
radius R = s

√
N/6, which is considerably larger than s. The

microphase separated phases are characterized by the wave
number q∗ ≈ √

3.6/R and hence the periodicity in the lamellar
phase, for example, is about ∼3R, which means that R is a good
estimate for the microdomain size. The dumbbell model of a
NP, considered above, is characterized by the length l + 2r0

and thickness 2r0. We assume that the NP length is smaller
than the domain size, i.e., l + 2r0 < R, while the NP thickness
is of the order of the monomer size, r0 ∼ s � R. Estimating the
monomer density as ρm ∼ s−3, we can set the product ρmr3

0 ∼1
which enters the coefficients (29)–(32).

Phase diagrams of the nanocomposite in the coordinates
(Nχ,(JA − JB)/kT ) and (Nχ,NρNP /ρm) are presented in
Figs. 1 and 2 for different values of f with the corresponding
values of N	3 and N	4 taken from Leibler’s plots [42]. One
can readily see from Fig. 1 that NPs generally increase the
stability of the hexagonal phase and decrease that of the dis-
ordered phase. In particular, in a symmetric block copolymer
with f = 0.5 [see Fig. 1(a)] the stability range of the hexagonal
phase is rapidly increasing with the increasing discrimination
interaction constant JA − JB between the monomers and NPs
regardless of its sign. Indeed, in this case, the profiles of the
number densities of the monomers A and B are identical and
it plays no role which of them interacts more strongly with
the NPs. In contrast, in a very asymmetric composite with
f = 0.15 [see Fig. 1(c)] the stability range of the hexagonal
phase is increasing for positive JA − JB and decreasing for
negative JA − JB . This is related to the fact that the monomers
A dominate in such a composite and hence the stability range
is increased only if the energy of interaction between the
monomers A and the NPs is lower than that between the NPs
and monomers B, i.e., if JA − JB > 0. In the intermediate case
with f = 0.3 presented in Fig. 1(b), the phase diagram is more
complicated as there are several competing contributions to
the coefficients of the free-energy expansion of the pure block
copolymer which strongly depend on f .

Numerical results presented in Fig. 2 also indicate that gen-
erally the stability range of the hexagonal phase is increasing
with the increasing concentration of NPs. A more complicated
behavior is again presented in Fig. 2(b) for f = 0.3. In this
case, the stability range is decreasing for a small number
density of NPs and increasing at larger values of ρNP.

A typical dependence of the translational order parameters
on the parameter Nχ in the lamellar phase �1 and in the
hexagonal phase �3 is presented in Fig. 3. It is interesting to
note that the order parameter �3 is positive for JA − JB < 0
and negative for JA − JB > 0, which is determined by the
sign reversal of the coefficient b in Eq. (36). The NP-related
contribution to b is a cubic function of JA − JB according to
Eqs. (30) and (26).

B. Orientational and translational distribution of NPs

Spatial distribution of anisotropic NPs and their orien-
tational order is described by the one-particle distribution
function (12), where the discrimination interaction potential

042706-5



OSIPOV, GORKUNOV, BEREZKIN, AND KUDRYAVTSEV PHYSICAL REVIEW E 97, 042706 (2018)

0

10

20

30

Hexagonal

Lamellar

N

Disordered

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

10

20

30

40

50

N

Hexagonal

Lamellar

(JA - JB) / kBT

Disordered

0

10

20

30

N

Hexagonal
Lamellar

Disordered

(a)

(b)

(c)

FIG. 1. Phase diagrams in terms of the monomer-monomer dis-
crimination coupling constant Nχ and the NP-monomer discrimi-
nation interaction constant (JA − JB )/kBT for different composition
ratios: (a) f = 0.5, (b) f = 0.3, and (c) f = 0.15. The other model
parameters are ρNP/ρm = 10−3, N = 100, r0 = 0.1R, l = 0.3R,
s = 0.1R, and ρmr3

0 = 1.

δV (Q,a) is given by Eq. (23). In the lamellar phase, the density
distribution of NPs is given by the distribution function nor-
malized over the period �1 = 2π/q∗ of the lamellar structure

f (x) =
∫

da ρNP(x,a)∫ �1

0 dx
∫

da ρNP(x,a)
, (39)
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FIG. 2. Phase diagrams in terms of the monomer-monomer dis-
crimination coupling constant Nχ and the reduced NP number density
ρNP/ρm for different composition ratios: (a) f = 0.5, (b) f = 0.3, and
(c) f = 0.15. The other model parameters are N = 100, r0 = 0.1R,
l = 0.3R, s = 0.1R, ρmr3

0 = 1, and JA − JB = kBT .

where the x axis is parallel to the wave vector of the periodic
structure Q1 = q∗(1,0,0).

The local orientational order parameter of NPs in the
lamellar phase is expressed as

S(x) =
∫

da P2(a · x)ρNP(x,a)∫
da ρNP(x,a)

. (40)
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NPs. The other model parameters are N = 100, r0 = 0.1R, l = 0.3R,
s = 0.1R, and ρm = s−3.

The spatial and orientational distribution of NPs is illustrated in
Figs. 4(b) and 5(b), where the density and the order parameter
profiles along the x axis are presented.

The hexagonal phase is characterized by a triangular
two-dimensional (2D) density distribution of both monomers
and NPs specified by the wave vectors Q1 = q∗(1,0,0) and
Q2,3 = q∗(−1, ± √

3,0)/2 and the spatial periodicity �3 =
4π/

√
3q∗, where the z axis is parallel to the symmetry axes of

the whole structure. The distribution of NPs in the hexagonal
phase is illustrated in Figs. 4(a) and 5(a), where the density
and the order parameter profiles along the axis y (at x = 0)
are presented. These profiles are determined by the following
equations:

f (y) =
∫

da ρNP(x = 0,y,a)∫ �3

0 dy
∫

da ρNP(x = 0,y,a)
, (41)

S(y) =
∫

da P2(a · y)ρNP(x = 0,y,a)∫
da ρNP(x = 0,y,a)

. (42)

One can readily see in Figs. 4 and 5 that the orienta-
tional order parameter of NPs possesses opposite signs in
different domains of the copolymer in both the lamellar and
the hexagonal phases. Similar behavior was also predicted

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

N
P

ne
m

at
ic

or
de

r,
S

(x
)

x / Λ1

D
E
F

0

2

4

6

N
P

sp
at

ia
ld

is
tri

bu
tio

n,
f(

x)

F
E
D

(a) (c)

(b) (d)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

N
P

ne
m

at
ic

or
de

r,
S

(y
)

y / Λ3

C
B
A

0

2

4

N
P

sp
at

ia
ld

is
tri

bu
tio

n,
f(

y)

A
B
C
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in our previous paper [36] using a simple model where the
distribution of monomers has been fixed. One notes that for
a given set of parameters the NPs are predominantly located
in one of the domains where they strongly interact with the
corresponding monomers. Thus the majority of NPs in the
composite are aligned in the same direction, which should
result in a sufficiently large dielectric and optical anisotropy
of the nanocomposite.

IV. COMPUTER SIMULATIONS

Since its inception, the DPD method has become very
popular in soft matter simulations, in particular, as a pow-
erful tool to search for the microstructures in various block
copolymer systems (see Ref. [45] and references therein).
When it comes to composites, computational advantages of
DPD only increase [46]. In a recent paper [37] we used DPD
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FIG. 5. (a) and (c) Density and (b) and (d) orientational order
parameter profiles of the anisotropic NPs in the (a) and (b) hexagonal
and (c) and (d) lamellar phases evaluated at the points marked in
Fig. 3(b) for positive JA − JB = kBT and for N = 100, r0 = 0.1R,
l = 0.3R, s = 0.1R, and ρm = s−3.
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simulations to study spatial and orientational ordering of NRs
in the lamellar phase formed by a diblock copolymer AB

of symmetric composition. Here we use the same method to
encompass host matrices formed by asymmetric copolymers.
It will enable us to describe the behavior of anisotropic NPs
in other phases, such as hexagonal and spherical ones. Aside
from studying the arrangement of NRs in copolymer domains,
we will demonstrate that in some cases their addition can
qualitatively change the copolymer morphology itself.

A. Model and simulation method

We consider the same coarse-grained model of a melted
diblock copolymer doped with NRs as in Ref. [37]. A fully
periodic simulation box of the size lx×ly×lz = 24×24×24r3

c

is filled with a total of 41 472 DPD particles of three kinds,
A, B, and R, to attain the average particle density ρ0 = 3r−3

c ,
where rc is the unit length. The particles are soft and interact
via conservative, dissipative, and random forces which are
pairwise additive. The net force Fi = ∑

j (FC
ij + FD

ij + FR
ij )

acting on a given particle i is calculated as a sum over the
forces from all other particles within the cutoff radius rc. In
what follows, we use dimensionless variables by setting rc,
the particle mass m, and kBT as the unit distance, mass, and
thermal energy, respectively. This also defines the unit time as
τ0 = rc(m/kBT )1/2.

The copolymer is modeled as a chain of 20 particles grouped
into two blocks A and B and connected via Hookean springs.
Thus A10B10 is a symmetric copolymer with equal blocks
NA = NB = 10, whereas A5B15 has the shorter A block with
NA = 5 and the longer B block with NB = 15. All NRs are
composed of NR = 5 particles connected by rigid bonds of the
constant length bR = 0.7rc. As found in Ref. [37], shorter NRs
do not exhibit substantial ordering, whereas longer ones (even
at NR = 7) demonstrate a tendency to macrophase separation.
The equations of particle motion dri/dt = vi ,dvi/dt = Fi are
solved numerically using a free source code LAMMPS [47] that
implements the modified velocity Verlet algorithm (DPD-VV
integration scheme) [48] with a time step δt = 0.02.

For the copolymer, the conservative force represents the
excluded-volume interactions and elastic interactions of parti-
cles i and j in the dimensionless form FC

ij = aij (1 − rij )r̂ij −
ksrij , where rij = rirj , rij = |rij |, r̂ij = rij /rij , aij is a
maximum repulsion between the particles located at ri = rj ,
and ks is a spring constant which is taken to be ks = 4 for
particles linked in a polymer chain and is equal to zero for
nonbonded particles. The dissipative and random forces FD

ij =
−γω(rij )2(r̂ij · vij )r̂ij and FR

ij = σω(rij )ξ (δt)−1/2r̂ij , respec-
tively, constitute the Groot-Warren thermostat [49], where γ is
a friction coefficient related to a thermal noise amplitude σ via
the fluctuation-dissipation theorem, γ 2 = 2σ , ω(r) is a weight
function, ξ is a normally distributed random variable with zero
mean and unit variance, which is uncorrelated for different
particle pairs, δt is the time step of an integration scheme,
and rij = ri − rj is the relative velocity of particles i and j .
Following Ref. [49], we choose σ = 3 and ω(r) = 1 − r .

Nanorods are simulated as rigid bodies in the NV E en-
semble using an algorithm of Miller et al. [50]. Their correct
temperature is maintained via the interactions with the sur-
rounding thermostat composed of the polymeric DPD liquid.

For comparison, we perform some simulations by replacing
NRs with flexible chains consisting of NR = 5 particles of the
R type.

Miscibilities of the system components, i.e., the monomer
A units, monomer B units, and the R NRs, are determined
by the differences δaαβ = aαβ − aαα (α,β = A,B,R) of the
coefficients which describe the excluded-volume interactions
between DPD particles of the corresponding types. As shown
in Ref. [37], a standard choice of aαα = 25 [49] is insufficient
to induce orientational ordering of NRs that are shorter than the
copolymer domain width. Therefore, we have taken aαα = 50
and continue to use it in the present study.

We describe the interaction of the NR R particles with the
polymer A and B particles by the selectivity parameter σ =
(aRB − aRA)/(aAB − aRA), which vanishes in the nonselective
case (aRB = aRA = 50 in this study) and increases to unity for
the highest selectivity when A and R particles are identical
and aRB = aAB . The overall volume fraction of NRs, φR , takes
small values from 0 to 0.1 to keep the copolymer matrix intact,
while the average volume fractions of A and B units are equal
to φA = φB = (1 − φR)/2.

Microphase separation in the pure diblock copolymer AB

and its composites with NRs is simulated by annealing the
initially disordered structures upon an incremental (by 0.1 in
the transition vicinity and by 1.0 in the strong segregation
regime) increase in the repulsion parameter aAB between
the particles A and B. An order-disorder transition has been
identified by a drop in the potential energy of the ordered
system, the appearance of a secondary peak in the static
structure factor (the primary peak was shifted to q 	= 0 even
in the disordered phase due to the composition fluctuations)
and also visually from the structure snapshots (see Ref. [45]
for details).

By resolving the equations describing the dynamics of
the DPD liquid one can describe the stationary states of the
composite in terms of the local volume fractions φA,φB and φR

of the monomer units A and B and the NRs, respectively. If the
NRs are distributed within anisotropic microstructures formed
by the diblock copolymer (namely, in lamellae and cylinders),
one can also evaluate the degree of their orientational order in
terms of the local nematic order parameter S(r) identical to
that defined by Eqs. (40) and (42),

S(r) = 〈
3
2 [a(r) · k]2 − 1

2

〉
, (43)

where a is a unit vector along the NR axis, k is the unit normal
to the lamellar plane or to the cylindrical surface pointing in the
direction of the NR center, and the angular brackets denote the
averaging over a local subset of NRs. A zero value of the order
parameter corresponds to the orientationally disordered NRs,
whereas S > 0 (S < 0) indicates their tendency to perpendic-
ular (parallel) orientation with respect to the block boundary.

When a lamellar or cylindrical microstructure is formed,
we are interested in the spatial profiles of all local variables
along the normal to the layers or cylinders. However, in a
fully periodic simulation box it is impossible to predict the
orientation of an emerging microstructure. In order to extract
the information on the local distribution of the components
from the simulation data, we apply the following procedure.
We define the vectors pi connecting the mass centers of A and
B blocks in an ith copolymer chain. For the lamellar case,
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such vectors are plotted for all copolymers in the system, then
normalized to the unit length, and translated to a common
origin so that their ends form a cloud of n ∼ 105 points
nonuniformly distributed over the surface of a unit sphere.
The gyration tensor of this cloud Jαβ = (1/n)

∑n
i=1 piαpiβ

is diagonalized to find three eigenvalues and eigenvectors.
The eigenvector corresponding to the largest eigenvalue is the
vector h, which is normal to the lamellar planes. In the case
of cylinders, we consider a cloud of qi = pj × pk vectors and
find the eigenvector corresponding to the largest eigenvalue of
a tensor Jαβ = (1/n)

∑n
i=1 qiαqiβ . This eigenvector is parallel

to the axis of the cylinder and is perpendicular to the unit vector
h which originates from the center of a chosen NR. Below we
select the z axis in the direction of the vector h. All local
variables describing the composite structure are expressed as
the functions of z, φA(z), φB(z), φA(z), and S(z), while the
center of a lamella or a cylinder is chosen as the origin (z = 0).

B. Possible morphologies of the copolymer composite

The variety of possible morphologies which have been
found in the composite AB diblock copolymer (N = 20)
doped with NRs (NR = 5) is presented in Fig. 6 for various
copolymer compositions f and small (φR < 0.1) NR volume
fractions. Nanorods are taken to be weakly selective toward
shorter copolymer blocks (φ = 0.2), in which case the most
pronounced effect is expected according to the preliminary
studies. Another reason is that at φ = 0.2 the difference
between alignment of NRs at the domain boundaries (parallel
to the boundary) and in the domain bulk (perpendicular to the
boundaries) is maximum for the symmetric copolymer [37].
In the absence of NRs (φR = 0) a strongly segregated AB

diblock copolymer exhibits lamellae, perforated lamellae, a
bicontinuous structure, and cylindrical and spherical micellar
structures depending on its composition [45]. One can see
that the addition of NRs shifts the transitions between all
ordered phases to more asymmetric compositions. As a result,
spherical and cylindrical morphologies can be found only at a
very small fraction of NRs (φR < 0.05). The morphology of
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FIG. 6. Effect of the copolymer composition f and the content
of the particles φR on the morphology of the mixture with N = 20,
NR = 5, σ = 0.2, and aAB = 70.

FIG. 7. Effect of the NR concentration φR on the microdomain
structure at f = 0.25, σ = 0.2, N = 20, NR = 5, and (a) φR = 0,
(b) φR = 0.05, and (c) φR = 0.1.

the copolymer with fixed composition f may spontaneously
change with the increasing NR concentration. This is shown
in Fig. 7, where hexagonally packed cylinders in the pure
diblock copolymer are replaced with the bicontinuous structure
at φR = 0.05 and then with a lamellar structure at φR = 0.1 as
predicted by the morphology diagram in Fig. 6.

It should be noted that a rather wide domain of hexagonally
perforated lamellar (a combination of 2D minor and 3D major
component morphologies) and bicontinuous (3D minor and
3D major component morphologies) microstructures shown in
Fig. 6 can represent nonequilibrium states. Although in pure
diblock copolymers, self-consistent-field theory [51] permits
double gyroid and bicontinuous orthorhombic structures
to be the only stable phases, the perforated lamellar phase
has only slightly higher energy. Accordingly, the latter is
often observed in laboratory experiments [52] and computer
simulations, either by DPD [45] or Monte Carlo [53] methods,
but is usually considered as a long-living metastable state.
An example of such a structure can be seen in the image
in Fig. 7(b). However, it does not transform into a periodic
gyroid phase in numerical simulations as this requires the
DPD simulation cell size to be commensurate with the period
of a spontaneously forming microstructure [54].

C. Positional and orientational ordering
of nanorods in the composite

The profiles of the local concentration and the orientational
order parameter of the NRs in the lamellar phase are presented
in Figs. 8 and 9. It follows from Fig. 8 that highly selective NRs
(σ = 1) are mainly located within the minor A domains and are
preferentially aligned along the lamellar planes independently
of their position in the domain. This is consistent with the
predictions of the molecular theory presented above. Indeed,
when a sufficiently long NR is inclined, it has a higher prob-
ability to cross the domain boundary, which is energetically
unfavorable. In contrast, in the major B domains NRs are
aligned perpendicular to the lamellae, which also confirms the
predictions of the theory, but their concentration is very low.
With a decrease in their interaction selectivity, NRs accumulate
near the domain boundaries, which results in an increase of
their orientational ordering. At the same time, in the bulk of the
domains both the volume fraction and nematic order parameter
are close to zero. We note that the variation in the copolymer
composition strongly affects the NR concentration profiles (see
Fig. 9). In asymmetric copolymers, NRs are almost uniformly
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FIG. 8. Local fraction of (a) the NRs φR(z) and (b) their orienta-
tional order parameter S(z) in the lamellar phase for different values of
the NR interaction selectivity σ (specified) for f = 0.35, φR = 0.1,
and NR = 5.

distributed within the minor phase, while in the symmetric
case they are mainly located at the domain boundaries. Pen-
etration of the NRs effectively increases the volume fraction
of the minor phase and makes the system more symmetric.
The concentration and order parameter profiles of the NRs
in the hexagonal phase are presented in Fig. 10. One can
readily see that although the orientational order parameter is
relatively low, it still possesses opposite signs in domains A

and B. Moreover, the concentration of NRs in domain A is
comparable to that in domain B, although in the lamellar phase
the NRs of the same selectivity are predominantly located in
domains A. We note also that a small decrease of the domain A

size results in a dramatic decrease of NR concentration in that
domain despite the strong selectivity of the NRs. This can be
explained by a significant decrease of the orientational entropy
of long NRs located in a narrow domain which may overcome
the decrease of the total interaction energy. The oscillations in
the curves in Fig. 10 are related to the fact that the averaging has
been undertaken over a single cylinder as different cylinders
are not perfectly parallel in the simulations.

V. DISCUSSION

In this paper we have studied the properties of diblock
copolymers doped with anisotropic NPs using a molecular
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FIG. 9. Local fraction of (a) the NRs φR(z) and (b) their orienta-
tional order parameter S(z) in the lamellar phase for different values
of the copolymer composition f (specified) for σ = 0.25, φR = 0.1,
and NR = 5.

mean-field theory and DPD computer simulations. The theory
is based on the Landau expansion of the total free energy of
the polymer nanocomposite in terms of the positional order pa-
rameter which describes the spatial distribution of monomers
in the lamellar and the hexagonal phase. The coefficients
of this expansion have been calculated using the mean-field
theory taking into account the anisotropic interaction between
NPs and the monomers of both types. The anisotropic NP is
modeled by a rigid system of two spheres separated by a certain
distance, which interact isotropically with the monomers of the
types A and B, and the effective interaction potential between
such a NP and the monomers is anisotropic, i.e., it depends
on the angle between the intermolecular vector and the long
NP axis. We note that such an approach is generally valid
only if the order parameter is relatively low and hence the
theory can mainly be applied in the case of weak segregation.
In contrast, the computer simulations are more effective in
the case of strong segregation when the separation between
different domains is more pronounced.

The effect of anisotropic NPs on the block copolymer
composite is twofold. First, the NPs are orientationally ordered
(see Figs. 4, 5, and 8–10) in the boundary region between
the blocks both in the lamellar and in the hexagonal phases
and the corresponding orientational order parameter possesses
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σ = 0.4, φR = 0.1, and NR = 5.

opposite signs in adjacent blocks. This can be explicitly
explained in the strongly segregated system, assuming, for
instance, that the interaction of NPs with the monomers of
the type A is stronger than the interaction with the monomers
of type B. Then, if the center of a NP is located in block A close
to the boundary with block B, the NP has a tendency to align
parallel to the boundary in order to maximize its interaction
with monomers A and to avoid contact with monomers B.
In contrast, if such a NP is located in block B close to its
boundary, the total interaction energy is minimized when the
NP is perpendicular to the boundary because in this case
one of the interaction spheres is located in block A, which
reduces the total interaction energy. In the case of weak segre-
gation, the NPs are aligned by the gradients of the monomer
concentration.

These qualitative results are supported by our computer
simulations, which employ the method of DPD and use the
model of a NP composed of several interaction sites. We
note, however, that the theoretical values of the nematic
order parameter appear to be rather low, while the computer
simulations predict values of about 0.5–0.6, which are com-
parable to those typical for nematic liquid crystals. This is
partially explained by the effects of strong segregation. Large
values of the nematic order parameter have also been obtained

theoretically in our previous paper in the limit of infinitely
strong segregation. Computer simulations also indicate that
in the case of highly selective NPs they are aligned along
the boundary independently of their location within the do-
main. This is related to the large length of NPs, used in the
simulations, which is comparable to the domain size. In this
case, the NP senses the boundary even when its center is
located in the bulk of a domain. The variation in the copolymer
composition strongly affects the NP concentration profiles.
In strongly asymmetric copolymers, the distribution of NPs
within the minor phase is nearly homogeneous, while in sym-
metric copolymers the NPs are mainly located at the domain
boundaries.

In summary, both the molecular theory and computer
simulations predict that anisotropic NPs are orientationally
ordered in the lamellar as well as in the hexagonal phase and the
corresponding orientational order parameters possess opposite
signs in adjacent domains. As discussed in the Introduction,
the two types of NP alignment have also been observed
experimentally. At the same time, highly selective NPs are
predominantly located in one of the domains and hence the
majority of NPs in the composite are aligned in the same
direction. This results in a sufficiently large dielectric and
optical anisotropy of the nanocomposite if the NPs are polar
and are characterized by a strong polarizability anisotropy.
In principle, the regular microphase separation induces cer-
tain anisotropy of the macroscopic properties already in a
pure block copolymer host. For example, it gives rise to
the anisotropy of the chain statistics described by a specific
tensor order parameter which can be also incorporated into
the free-energy expansion (7) following the guidelines of
Ref. [55]. However, the resulting anisotropy of the macroscopic
properties is rather weak, as in the bulk of any domain the
medium retains the local isotropy. In this context, adding
even a small concentration of anisotropic NPs may result in
a significant increase of the macroscopic dielectric anisotropy
of the system due to the spontaneous orientational ordering of
NPs. This effect opens the possibility to align such polymer
nanocomposites by external fields, which is very important for
applications.

Second, NPs affect the stability ranges of the hexagonal,
lamellar, and disordered phases of block copolymers. As
shown in Sec. III, the interaction between NPs and monomers
renormalizes the quadratic term in the free-energy expansion,
which results in the increase of the effective Flory discrim-
ination parameter χ . Thus the NPs generally stabilize the
segregated phases. The parameters of the NPs also contribute to
the higher-order expansion coefficients and hence the effect of
NPs can be rather complicated. In the case of weak segregation,
NPs generally stabilize the hexagonal phase, although at inter-
mediate values of the polymer composition f the range of the
hexagonal phase expands only for sufficiently large selectivity
and NP concentration. Computer simulations indicate that
strongly segregated diblock copolymers of different com-
position exhibit lamellar, perforated lamellar, bicontinuous,
cylindrical, and spherical micellar structures [45]. The addition
of NPs shifts all phase transitions in the direction of the lamellar
or perforated lamellar phase. Moreover, the nanocomposite
may undergo a transition between different phases with the in-
creasing concentration of NPs φR . For example, the composite
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diblock copolymer (N = 20) undergoes a transition from the
hexagonal phase into the bicontinuous phase at φR = 0.05 and
then into the lamellar phase at φR = 0.1 (see Fig. 7).

In general, block copolymer composites with anisotropic
NPs can be considered as unconventional liquid crystal systems
because they are characterized by the spontaneous orien-
tational order of NPs. On the other hand, in contrast to
nematic liquid crystals, this order is not determined by the
anisotropic interaction between NPs themselves but is induced
by the anisotropy of the block copolymer matrix (i.e., by the
boundaries between the blocks). At higher concentration, the
interaction between anisotropic NPs may become significant

and then one may expect the emergence of the true liquid crys-
tal order and the appearance of new macroscopic structures.
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