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Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal
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We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we
study the coupled dynamics of the magnetization, M, the director field, n, associated with the liquid crystalline
orientational order, and the velocity field, v. We evaluate how simple shear flow in a ferromagnetic nematic is
modified in the presence of small external magnetic fields, and we make experimentally testable predictions for
the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT. Flow
alignment, a characteristic feature of classical uniaxial nematic liquid crystals, is analyzed for ferromagnetic
nematics for the two cases of magnetization in or perpendicular to the shear plane. In the former case, we find
that small in-plane magnetic fields are sufficient to suppress tumbling and thus that the boundary between flow
alignment and tumbling can be controlled easily. In the latter case, we furthermore find a possibility of flow
alignment in a regime for which one obtains tumbling for the pure nematic component. We derive the analogs of
the three Miesowicz viscosities well-known from usual nematic liquid crystals, corresponding to nine different
configurations. Combinations of these can be used to determine several dynamic coefficients experimentally.
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I. INTRODUCTION

Many complex fluids show anisotropic and/or non-
Newtonian behavior in their flow properties. A class of
anisotropic complex fluids for which the flow behavior has
been studied in some detail because of their wide-ranging
applications are liquid crystals, in particular nematic liquid
crystals [1]. Uniaxial nematics are uniaxially anisotropic liquid
systems that find applications, for example, in large area
displays. Clearly the flow properties of the uniaxial nematic
phase are the most studied and best understood among all liquid
crystalline phases [1].

In parallel, the field of magnetic liquids, i.e., suspensions
of magnetic monodomain particles, has developed [2]. Various
aspects of their characterization as well as of their macroscopic
and microscopic properties are addressed in Refs. [3–8].

There has been considerable recent interest in a novel type
of nematic phase, namely ferromagnetic nematics, showing
simultaneously nematic as well as ferromagnetic order. While
such a phase was predicted and investigated theoretically
almost 50 years ago [9], its synthesis was reported experimen-
tally only recently [10,11].

The ferromagnetic nematic is a room-temperature liquid
multiferroic system. The only other liquid multiferroic systems
known earlier are the superfluid phases of 3He [12,13]. Two
of them, namely 3He-A and 3He-A1, are also uniaxial and
show spontaneously broken orientational order as well as
(anti)ferromagnetism. Besides superfluidity, both phases show
rich macroscopic behavior including spin waves [14–18].
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We also note that in the meantime ferromagnetic cholesteric
phases have been described and characterized [19–21], thus
complementing the abundant usual cholesteric phases, which
break parity symmetry, because they are composed of chiral
molecules: left- and right-handed helices differ from their
mirror image in a nontrivial way, i.e., they cannot be brought
to coincidence by mere rotations. The macroscopic behavior
of ferrocholesterics has been elucidated in Ref. [22].

As for ferromagnetic nematics, most studies focused on
their synthesis, their characterization, and their static properties
[10,11,23]. There is also early work discussing a Landau
description of phase transitions involving a ferromagnetic ne-
matic phase [24]. A systematic investigation of their dynamic
properties was initiated only quite recently [25,26]. These first
two publications focused on the coupled dynamics of the two
order parameters, namely the magnetization, M, characterizing
spontaneously broken rotational symmetry in spin space, and
the director, n, characteristic for systems with spontaneously
broken rotational symmetry [27].

In this paper, we analyze the coupling of these two order
parameters to flows generalizing simple flow situations for uni-
axial nematics to ferromagnetic nematics. For the new liquid
multiferroic system, we include a discussion of the analogs of
effective viscosity, Miesowicz viscosities, flow alignment, as
well as transient backflow [28,29] and kickback [30] effects, all
familiar from usual nematics [1]. The main goal of this study
is to make concrete experimentally testable predictions.

The paper is organized as follows. In Sec. II, we present
the macroscopic model used throughout the present paper.
In Sec. III, we discuss simple shear flow and its experimen-
tally accessible consequences. Section IV is dedicated to a
characterization of the analogs of the Miesowicz viscosities
for ferromagnetic nematic liquid crystals leading to many
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predictions. In Sec. V, we consider the analog of flow align-
ment and show how the transition to tumbling can be shifted
by small external magnetic fields. In Sec. VI, we sketch out the
effects of flow on the the dynamic behavior when an external
magnetic field is switched on. In the brief last section, we
conclude and give a perspective.

II. MACROSCOPIC MODEL

Throughout the present paper, we take into account the
magnetization M, the director field n, and the velocity field
v as macroscopic variables. For a complete set of macroscopic
dynamic equations for ferronematics, we refer the reader to
Refs. [31,32].

The static behavior is described by the free-energy density
f (M,n,∇n),

f = −μ0M · H − 1
2A1(M · n)2 + 1

2A2(|M| − M0)2 + f F ,

(1)

where μ0 is the magnetic constant, H is the applied magnetic
field, and A1,2 > 0 will be assumed constant. The first term
represents the coupling of the magnetization and the external
magnetic field. The second term describes the static coupling
between the director field and the magnetization (originating
from the magnetic particles). The third term describes the
energy connected with the deviation of the modulus of the
magnetization from M0. The last term is the Frank elastic
energy associated with director distortions [1]

f F = 1
2K1(∇ · n)2 + 1

2K2[n · (∇ × n)]2

+ 1
2K3[n × (∇ × n)]2, (2)

with positive elastic constants for splay (K1), twist (K2), and
bend (K3). Throughout this paper, a one-constant approxima-
tion will be used, i.e., K1 = K2 = K3 = K . While it is a good
approximation to assume that |M| = M0, we will take into
account small variations of |M| (corresponding to large values
of A2).

The total free energy is F = ∫
f dV and the equilibrium

condition requires δF = 0. The macroscopic dynamic equa-
tions for the magnetization, the director field, and the velocity
field read [32,33](

∂

∂t
+ vj∇j

)
Mi + εijkMjωk + XR

i + XD
i = 0, (3)

(
∂

∂t
+ vj∇j

)
ni + εijknjωk + YR

i + YD
i = 0, (4)

ρ

(
∂

∂t
+ vj∇j

)
vi + ∇j

(
σR

ij + σD
ij + σ th

ij

) − ∇ip = 0, (5)

where ωi = 1
2εijk∇j vk is the vorticity and ρ is the density. The

(quasi)currents have been split into reversible (XR
i ,YR

i ,σR
ij )

and irreversible, dissipative (XD
i ,YD

i ,σD
ij ) parts. In Eq. (5), the

reversible part of the stress tensor has been further split to
include a thermodynamic part σ th

ij ,

σ th
ij = −BjHi − 1

2

(
hn

i nj − hn
jni

) − 1
2

(
hM

i Mj − hM
j Mi

)
+Kkjmp∇pnm∇ink, (6)

and the thermodynamic pressure

p = −ε + T σ + μρ + g · v + B · H, (7)

with temperature T , entropy density σ , chemical potential μ,
density of linear momentum g, and magnetic flux density B.
The reversible (dissipative) parts of the (quasi)currents have
the same (opposite) behavior under time reversal as the time
derivatives of the corresponding variables, i.e., Eqs. (3)–(5)
are invariant under time reversal only if the dissipative (quasi)
currents vanish.

The (quasi)currents are expressed as linear combinations of
conjugate quantities (thermodynamic forces)

hM
i ≡ δf

δMi

= ∂f

∂Mi

, (8)

hn
i ≡ δ⊥

ik

δf

δnk

= δ⊥
ik

(
∂f

∂nk

− ∂j	kj

)
, (9)

Aij ≡ 1
2 (∂ivj + ∂jvi), (10)

with 	kj = ∂f/∂(∇jnk) and where the transverse Kronecker
delta δ⊥

ik = δik − nink projects onto the plane perpendicular to
the director due to the constraint n2 = 1.

In Ref. [25], only the dissipative quasicurrents XD
i and YD

i

were taken into account as they had a direct relevance for
the explanation of the experimental results discussed there.
The effects of the reversible quasicurrents XR

i and YR
i were

modeled in Ref. [26]. In the present paper, we also include the
velocity variable in the approximation of an incompressible
flow, ∇ivi = 0.

The dissipative quasicurrents take the form [32]

XD
i = bD

ij h
M
j + χD

ji h
n
j + cD

ijkAjk, (11)

YD
i = 1

γ1
δ⊥
ikh

n
k + χD

ij hM
j + λD

ijkAjk, (12)

σD
ij = −νD

ijklAkl − λD
kijh

n
k − cD

kijh
M
k , (13)

with

χD
ij =χD

1 δ⊥
ikMknj + χD

2 δ⊥
ij Mknk, (14)

bD
ij =bD

‖ ninj + bD
⊥δ⊥

ij , (15)

νD
ijkl = 2(ν1 + ν2 − 2ν3)ninjnknl

+ (ν3 − ν2)(njnlδik + njnkδil + ninkδjl + ninlδjk)

+ (ν4 − ν2)δij δkl + ν2(δjlδik + δilδjk)

+ (ν5 − ν4 + ν2)(δijnknl + δklninj ), (16)

λD
ijk = λD

1 (δ⊥
iqεpjqMpnk + δ⊥

iqεpkqMpnj )

+ λD
2 (δ⊥

ikεpjqMpnq + δ⊥
ij εpkqMpnq)

+ λD
3 (εipkMjnp + εipjMknp)

+ λD
4 Mqnq(εipknjnp + εipjnknp)

+ λD
5 εpiqMpnqnjnk + λD

6 εpiqMpnqδ
⊥
jk, (17)

cD
ijk = cD(εimknmnj + εimjnmnk). (18)
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The tensor χD
ij describes the dissipative cross-coupling be-

tween the director and the magnetization. In Refs. [25] and [26]
it was shown that it is of major importance for the dynamics and
was crucial to explain the presented experiments. The viscosity
tensor νD

ijkl is the same as for usual nematic liquid crystals
(in the Appendix, the connection with the Leslie viscosity
coefficients is reviewed). The existence of the magnetization
gives rise to an additional dissipative coupling of the velocity
with the director, described by the tensor λD

ijk , which is not
present in usual nematics. Moreover, there exists also a direct
dissipative coupling of the velocity and the magnetization,
described by the tensor cD

ijk . Throughout the present paper, we
will discard the biaxiality of the material that arises for n ∦ M.

The reversible quasicurrents [32] are obtained by requiring
that the entropy production Yih

n
i + Xih

M
i + σijAji is zero.

They are

XR
i = bR

ijh
M
j + χRεijknjh

n
k − cR

ijkAjk, (19)

YR
i = (

γ −1
1

)R

ij
hn

j + χRεijknjh
M
k − 1

2λijkAjk, (20)

σR
ij = −νR

ijklAkl − 1
2λkjih

n
k − cR

kijh
M
k . (21)

In Eqs. (20) and (21), the reversible couplings between the
velocity field on the one hand and the director field and the
magnetization are described by the flow alignment tensor

λijk = λ(δ⊥
ij nk + δ⊥

iknj ) (22)

and by the tensor cR
ijk [32], respectively,

cR
ijk = cR

1 Minjnk + cR
2 (δijMk + δikMj ) + cR

3 Miδjk

+ cR
4 niMpnpδjk + cR

5 (niMjnk + niMknj )

+ cR
6 niMpnpnjnk. (23)

In the following, we will discard the contributions of the
tensors νR

ijkl , (γ −1
1 )Rij , bR

ij , and χR , which can be found in
Ref. [32].

A. Geometry and method

In this paper, we study the situation in which a ferromagnetic
nematic liquid crystal is confined between a pair of infinite
parallel plates separated in the z direction by the cell thickness
d. We assume that the fields are functions only of the coordinate
z and time t . For solving Eqs. (3)–(5), a simple numerical
method is used. We first discretize space into slices of width
�z = d/(N − 1), where N is the number of discretization
points. By varying N , it is found that using N = 50 is already
sufficient. We use a variant of the so called staggered grid,
Fig. 1, to avoid possible numerical instabilities. The velocity
field is defined in the middle of the slices, while the stress
tensor, the director field, and the magnetization field are defined
at the edges of the slices. The velocity field at these edges can
be calculated simply by averaging the neighboring points,

vi(j�z) = 0.5{vi[(j − 1/2)�z] + vi[(j + 1/2)�z]}, (24)

where �z is the step size and j ∈ {0,1, . . . ,N − 1} is an
integer.

After discretizing space, one obtains N ordinary differential
equations. For the second derivative in the bulk of the liquid-

vi(−Δz/2) = −vi(Δz/2) vi((N − 1/2)Δz) = −vi((N + 1/2)Δz)

FIG. 1. A schematic representation of the staggered grid used to
solve Eqs. (3)–(5). The director field, the magnetization field, and
the (quasi)currents are defined on the points (black circles), while
the velocity field is defined on the crosses located between the points.
There are two crosses outside of the physical space, which are present
in order to satisfy the boundary condition for the velocity field.

crystal cell, we used the usual central finite-difference scheme,

f ′′(z) ≈ f (z + �z) − 2f (z) + f (z − �z)

(�z)2
+ O[(�z)2].

(25)

At the boundaries, we use an asymmetric finite-difference
scheme for the derivatives.

Due to its simplicity, we use the Euler method for our
analysis. An example for one step of the Euler method for
the ith component of the director field at coordinate z is

ni(t + δt,z) = ni(t,z) − δt Yi(t,z) + O(δt2), (26)

where δt is the time step. An analogous equation holds for
the magnetization field, and the equations are solved simulta-
neously. Since the numerical scheme for the director field is
not norm-preserving, we normalize the director field after each
time step: ni → ni/(njnj )1/2.

The velocity field relaxes on time scales much shorter than
the director field or the magnetization, and thus Eq. (5) can be
simplified to

∇j σ
R
ij + ∇j σ

D
ij + ∇j σ

th
ij − ∇ip = 0. (27)

The equation for the pressure field can be obtained by taking
the divergence of Eq. (27). The boundary conditions for the
pressure are obtained by taking the inner product of Eq. (27)
with the surface normals, pointing up (down) at the top
(bottom) plate. The resulting pressure field is

p(z) = p0 + σzz(z), (28)

where p0 is an arbitrary constant and σzz includes all the
stresses σzz = σR

zz + σD
zz + σ th

zz . Since p is only a function of z,
it only shows up in the dynamic equation for the z component of
the velocity field, where it exactly cancels out the contributions
of all the stresses. The z component of the velocity field is
therefore independent of time, i.e., ∂vz/∂t = 0, and is zero,
vz = 0, due to the boundary condition.

Given the director and the magnetization field, we solve
Eq. (27) on a staggered grid for the velocity field, as shown in
Fig. 1.

For the director field, we assume infinitely strong (planar)
anchoring at the boundaries, n = êx at z = 0 and z = d. For
the velocity field, we assume the no-slip condition v = 0 at
z = 0 and z = d. In the case of shear experiments, v = v0x êx

at z = d, where v0x is the velocity of the upper plate. The lower
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plate is fixed. We define the shear rate

�x = v0x

d
. (29)

B. Material parameters

Throughout this study, we will be using similar values
of the static and the dynamic coefficients as determined in
Ref. [25]. Therein, a ferromagnetic nematic using 5CB as a
nematic solvent was studied. For the static coefficients, we
used A1 = 130μ0, A2 = 1000A1, K = 7 pN, M0 = 50 A/m,
and d = 50 μm and for the dynamic ones we used χD

2 =
20 (Pa s)−1, χD

1 = 0, and bD
⊥ = bD

‖ = 1.5×105 A m/V s2.
For the coefficients of the viscosity tensor, the rotational
viscosity γ1, and the flow alignment parameter λ, we used ν1 =
0.092 Pa s, ν2 = 0.038 Pa s, ν3 = 0.045 Pa s, γ1 = 0.081 Pa s,
and λ = 1.05; see the data for 5CB in Ref. [34]. For the
remaining coefficients of νD

ijkl , we chose ν4 = ν2 and ν5 = 0.
In the literature, one often encounters the so called Ericksen-
Leslie viscosities, which are related to the set of viscosities
used here (compare the Appendix for the detailed relations).
For the reversible coupling cR

ijk between the magnetization and
the velocity field in Eqs. (19) and (21), which is the analog
of the flow alignment tensor λijk of Eqs. (20) and (21), we
use the coefficient cR

2 , Eq. (23), as a representative, since it
has the same structure as λ in Eq. (22). We choose the
value cR

2 = 0.55 so that its effects on the magnetization are
comparable to the effects of λ on the director field. It should
be noted that for simple shear flow, the contributions of cR

3 and
cR

4 are automatically zero. Furthermore, due to the approxi-
mately fixed modulus of the magnetization, the contribution of
the coefficient cR

1 is negligible. The effect of cR
5 is biggest when

the magnetization (director) is parallel to the velocity field and
the director (magnetization) is perpendicular to the velocity
field and within the shear plane, which is perpendicular to
the vorticity. Lastly, the effect of cR

6 is biggest when the
magnetization is either parallel or perpendicular to the velocity
field and the director is at 45◦ with respect to the magnetization
while both fields are in the shear plane.

III. SIMPLE SHEAR

A classical approach to study the rheology of simple and
complex fluids is the investigation of a simple shear flow. Here
we will focus on the changes compared to the case of uniaxial
nematics by the application of a magnetic field perpendicular
to the plates of a shear cell.

In this section, we discard the dissipative couplings of the
director and the magnetization to the velocity field, i.e., the
tensors λD

ijk and cD
ijk of Eqs. (17) and (18) are set to zero. From

the form of the tensor λD
ijk (cD

ijk) one can see that there is, in
general, a nonzero coupling between the out-of-shear plane
component of the director (magnetization) field with the part
of the director (magnetization) molecular field hn

i (hM
i ), which

is within the shear plane. Since we have set these tensors to
zero, the velocity points along the x axis everywhere with the
director and the magnetization being within the shear plane,
which is also confirmed numerically.

In Fig. 2 we present the solutions of vx/v0x , nz, and
Mz/M0 as functions of z. A magnetic field H = H êz of

vx�v0 x

nz

Mz�M0
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n z
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z�
M
0

(a)

(b)

FIG. 2. Profiles of vx/v0x , Mz/M0, and nz at a shear rate
�x = 1 s−1 with (a) μ0H = 10 mT and (b) μ0H = −10 mT.

H = 10 mT [Fig. 2(a)] and H = −10 mT [Fig. 2(b)] was
applied perpendicularly to the plates, and a shear rate of
�x = 1 s−1 was imposed. We observe that for the negative
magnetic field, the director in the middle of the cell rotates
by an angle of more than π/2. This is due to the fact that the
shear forces, which are described by the tensor λijk , change
direction at a certain orientation of the director. This orientation
is determined by the parameter λ. Secondly, it is more favorable
for the director to rotate further, since the coupling energy (A1)
gets lower.

The dependence of the x component of the velocity field on
the magnetic field at a shear rate of 1 s−1 is shown in Fig. 3.
One can see, as expected, that the velocity profile is not linear,
and a boundary layer of order 10% of the cell thickness is
visible using �x = 1 s−1 and magnetic fields of order 1 mT.
The thickness of the boundary layer of the velocity field can be
connected with the deformation of the director field, where the
boundary layer is determined by the competition of the forces
related to the static coupling A1 and the Frank elastic forces.

The quantity that is normally measured is the effective
viscosity of the sheared sample, i.e., the shear force per unit
area σxz exerted by the fluid on the glass plate divided by the
shear rate �x . In the present system, one must, however, take
into account that the Maxwell stress−BjHi , unlike all the other
contributions to the stress tensor, does not end at the boundary
of the fluid as the magnetic flux continues into the glass plate.
Consequently, the Maxwell stress does not contribute to the
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Μ0H � 0
Μ0H � 1 mT
Μ0H � 50 mT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z�d

v x
�v
0

x

FIG. 3. The normalized x component of the velocity field vx/v0x

for different values of the applied magnetic field at a shear rate
�x = 1 s−1.

force on the glass plate. This is best seen by calculating the
force as the integral of σxz over a pair of planes tightly enclosing
the z = d interface. In the resulting difference of shear stresses
across the interface, [σxz], all contributions to σxz(z = d) are
recovered as usual, except the term −BjHi of Eq. (6), which
cancels out. The effective viscosity is thus

νeff = [σxz]

�x

. (30)

In Fig. 4, the effective viscosity is plotted as a function of
the magnetic field for two values of the shear rate �x , which
are equal in magnitude but opposite in sign.

Most strikingly, a rather large increase in the effective
viscosity by about a factor of 2 can be achieved by applying a
rather small magnetic field of about 20 mT; see Fig. 4(a). The
reason the effective viscosity increases at very low fields is due
to the response of the magnetization and the director field in an
external magnetic field, which was studied in detail in Ref. [26].
There it was shown analytically that the configuration of the
system, i.e., the director and the magnetization field, saturates
quickly above a characteristic magnetic field determined by
the static coupling, μ0H ∼ A1M0, which for the parameters
used here is approximately 10 mT. The viscosity increases as n
and M rotate toward getting perpendicular to the velocity field
and lying within the shear plane. This opens the door to an
easily accessible viscosity control for a nematic fluid system
by using small magnetic fields.

In addition, we see that—just as the absolute value of the
vertical component of the director—also the effective viscosity
is invariant with respect to the transformation �x → −�x ,
μ0H → −μ0H .

As we increase the magnetic field, we see that the effective
viscosity first saturates at fairly low magnetic fields of order
30 mT, Fig. 4(a). A similar effect has been observed in experi-
ments using 8CB [35]. There, a rather complex shear geometry
was used, therefore the experimental results cannot be mapped
in a straightforward manner onto the results presented here.

In should be noted that we take into account also the dia-
magnetic contribution, − 1

2μ0χa(n · H)2, with a diamagnetic
anisotropy, χa = 5×10−6. For small magnetic fields, Fig. 4(a),

�x � �1.0 s�1

�x � 1.0 s�1

�40 �20 0 20 40
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s�
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�x � 1.0 s�1

�2000 �1000 0 1000 2000
0.00
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0.10

0.15

Μ0H �mT�

Νe
ff
�P
a
s�

(a)

(b)

FIG. 4. The behavior of the effective viscosity for (a) small and (b)
large values of the applied magnetic field at oppositely equal shear
rates. The dashed lines represent two of the Miesowicz viscosities
(ηxx and ηzz), defined in Sec. IV.

the effects of this term are very small, which is verified by
comparing the numerical results with χa = 0. On the other
hand, if we increase the magnetic field further, the viscosity
starts to increase again; see Fig. 4(b). This is due to the
diamagnetic anisotropy, which tries to align the director along
the external magnetic field. The viscosity finally saturates at
fields of order 1 T, where the director field along with the
magnetization field point approximately along the applied
magnetic field. In the limit of large magnetic fields, the director
and the magnetization both point along z and, therefore,
the effective viscosity converges to one of the Miesowicz
viscosities, ηzz [dashed line in Fig. 4(b)], defined and calculated
in Sec. IV. In the absence of the magnetic field, the director
and the magnetization point approximately along the x axis,
which means the effective viscosity approaches the value of
another Miesowicz viscosity, ηxx [dashed line in Fig. 4(a)].
The behavior at larger magnetic fields is a prediction, which
can be experimentally tested.

In Fig. 4 one also observes that the effective viscosity
strongly increases when one increases the magnetic field from
the intermediate saturation region at 50 mT to a large magnetic
field of order of 1 T. A possible explanation for such a dramatic
increase can be deducted from Fig. 5, where we present the
profiles of the fields vx/v0x , Mz/M0, and nz at these two
magnetic fields. For the lower magnetic field, Fig. 5(a), the
boundary layer ξ l of nz is of order of 10% of the cell thickness,
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FIG. 5. Profiles of vx/v0x , Mz/M0, and nz at a shear rate �x =
1 s−1 with (a) μ0H = 50 mT and (b) μ0H = 1 T. The boundary layers
for (a) the lower magnetic field, ξ l , and (b) the higher magnetic field,
ξq , can be estimated from Eqs. (31) and (32), respectively.

which can be estimated from the parameter q of Eq. (39),
discussed in the next subsection:

ξ l

d
∼

√
K

A1M
2
0 d2

≈ 0.1. (31)

In the large magnetic-field limit, the diamagnetic energy term
is dominant. Equating the typical Frank elastic energy with the
typical diamagnetic energy gives us a boundary layer ξq of 2%
of the cell thickness:

ξq

d
∼

√
K

μ0χaH 2d2
≈ 0.02. (32)

Smaller boundary layers for the director field mean stronger
elastic forces close to the boundaries. These forces increase
the shear stress and therefore also the effective viscosity.

It should be noted that a crossover from a ferromagnetic
response linear in H , for small fields, to a regime quadratic in
H , for large fields, has also been observed in uniaxial magnetic
gels [36], a class of soft matter systems that also shows rich
macroscopic behavior [37].

A. Small shear rate behavior

For small shear rates, nz increases linearly as we increase the
shear rate. This can be shown analytically by first assuming that

the velocity profile is linear, i.e., v = �xzêx . We furthermore
discard the dissipative cross-couplings between the velocity
field and the director or the magnetization, described by the
tensors λD

ijk and cD
ijk , Eqs. (17) and (18). Consequently, there

are no terms in the dynamic equations (4) and (3) that couple
the thermodynamic forces to the currents in the y direction.
The fields thus stay within the shear (xz) plane,

n = cos θ êx + sin θ êz,

M/M0 = cos ψ êx + sin ψ êz. (33)

The dynamic equations for the angles θ and ψ then read

∂θ

∂t
= −1

2
�x[1 − λ cos(2θ )] + K

γ1

∂2θ

∂z2

− A1M
2
0

8

(
χD

1 + χD
2

)
sin[4(ψ − θ )]

+μ0HM0
[
χD

2 cos2(ψ − θ ) − χD
1 sin2(ψ − θ )

]
cos ψ

+ A1M
2
0

4

(
2

γ1
+ χD

1 − χD
2

)
sin[2(ψ − θ )], (34)

∂ψ

∂t
= −1

2
�x

[
1 − 2cR

2 cos(2ψ)
] + bD

⊥
M2

0

μ0HM0 cos ψ

+ 1

2

{(
χD

1 + χD
2

)
cos[2(ψ − θ )] − χD

1 + χD
2

}
K

∂2θ

∂z2

+ A1M
2
0

8

(
χD

1 + χD
2

)
sin[4(ψ − θ )]

− A1M
2
0

4

(
2bD

⊥
M2

0

+ χD
1 − χD

2

)
sin[2(ψ − θ )]. (35)

In the small-magnetic-field limit, we can use the small-angle
approximation (θ,ψ � 1). Setting the time derivatives ∂θ/∂t

and ∂ψ/∂t to zero, the solution for the angle θ reads

θ (z) = �x

4K
(

bD
⊥

γ1M
2
0

− (
χD

2

)2
)[

(λ − 1)

(
χD

2 − bD
⊥

M2
0

)

− (
2cR

2 − 1
)( 1

γ1
− χD

2

)]
z(z − d)

− μ0HM0

2K
z(z − d), (36)

from which one can see that for small magnetic fields and
shear rates, nz is linear in both of them. In the limit �x → 0,
one obtains a solution in agreement with the one in Ref. [26].
It is interesting to note that for small shear rates and in the
absence of the magnetic field, the angle can decrease as one
increases the shear rate, provided that the following inequality
is satisfied:

2cR
2 > 1 + (λ − 1)

χD
2 − bD

⊥
M2

0

1
γ1

− χD
2

. (37)

It is rather realistic that this inequality is satisfied using known
and/or extracted values of the involved parameters.

In the large magnetic-field limit, the director and the
magnetization point approximately along the z axis. The
solution for the angles θ+ (θ−) for positive (negative) magnetic
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x
y

z

ηx ηy ηz

FIG. 6. Miesowicz viscosities in a usual nematic liquid crystal.
The director field is indicated in orange.

fields is

θ±(z) = ±π

2
− C�x ∓

(
π

2
∓ C�x

)
cosh [q(z − d/2)]

cosh (qd/2)
,

(38)

where

q2 = q2
0

μ0|H |M0

A1M
2
0 + μ0|H |M0

, (39)

with q0 =
√

A1M
2
0 /K , and C is a constant determined by the

dynamic and the static parameters:

C = γ1(1 + λ)bD
⊥ + (1 − d2)M2

0

2μ0|H |M0
(
bD

⊥ − [
χD

2

]2
γ1M

2
0

)
+ γ1(1 + λ)bD

⊥ − (
1 + 2cR

2

)
χD

2 γ1M
2
0

2A1M
2
0

(
bD

⊥ − [
χD

2

]2
γ1M

2
0

) (40)

with the abbreviation d2 = 2cR
2 (χD

2 γ1 − 1) + χD
2 γ1(2 + λ).

We point out that Eq. (38) correctly predicts the fact that the
director can rotate by more than π/2 in the middle of the cell,
as is observed in Fig. 2.

IV. MIESOWICZ VISCOSITIES

There exists a number of different ways one can measure
viscosities of a nematic liquid crystal. The earliest technique
and a particularly useful one is the concept of Miesowicz
viscosities, where one fixes by an external magnetic or electric
field the director and exposes the system to a shear flow [38,39].
Depending on the relative orientation of the director with
respect to the velocity field or the shear plane, Fig. 6, there
exist, for sufficiently high external fields, three limiting cases
of the measured viscosities: ηx when n = êx , ηy when n = êy ,
and ηz when n = êz. The shear flow is applied in the xz plane.
These Miesowicz viscosities are

ηx = ν3 + γ1

4
(λ − 1)2, (41)

ηy = ν2, (42)

ηz = ν3 + γ1

4
(λ + 1)2. (43)

Below, we derive analogous viscosities for the ferromag-
netic nematic liquid crystal. Since we have the additional
variable of magnetization, not only are the expressions for
the viscosities different but there are also more possible

x
y

z

ηxx ηxy ηxz

(a)

ηyx ηyy ηyz

(b)

ηzx ηzy ηzz

(c)

FIG. 7. Analogs of the Miesowicz viscosities in a ferromagnetic
nematic liquid crystal, when the director (orange) is along the (a) x,
(b) y, and (c) z axis. The magnetization is shown in red.

combinations. We will denote the analogous viscosities by
ηαβ , where α,β ∈ {x,y,z} represent the fixed directions of the
director and the magnetization, respectively.

A simple shear flow vx(z) = �xz, vy(z) = 0, vz(z) = 0 is
imposed. The resulting nine independent possible configura-
tions of the magnetization and the director are shown in Fig. 7.

To simplify the expressions, we have set, besides the tensors
νR

ijkl , (γ −1
1 )Rij , bR

ij , and χR , also the tensors λD
ijk and χD

1 to
zero, which is the same as in Sec. III, but here we keep cD

ijk ,
Eq. (18). To derive the Miesowicz viscosities, one first sets
the quasicurrents Xi and Yi to zero. From this one obtains
the thermodynamic forces hn

i and hM
i , Eqs. (9) and (8), as a

function of the shear rate �x . Finally, one uses the thermody-
namic forces in the expression for the xz component of the
total stress tensor σxz.

When the director is along the x axis, Fig. 7(a), the three
independent viscosities are

ηxx = ν3 + 1

4

(
1 −

(
χD

2

)2
M2

0 γ1

bD
⊥

)−1[
γ1(1 − λ)2 − 4(cD)2

+ M2
0

bD
⊥

(
1 − 2cR

2

)[
1 − 2cR

2 − 2χD
2 γ1(1 − λ)

]]
, (44)
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ηxy = ν3 + γ1

4
(1 − λ)2 − (cD)2

bD
⊥

, (45)

ηxz = ν3 + γ1

4
(1 − λ)2 − (cD)2

bD
⊥

+ M2
0

(
1 + 2cR

2 + 2cR
5

)2

4bD
‖

.

(46)

When the director is along the y axis, Fig. 7(b), the three
independent viscosities are

ηyx = ν2 + M2
0

(
1 − 2cR

2

)2

4bD
⊥

, (47)

ηyy = ν2, (48)

ηyz = ν2 + M2
0

(
1 + 2cR

2

)2

4bD
⊥

. (49)

One can see that in the case in which the director and the
magnetization are both perpendicular to the shear plane, the
viscosity is ηyy = ηy = ν2, as in ordinary nematic liquid
crystals.

When the director is along the z axis, Fig. 7(c), the
viscosities are similar as in the case when the director is along
the x axis. One can get the viscosities ηzi from ηxi by the
transformation λ → −λ, cR

2 → −cR
2 , cR

5 → −cR
5 , and x ↔ z.

This can be explained by the fact that the contributions of λ,
cR

2 , and cR
5 in the quasicurrents change sign as one rotates the

director or the magnetization by 90◦ within the shear plane.
We thus have

ηzx = ν3 + γ1

4
(1 + λ)2 − (cD)2

bD
⊥

+ M2
0

(
1 − 2cR

2 − 2cR
5

)2

4bD
‖

,

(50)

ηzy = ν3 + γ1

4
(1 + λ)2 − (cD)2

bD
⊥

, (51)

ηzz = ν3 + 1

4

(
1 −

(
χD

2

)2
M2

0 γ1

bD
⊥

)−1

×
[
γ1(1 + λ)2 − 4(cD)2

+ M2
0

bD
⊥

(
1 + 2cR

2

)[
1 + 2cR

2 − 2χD
2 γ1(1 + λ)

]]
. (52)

We observe that the viscosities reduce to Miesowicz viscosi-
ties, Eqs. (41)–(43), in the limit cD → 0 and M0 → 0.

In Refs. [25,26], the value of the dissipative cross-coupling
coefficient χD

2 was shown to be large and thus it should strongly
affect the values of the Miesowicz viscosities ηxx and ηzz as
compared with the nematic analogs ηx and ηy .

One notices that the Miesowicz viscosities only contain
the coefficients cR

2 and cR
5 of cR

ijk . As discussed in Sec. III,
for simple shear the coefficients cR

3 and cR
4 do not contribute.

The coefficient cR
1 is irrelevant due to the fixed modulus M0.

The contributions of cR
6 are zero in the chosen configurations,

which is due to either the fixed modulus or the perpendicular
orientations of the director and the magnetization.

We emphasize that important relations between the nine
Miesowicz viscosities exist, e.g.,

ηyz − ηyx = M2
0 cR

2

bD
⊥

, (53)

ηzz − ηxx = bD
⊥γ1λ − [

2cR
2

(
χD

2 γ1 − 1
) + χD

2 γ1λ
]
M2

0

bD
⊥ − (

χD
2

)2
M2

0 γ1

, (54)

ηzx − ηxz = γ1λ − M2
0

(
cR

2 + cR
5

)
bD

‖
, (55)

which can be used to determine certain combinations of
dynamic coefficients experimentally.

V. FLOW ALIGNMENT

In this section, we study the flow alignment in a ferromag-
netic nematic. For usual uniaxial nematics, this is a well-known
phenomenon, where under the influence of a simple shear flow
the director is tilted by a finite angle with respect to the velocity
field. In the case of uniaxial nematics, this angle is determined
by the flow alignment parameter λ, which is a reversible
transport coefficient and not associated with any dissipation.
For biaxial nematics and for mixtures of uniaxial nematics,
various aspects of flow alignment have also been addressed
[40–44]. In ferromagnetic nematic liquid crystals, we have to
take into account also the dynamics of the magnetization. This
means that in simple shear flow, generally, the director and the
magnetization are not parallel.

We investigate the case in which the shear flow is imposed
with the external magnetic field pointing along the x axis,
H = H êx , as opposed to the case in Sec. III in which the mag-
netic field points in z direction. This direction of the magnetic
field is chosen to ensure that the director and the magnetization
field are in the presence of a magnetic field homogeneous
across the cell. The homogeneous response makes it convenient
to analyze the ferromagnetic nematic flow alignment as a
function of the applied magnetic field. The contribution of the
Frank elastic term, Eq. (2), can thus be discarded. Generally,
there exists a boundary layer with thickness

ξv ∼
√

K

γ1�x

, (56)

which decreases with increasing shear rate. This boundary
layer is defined by a competition between the viscous forces
and the elastic forces. In the limit ξv/d � 1, the velocity profile
is linear, v = �xzêx . For the parameters used in this study,
this limit can be achieved using shear rates �x � 0.03 s−1.
We remind the reader that two different boundary layers,
corresponding to the deformation of the director field in a
magnetic field, are defined in Sec. III, Eqs. (31) and (32). Since
we discard the elastic forces, these boundary layers are zero.

As is done in Sec. III, we again discard the dissipative cross-
couplings between the velocity field and the director or the
magnetization, Eqs. (17) and (18). In this case, the director
and the magnetization both stay in the shear (xz) plane and
can be described by Eq. (33), as discussed in Sec. III.

The dynamic equations for the angles θ and ψ are then
similar to those presented in Sec. III, Eqs. (34) and (35), with
the difference being in the term describing the magnetic field
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and in the absence of elastic forces:

∂θ

∂t
= −1

2
�x[1 − λ cos(2θ )] − A1M

2
0

8
χD

2 sin[4(ψ − θ )]

−χD
2 μ0HM0 cos2(ψ − θ ) sin(ψ)

+ A1M
2
0

4

(
2

γ1
− χD

2

)
sin[2(ψ − θ )], (57)

∂ψ

∂t
= −1

2
�x

[
1 − 2cR

2 cos(2ψ)
] + A1M

2
0

8
χD

2 sin[4(ψ − θ )]

− bD
⊥

M2
0

μ0HM0 sin(ψ)

− A1M
2
0

4

(
2bD

⊥
M2

0

− χD
2

)
sin[2(ψ − θ )], (58)

where, for simplicity, cR
2 is taken as a representative of cR

ijk ,
and χD

1 is set to zero. A stationary solution exists if ∂θ/∂t = 0
and ∂ψ/∂t = 0.

In the limit of large shear rates (�x � A1M
2
0

γ1
) and in zero

magnetic field, we obtain

cos(2θ ) = 1

λ
, (59)

cos(2ψ) = 1

2cR
2

. (60)

The solutions of Eqs. (59) and (60) are θ = ± 1
2 arccos(1/λ)

and ψ = ± 1
2 arccos(1/2cR

2 ). A linear stability analysis of
Eqs. (57) and (58) has been done, where the angles are
perturbed from their stationary values θ0 and ψ0, i.e., θ =
θ0 + δθ and ψ = ψ0 + δψ . We find that for positive (negative)
shear rates, the positive (negative) angle is the stable solution.

In the large magnetic-field limit, bD
⊥

M2
0
μ0HM0 � A1M

2
0

γ1
, while

still assuming that the effects of the diamagnetic anisotropy are
negligible, stationary solutions ψ± for the magnetization angle
are

sin ψ± = −�H
x

�x

±
√(

�H
x

�x

)2

+ 2cR
2 − 1

4cR
2

, (61)

where

�H
x = bD

⊥
4cR

2 M2
0

μ0HM0 (62)

is the characteristic “magnetic” shear rate determined by the
magnetic field.

It has not been possible to make the analytical solution for
the angle θ tractable. We thus only present the asymptotic
behavior of this angle and for completeness also the asymptotic
behavior of the angle ψ . From Eq. (61) one can see that in the
limit �x/�H

x � 1 one finds, to first order,

ψ+ = 2cR
2 − 1

8cR
2

�x

�H
x

, (63)

tan θ+ =
√

bD
⊥ (λ − 1) − (

2cR
2 − 1

)
χD

2 M2
0

bD
⊥ (1 + λ)

−
(
2cR

2 − 1
)2

χD
2 M2

0

8bD
⊥cR

2 (1 + λ)

�x

�H
x

, (64)

+

+
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FIG. 8. The theoretical dependence of the magnetization ψ+

(blue curve) and director θ+ (red dashed curve) angles in degrees
as functions of the dimensionless ratio of the characteristic magnetic
shear rate [Eq. (62)] and the applied shear rate, �H

x /�x .

while ψ− does not exist and tan θ+ is calculated by inserting
the solution for the angle ψ+ from Eq. (61) into Eq. (57). It is
tractable to perform a linear stability analysis of the solution
Eq. (58) analytically, finding the stability condition

±cR
2 �x

√(
�H

x

�x

)2

+ 2cR
2 − 1

4cR
2

> 0, (65)

where the sign ± corresponds to the solutions ψ±. From
Eq. (65) we see that the solution ψ+ (ψ−) is stable if the
product cR

2 �x is positive (negative).
In Fig. 8 we present the numerical solutions of Eqs. (57)

and (58) for the angles ψ+ and θ+ as functions of �H
x /�x .

As predicted in Eqs. (63) and (64), we see that the angle ψ+
decreases to zero, while the angle θ+ saturates at a finite value
as the field is increased.

In the absence of the magnetic field and in the large shear
rate limit, the stationary solution exists if |λ| � 1 and |cR

2 | � 1
2 .

In usual nematic liquid crystals, if |λ| < 1 holds, the system
shows a tumbling behavior. In such a system flow alignment
can be recovered if a sufficiently large electric field is applied;
see Refs. [45,46]. In our system, this could be achieved with
the use of low magnetic fields.

To check this possibility, one must first ensure the existence
of the solutions Eq. (61). Secondly, we are only interested in
the stable solutions, i.e., Eq. (65) must hold. We find that the
required magnetic field depends on four different ranges of
the cR

2 values:

cR
2 < 0, ± �x < 0,

�H
x

�x

> ∓1 + 2cR
2

8cR
2

, (66)

0 < cR
2 <

1

6
, ± �x > 0,

�H
x

�x

> ±1 + 2cR
2

8cR
2

, (67)

1

6
< cR

2 <
1

2
, ± �x > 0,

�H
x

�x

> ±
√

1 − 2cR
2

4cR
2

, (68)

cR
2 >

1

2
, ± �x > 0,

�H
x

�x

> ∓1 + 2cR
2

8cR
2

, (69)

where the signs ± correspond to the two solutions Eq. (61).
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Another stationary solution of the dynamic equations is
found when the director is in the shear plane, while the
magnetization is perpendicular to this plane,

n = cos θ êx + sin θ êz, (70)

M = M0êy. (71)

In this case, we do not discard any dynamic coefficients. The
solution for the angle θ is

tan(θ ) = λD
effM0

λ + 1
±

√(
λD

effM0

λ + 1

)2

+ λ − 1

λ + 1
, (72)

where λD
eff = 2λD

1 + 2λD
2 − λD

5 + λD
6 . A solution exists if the

term under the square root is positive, leading to the condition

λ2 � 1 − (
λD

effM0
)2

. (73)

This means that one can observe flow alignment in a ferromag-
netic nematic, even if the pure nematic solvent shows tumbling
behavior.

We investigated the stability of the solution Eq. (72) nu-
merically. We find that it is stable in the absence of a magnetic
field if the static coupling (A1) between the director and the
magnetization is negative, because in that case n ⊥ M is the
equilibrium orientation. For a positive A1, even the slightest
perturbation in the magnetization field drives the director
toward it, since it is favorable for them to be parallel rather
than perpendicular. The solution Eq. (72) can nevertheless
be made stable for ferromagnetic nematics with positive A1,
provided one uses a large magnetic field in the y direction and
the diamagnetic anisotropy χa is negative. This is to ensure that
the director stays within the shear plane and the magnetization
is perpendicular to it.

The case discussed above, in which the magnetization is
perpendicular to the shear plane and the director is in the
shear plane at an angle θ with respect to the velocity field,
most closely resembles one of the possible stationary solutions
of a biaxial nematic liquid crystal exposed to a shear flow;
see Ref. [43]. In the latter system, the angle of one of the
preferred directions with respect to the velocity field is given
by the reversible coupling of the corresponding variable to
the velocity field. In contrast, in ferromagnetic nematic liquid
crystals this angle is determined by both the reversible and the
dissipative coupling of the director to the velocity field.

VI. SWITCH-ON DYNAMICS

In this section, we study the reorientation of the director and
the magnetization in an external magnetic field applied per-
pendicularly to the glass plates, H = H êz. We are particularly
interested in the influence of flow on this transient dynamics.
Unlike in the previous sections, flow is not externally imposed,
but is generated by the reorientation dynamics itself, i.e.,
by backflow. Throughout this section, the dissipative cross-
coupling between the magnetization and the velocity cD

ijk ,
Eq. (18), is set to zero.

As a first step, we take into account only the reversible
cross-coupling λijk between the director and the velocity,
Eqs. (20)–(22), while the analog cross-coupling cR

ijk between

No flow
Flow included

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

t �s�

n z
�d
�2
�

FIG. 9. The theoretical time dependence of nz in the middle of the
cell, for the cases with and without inclusion of flow, μ0H = 5 mT.
In the former case, only the flow alignment tensor λijk and the viscous
tensor νD

ijkl are taken into account in the dynamics.

the magnetization and the velocity, Eqs. (19), (21), and (23),
is set to zero. Figure 9 shows the time dependence of nz

in the midplane of the cell (z = d
2 ). A comparison is made

between cases with and without inclusion of flow. We find that
the influence of the reversible director–flow coupling is small
and makes the transient dynamics a little faster; see Fig. 9.
This has also been readily encountered in usual nematic liquid
crystals [28,29]. We find furthermore that a strong dissipative
cross-coupling between the director and the magnetization
makes these backflow effects even less visible. To isolate them,
we have set the tensor χD

ij , Eq. (14), to zero.
When the term cR

2 of the cross-coupling cR
ijk , Eq. (23), is

included in addition to λijk , the backflow effects are similar,
i.e., the dynamics is only slightly faster. This is not surprising,
since the tensor λijk and the term cR

2 have a similar form.
On the other hand, we find that the dissipative cross-

coupling between the director and the velocity λD
ijk , Eq. (17),

which is absent in usual nematics, can have a somewhat larger
influence, Fig. 10. In our numerical calculations, we used the
coefficient λD

3 as the representative of the tensor λD
ijk , i.e.,

λD
ijk = λD

3 (εipkMjnp + εipjMknp).
The reason for this choice is that at t = 0, when both n and

M are parallel and within the xz plane, λD
3 provides a nonzero

contribution to the director quasicurrent component Yy . The
same is true for the coefficients λD

1 and λD
4 , while the initial

contributions of λD
2 , λD

5 , and λD
6 are zero. It should be noted

that, due to the additional dissipative cross-coupling λD
ijk , the

velocity field has a general orientation somewhere in the xy

plane and hence n and M wander out of the xz plane, Fig. 10(b).
This is in contrast to the case in Sec. III, where the velocity
points along the x direction throughout the cell, and n and M
stay in the shear plane.

The vx and vy profiles at four different moments are
presented in Fig. 11 in terms of the Ericksen number, defined
as the ratio of viscous and elastic forces on the director,

Eri = γ1vid

K
, (74)
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FIG. 10. The theoretical time dependence of the (a) z and (b) y

component of the director field at μ0H = 5 mT for two different
values of λD

3 .

with i corresponding to either the x or y velocity component.
For the chosen value of λD

3 , the maximum values in both
directions are comparable, Erx ∼ Ery ∼ 2.

It should be noted that the values of the dissipative cross-
coupling coefficients are fundamentally restricted by the pos-
itivity of the entropy production. In our case (zero χD

1 , χD
2 ,
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FIG. 12. The x and y components of the stress tensor divergence
(a) σ ′

xz = ∂σxz/∂z and (b) σ ′
yz = ∂σyz/∂z, at z = d/2, in units of

characteristic divergence of the elastic stress K/d3 for each of the
three different backflow-driving stress tensor contributions explained
in the text.

and cD), the restriction is

∣∣λD
3 M0

∣∣ �
√

ν3

γ1
∼ 0.75, (75)

where ν3 is chosen as the representative of the tensor νijkl .
We are interested in the importance of specific contributions

to components σxz and σyz of the stress tensor. These are the
usual nematic backflow-driving stress 1

2λkijh
n
k , the analogous

stress corresponding to the dynamics of the magnetization,
cR
kijh

n
k , and the stress from the dissipative director–velocity

cross-coupling, λD
kijh

n
k . The divergence of these stresses has

nonzero x and y components that are individually presented in
Fig. 12.

We first analyze the σxz component, Fig. 12(a). The contri-
butions of cR

kxzh
n
k and λD

kxzh
n
k are smaller than those of 1

2λkxzh
n
k .

This can be explained by two facts. First, at any moment the
director field is much more deformed than the magnetization
field, which means that the thermodynamic force hn

i , Eq. (9),
will have a much bigger impact on the divergence of the stress
than the thermodynamic force hM

i , Eq. (8). This automatically
explains that the backflow from the director field 1

2λkxzh
n
k is

bigger than that from the magnetization cR
kxzh

n
k . Secondly, the

contribution λD
kxzh

n
k is proportional to λD

3 nyMzh
n
z . Since ny is

never large [Fig. 10(b)], neither is the contribution of λD
kxzh

n
k .
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The situation is different for the σyz component.
Figure 12(b) reveals that the contribution of λD

kyzh
n
k is the

biggest. This can be explained by writing its leading term as
λD

3 nxMzh
n
z , which does not contain ny . The leading terms of

the backflow contributions, 1
2λkyzh

n
k and cR

kyzh
n
k , are smaller in

comparison, since they are always proportional to either ny and
My , or to hn

y and hM
y .

Next, we are interested in the magnitude of the flow
generated when a magnetic field is applied perpendicularly
to the plates in one case and a voltage difference is applied
across the plates in the other case. The magnitude of the flow
is measured using the Ericksen number Erx , Eq. (74), which we
have calculated using the maximum magnitude of the velocity
across the cell. We find that Erx ∼ 1 can be achieved using
either a rather small magnetic field of 3 mT or a voltage
difference of 2.5 V.

We conclude this section by pointing out that there are no
effects of flow on the initial dynamics, at least up to first
order in time. This can be shown by expanding the currents
in Eqs. (3)–(5). Since the initial thermodynamic forces hn

i and
hM

i are homogeneous, the generated stress σij in Eq. (5) is also
homogeneous. Its divergence, which generates flow, is thus
absent initially. Consequently, Eqs. (3) and (5) are initially
also unaffected by flow. It is the dissipative cross-coupling
coefficient χD

2 between the director and the magnetization that
gives a linear time dependence of nz, as was shown in Ref. [25]
and discussed in Ref. [26].

VII. CONCLUSIONS AND PERSPECTIVE

In this paper, we have analyzed the consequences of some
simple flows on various configurations of ferromagnetic ne-
matic liquid crystals. These flows include simple shear flow,
the determination of transport coefficients in the spirit of
Miesowicz, and the analog of flow alignment for ferromagnetic
nematics.

For the case of simple shear, we find that the effective
viscosity can be increased by a factor of about 2 for rather
small magnetic fields of about 20 mT. This effect can be tuned
continuously in magnitude simply by varying the external
magnetic field. For the determination of transport coefficients,
we analyze the analog of the three Miesowicz configurations
well-known from usual uniaxial nematics. Since one can fix
the director and the direction of the spontaneous magnetization
by external electric and magnetic fields, it is now possible to
analyze nine independent different geometries. We find that
these various geometries can be used to determine experimen-
tally combinations of coefficients including dissipative and
reversible terms characteristic of a system with a director, a
magnetization, and a velocity field as macroscopic variables.

For the analog of flow alignment in usual uniaxial nematics,
we find simple stationary solutions without an external mag-
netic field involving an orientation of both the director and the
magnetization for the case in which both of these variables
are in the shear plane in the limit of sufficiently large shear.
In addition, we show that a small external magnetic field can
shift the boundary between tumbling and flow alignment. For
the case in which the magnetization M0 is perpendicular to the
shear plane and the director n is lying in the shear plane, we
find for a range of parameters that a ferromagnetic nematic can

reveal flow alignment, although the nematic solvent by itself
shows tumbling.

As a perspective, we point out that we are aware of only
one experimental publication investigating the effect of flow
on ferromagnetic nematics, namely the effects of shear flow in a
rather complicated geometry [35]. These experimental results
are compatible with our theoretical results in the sense that
they show qualitatively similar behavior as a function of an
external magnetic field and a viscosity enhancement effect of
comparable magnitude. In a next step, it is highly desirable
to compare experimental and theoretical results quantitatively
for a simple and well-controlled geometry. There appear to
be no experimental results available so far for the question
of flow alignment and the evaluation of transport coefficients,
parallel to the Miesowicz concept, for ferromagnetic nematics.
Clearly, any experimental results in these two directions will
stimulate refinement of the modeling of this exciting first liquid
multiferroic system at room temperatures.
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APPENDIX: LESLIE COEFFICIENTS

In the Ericksen-Leslie formulation of nematodynamics, a
different set of coefficients is used. The Leslie coefficients are
defined [1] by the symmetrized stress tensor

σ EL
ij = α1ninjnknpAkp + (α2 + α3)(niNj + njNi)

+α4Aij + (α5 + α6)(ninkAjk + njnkAik), (A1)

and the molecular field

hEL
i = γ1Ni + γ2njAij , (A2)

with γ2 = α3 + α2 being a reversible transport parameter, not
a viscosity. Here, the superscript EL denotes Ericksen-Leslie,
Ni = ∂ni/∂t − ωijnj is the corotational time derivative of the
director—or rather its dissipative quasicurrent, −YD

i [Eq. (4)],
and ωij = 1

2 (∂vi/∂xj − ∂vj/∂xi) is the vorticity tensor.
The set of Leslie coefficients is related to the coefficients of

the tensor νD
ijkl [33]:

α1 = 2(ν1 + ν2 − 2ν3) − γ1λ
2, (A3)

α2 + α3 = −γ1λ, (A4)

α4 = 2ν2, (A5)

α5 + α6 = 4(ν3 − ν2) + γ1λ
2. (A6)

The flow alignment parameter λ = −γ2/γ1 is expressed as the
ratio of reversible transport parameter γ2 and the rotational
viscosity γ1.
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