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Calculation of gyrotropy coefficients in media with low-pitch helical structures
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Chiral smectic liquid crystals are known for their huge optical activity due to the precession of the anisotropic
dielectric tensor around the helicoidal axis. For an oblique direction of the propagating wave, the helix acts as
a grating which splits an incident beam in different directions as long as the pitch is not too small with respect
to the light wavelength. When the pitch of the helix is smaller than the wavelength, the effect of the helix is a
renormalization of the gyrotropic coefficients (g⊥ and g‖) of the resulting uniaxial medium. We report here on
a method to compute these coefficients in that limit. Resolution of the Maxwell equations, using a perturbative
approach, gives expressions for g⊥ and g‖ as a power development of the ratio ( p

λ
). The various terms of these

developments coincide with the approximate expressions of these coefficients known in the literature.
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I. INTRODUCTION

Natural optical activity is usually associated with
molecules, or arrangement of molecules, having a helical
structure. Pasteur argued that the optical activity of natural sub-
stances comes from atomic arrangements inside the molecules
that differ from their mirror image (chiral materials) [1].
Chiral liquid crystals and, in particular, cholesteric and chiral
smectic liquid crystals, offer a remarkable macroscopic model
of the microscopic helical structure of chiral molecules [2–4].
Interest in the optics of anisotropic media has grown recently
due to their importance in active and passive devices such as
retarders, tunable filters, light modulators, optical disks, and
displays [5,6].

More generally, it can be shown that optical activity arises
from spatial inhomogeneities with atomic distances that are
small with respect to the light wavelength. It is the case of
the optical activity of noncentrosymmetric metals [7,8] and
those of the so-called Weyl semimetals [9]. The breaking of
degeneracy between left and right circularly polarized light
in such media gives rise to phenomena such as the rotation
of polarization with propagation (Faraday effect and optical
activity) and upon reflection (Kerr effect) [10].

Such inhomogeneities give rise to an imaginary antisym-
metric contribution to the dielectric tensor that displays spatial
dispersion, i.e., depends on the light wave vector, or, equiva-
lently, on the gradients of the electric field. This imaginary part
is responsible for the rotatory power, and can be described in
terms of a second-rank gyration pseudotensor γijk .

The calculation of the light reflection, propagation, and
transmission properties of these devices is essential to the
design and understanding of the physics involved. This is also
of great importance for the interpretation of experimental data
from crystals and anisotropic structures using different optical
techniques [11,12].
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Several theoretical approaches exist for this purpose [13–
15]. We report here on a method to compute the coefficients
of the pseudotensor γijk in the case of a chiral smectic liquid
crystal presenting the Sm-C∗

α phase where the pitch of the helix
is smaller than the wavelength.

In chiral smectic liquid crystals, optical activity is often
introduced as a consequence of the nonlocal character of the
dielectric tensor in chiral materials. In other words the electric
displacement �D contains the usual term proportional to the
electric field �E but also a term proportional to some gradient
of the field whose coefficient is only allowed in the presence
of chirality, due to the molecules in general but sometimes
to the wound structure like in quartz (SiO2) [16]. The order
of magnitude of the optical rotatory power (ORP) due to
gyrotropy is of some degrees of angle per decimeter [17].

In chiral liquid crystals, some phases like cholesteric or
smectic C∗ are locally anisotropic and gyrotropic and give
rise to huge optical activity because the local axes are subject
to a helicoidal precession around a direction of space. For
large helical periods (pitches) of a few micrometers in the
so-called Mauguin limit, the light polarization locks in with
the rotating anisotropic axes so that the ORP is exactly 360°
per pitch length for light propagating in the helix direction
[18,19]. For smaller pitches, the rotation is not so large but
still much larger than the “ordinary” gyrotropy as it reaches
easily some tens of degrees per millimeter, so the intrinsic
gyrotropy is often neglected in these systems [20]. When the
pitch is of the order of the wavelength of light propagating in the
material, one gets a selective reflection of circularly polarized
light [18,19]. When the pitch gets smaller than the wavelength,
it has been proposed by Oldano and Ratjeri [21], Galatola
[22], and Etxebarria et al. [23] that the effect of the helix is
to renormalize the gyrotropic coefficients of the material that
becomes uniaxial around the helix axis. We will recall in the
next section the known results about light propagation in such
systems in the large pitch limit and in the gyrotropic limit.
The following section will be devoted to the calculation of
renormalized gyrotropic coefficients.
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A. Chiral anisotropic media

1. Anisotropic chiral phase with a helicoidal precession
of axes around z

The local dielectric tensor is such that

Di(�r) = εeff
ij (�r) Ej (�r). (1)

When written in an axes frame where z is fixed, one gets
z-dependent terms, p = 2π

q
being the pitch of the helix:

εeff
ij (�r) = ε̄ δij +

∑
m= −2,+2

εmexp(imqz) T m
ij , (2)

where the following basis containing three elementary modes
has been used [9]:

T 0
ij =

⎛⎜⎝−1 0 0

0 −1 0

0 0 2

⎞⎟⎠, T ±1
ij =

⎛⎜⎝0 0 1

0 0 ∓i

1 ∓i 0

⎞⎟⎠,

T ±2
ij =

⎛⎜⎝ 1 ∓i 0

∓i −1 0

0 0 0

⎞⎟⎠. (3)

For a uniaxial material (ε‖, ε⊥, εa = ε‖ − ε⊥) tilted by an
angle θ around y at z = 0, one gets

ε̄ = ε‖ + 2ε⊥
3

, ε0=
εa

2

(
cos2θ − 1

3

)
,

ε±1 = εa

2
sinθcosθ, and ε±2 = εa

4
sin2θ. (4)

This may represent in first approximation the synclinic
SmC∗ structure with layers parallel to the xy plane or, with
θ = π

2 , a cholesteric whose director is along x at z = 0. One
can split ε in two parts, the mean uniaxial component and the
rotating one:

εeff
ij (�r) = ε̃ij + 	ij(z), (5)

with ε̃⊥ = ε̄ − ε0, ε̃‖ = ε̄ − 2 ε0, and

	ij(z) = 2 ε1

⎛⎜⎝ 0 0 cos(qz)

0 0 sin(qz)

cos(qz) sin(qz) 0

⎞⎟⎠

+2 ε2

⎛⎜⎝cos(2qz) sin(2qz) 0

sin(2qz) −cos(2qz) 0

0 0 0

⎞⎟⎠. (6)

2. Anisotropic chiral phase with fixed axes

Following the notations of Landau et al. [16] and calculation
carried out by Agranovich and Ginsbourg [24], one writes
down �D in a nonlocal form:

Di = εik Ek + γijk ∂jEk. (7)

There is no reason why γijk should be a constant intrinsic
to the material; it may depend on the wavelength of light like
the corresponding pseudoscalar γ in chiral isotropic liquids
that may give rise to circular dichroism. So, assuming a
monochromatic light with wave vector k0 in vacuum is at the

origin of the field gradient, it is of common use in a uniaxial
material to write down γijk as

k0 γijk = eilk glj , (8)

where the gyrotropic tensor glj has two characteristic co-
efficients g⊥ and g‖ while eilk is the fully antisymmetric
Levi-Civita tensor whose elements are nonzero only when i,
l, and k are all different [25]. One gets explicitly in the axes
frame, where z is the optical axis,

k0γxyz = −k0 γzyx = g⊥, k0γyzx = −k0γxzy = g‖, and

k0γzxy = −k0γyxz = g⊥. (9)

3. Connection between the two regimes: the low-pitch limit

First let us remark that we should have combined the two
contributions in the case of precessing axes, introducing a mean
gyrotropic tensor and a rotating one developed on the same
basis. Anyway one does neglect the gyrotropy in that case
due to the much smaller order of magnitude of the associated
rotatory power. We are more interested, following the work
of Oldano and Ratjeri [21], in computing the renormalized
gyrotropy coefficients obtained when the pitch of a precessing
system becomes much smaller than the light wavelength. This
leads to an effective uniaxial gyrotropic system. We will first
recall how the light plane waves propagate in such materials
before computing the low-pitch limit with a perturbative
approach.

B. Light propagation

1. Propagation along the helix

In that case, an exact solution was derived long ago by de
Vries [13] for light propagating in a cholesteric liquid crystal. It
can be generalized to tilted smectics [26]. The main features are
that the eigenmodes for the displacement �D consist of two pairs
(i = 1, 2) of circularly polarized plane waves D+

i ,D−
i with

a wave vector difference k+
i − k−

i = ±2q and an amplitude

ratio D+
i

D−
i

depending strongly on the pitch-to-wavelength ratio
p

λ
. For large pitches, in the Mauguin limit, two ordinary circular

waves with
−→
k = �ko ± −→

q and the same amplitude form one
mode while two extraordinary ones with

−→
k = �ke ± −→

q form
the second mode. The final state of polarization will depend on
the boundary conditions at the entrance; for example, a wave
which is purely ordinary (or purely extraordinary) will have
its polarization rotated by 360° per pitch length in the sample.
This effect is widely used in twisted nematics (TN) displays.
When the pitch gets smaller, the amplitude ratios inside each
pair become very different from unity so that the right circular
polarization dominates one mode and the left one dominates
the second one. If the incoming wave is linearly polarized,
the two leading circular modes have the same amplitude and a
slightly different wave vector. This difference is at the origin
of the ORP which obeys the de Vries formula:

ρ = πp3	2
2

λ2(n2p2 − λ2)
. (10)
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We have used in this equation the notations previously
defined in Sec. II; p is the pitch, λ the light wavelength in
vacuum, 	2 = 2ε the coefficient of the half-pitch modulation
of ε, and n is an average index in the uniaxial resulting material.
The de Vries equation is commonly used to describe the ORP
in cholesterics and tilted smectics except in the Mauguin limit.
It predicts ρ ≈ p

λ2 for large pitch, ρ = p3

λ4 at small pitch, and
a divergence at np = λ where the selective reflection of one
particular circular wave takes place [18,19]. In this paper, we
focus mainly on the small pitch limit where the validity of the
precessing dielectric tensor can be questioned if the period is
smaller than the optical wavelength.

2. Propagation at angle with the helix: perturbative approach

In the case when the pitch is large enough, the helix acts
as a grating that induces transfers of wave vectors ±q, ±2q

between the propagating waves. There is no simple solution
with a finite set of modes like in the previous case but experi-
mentally the existence of the grating has been shown and the
selective reflection has been proven [11]. It was an elegant way
to prove the difference of structure between the Sm-C∗ phase,
with 	1 and 	2 terms and two different selective reflections
when �q and 2�q satisfy the Bragg relation, and the Sm-C∗

A phase
where only 	2 and 2�q exist and induce one selective reflection.

The main goal is to demonstrate that when the pitch of the
helix is shorter than the light wavelength the medium behaves
as uniaxial with a gyrotropy coefficient due to the effect of
	ij(z). According to the method of Bensimon et al. [27], in
the blue phases, it is considered that the electric field of the
light wave is propagated with a wave vector k which forms an
angle α with z. This field is decomposed in two parts, a part
E0 propagating normally in the uniaxial medium by creating
a small perturbation E1, due to the helicoidal structure.

One has thus to start:

Di(�r) = [ε̃ij + 	ij (z)]
(
E0

j + E1
j

)
(�r). (11)

The electromagnetic field propagation obeys the Maxwell
equations:

� �E − �∇(div �E) − 1

c2

∂2 �D
∂t2

= 0. (12)

We assumed that the perturbation E1
i is created by 	ijE

0
j and

that 	ijE
1
j is negligible.

�( �E0 + �E1)i − ∇i[div( �E0 + �E1)] − 1

c2

∂2

∂t2

[
ε̃ij

(
E0

j + E1
j

)
+	ij (z)E0

j

] = 0 (13)

One can separate the equations of evolution of E0 and
E1, first the equation that governs the propagation of E0 in
a uniaxial medium:

�( �E0)i − ∇i[div( �E0)] − 1

c2

∂2

∂t2

(
ε̃ijE

0
j

) = 0. (14)

Then the second one describes the propagation ofE1 created
by the action of the helix on �E0:

�( �E1)i − ∇i[div( �E1)] − 1

c2

∂2
(
ε̃ijE

1
j

)
∂t2

= 1

c2

∂2
(
	ij (z)E0

j

)
∂t2

. (15)

We search to propagate a plane wave with exp(iwt); then
∂2

∂t2 became −w2 and we take the Fourier transformation of
Eq. (15):

Mij (�q)E1
j (�q) =

(
−q2δij + qiqj + ω2

c2
ε̃ij

)
E1

j (�q)

= −ω2

c2
· F(

	ijE
0
j

)
(�q). (16)

where Mij (�q) is a 3 × 3 matrix that inverses M−1
ki (�q), such that

M−1
ki Mij (�q) = δkj , to obtain the following equation:

E1
k (�q) = −ω2

c2
M−1

ki (�q) · F(
	ijE

0
j

)
(�q). (17)

The reversed Fourier transformation of Eq. (17) gives

E1
k (�r) = −ω2

c2

∫
d3r ′M−1

ki (�r − �r ′) · 	ij (z′)E0
j (�r ′). (18)

The field E1(�r) is obtained by integration of 	(z′)E0(�r ′)
around −→

r . It will be necessary to develop E0(�r ′) around −→
r to

reveal the field gradient and then the gyrotropy.

E0
k (�r ′) ≈ E0

j (�r) + (r ′
m − rm)

∂E0
j (�r)

∂rm

. (19)

We must firstly reverse Mij (�q) to calculate M−1
ij (�q). We

write Mij as a matrix in the space �q and we calculate its
determinant � and then the matrix of cofactors. We introduce
the ordinary and extraordinary optical wave vectors such as
k2
⊥ = ( ω2

c2 )ε̃⊥ and k2
‖ = ( ω2

c2 )ε̃‖ which gives in the particular
frame where z is the normal to the layers:

Mij (�q) =

⎛⎜⎝k2
⊥ − q2

y − q2
z qxqy qxqz

qxqy k2
⊥ − q2

z − q2
x qyqz

qxqz qyqz k2
‖ − q2

y − q2
x

⎞⎟⎠.

(20)

The determinant is

� = (
k2
⊥ − q2

)(
k2
‖k

2
⊥ − k2

‖q
2
z − k2

⊥q2
⊥
)
. (21)

Here we recognize the roots of the polynomial in q which
give the ordinary and extraordinary wave vectors of a uniaxial
medium.

The elements of M−1
ij (�q) are written in the particular frame

where z is the normal to the smectic layers (q2
⊥ = q2

x + q2
y and

q2 = q2
⊥ + q2

z ):

M−1
xx (�q) =

(
k2
⊥ − q2

z − q2
x

)(
k2
‖ − q2

⊥
) − q2

yq
2
z(

k2
⊥ − q2

)(
k2
‖k

2
⊥ − k2

‖q2
z − k2

⊥q2
⊥
) , (22)

M−1
yy (�q) =

(
k2
⊥ − q2

z − q2
y

)(
k2
‖ − q2

⊥
) − q2

xq
2
z(

k2
⊥ − q2

)(
k2
‖k

2
⊥ − k2

‖q2
z − k2

⊥q2
⊥
) , (23)
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M−1
zz (�q) =

(
k2
⊥ − q2

z

)(
k2
‖k

2
⊥ − k2

‖q2
z − k2

⊥q2
⊥
) , (24)

M−1
yx (�q) = M−1

xy (�q) = −qxqy

(
k2
‖ − q2

)(
k2
⊥−q2

)(
k2
‖k

2
⊥−k2

‖q2
z −k2

⊥q2
⊥
) , (25)

M−1
xz (�q) = M−1

zx (�q) = −qxqz(
k2
‖k

2
⊥ − k2

‖q2
z − k2

⊥q2
⊥
) , (26)

M−1
yz (�q) = M−1

zy (�q) = −qyqz(
k2
‖k

2
⊥ − k2

‖q2
z − k2

⊥q2
⊥
) . (27)

Once the M−1
ij (�q) is known, we can calculate the inverse

Fourier transform M−1
ij (�r − �r ′) and replace it in Eq. (18); we

do not need to calculate all terms, only those certain to be used
in the computing of gyrotropy.

One takes again the calculation of �D(�r) in Eq. (11) which
becomes locally (all tensors are in the particular axes where z

is normal to layers)

Dl(�r) = [
ε̃lkEk(�r) + 	lkE

0
k (�r)

] −
(

ω

c

)2 ∫
d3r ′	lk(z)

×M−1
ki (�r − �r ′)	ij (z′)E0

j (�r ′). (28)

We use the hypothesis that the pitch p is shorter than
the wavelength λ; then the second term is eliminated if one
averages �D over a small length in front of λ.

One rewrites Eq. (28) as follows:

Dl(�r) = ε̃lkEk(�r) −
(

ω

c

)2[ ∫
d3r ′	lm(z) · M−1

mi (�r − �r ′)

·	ik(z′) · (r ′
j − rj )

]
∂E0

k (�r)

∂rj

. (29)

One finds finally the gyrotropy:

γljk(�r) = −
(

ω

c

)2[ ∫
d3r ′	lm(z) · M−1

mi (�r − �r ′) · 	ik(z′)

·(r ′
j − rj )

]
. (30)

If one manages to show that the function to be integrated
depends only on (�r ′ − �r) = �ρ, it will come that γljk does not
depend on −→

r and one will be able to calculate the required
gyrotropy coefficients thereafter. For that it is necessary to
carry out the matrix product �lk = 	lm(z)M−1

mi (�r − �r ′)	ik(z′).
Knowing that elements of matrix 	1 are in cos(qz) and those
of 	2 are in cos(2qz), one will have, finally, terms with
cos q(z ± z′). The terms in (z–z′) are to be kept and the others
to be removed because M−1

mi (�r − �r ′) must be maximum for
�r = �r ′.

It is necessary to calculate �1
lk and �2

lk elements of the
matrix.

�1 = (	1)2

⎛⎜⎝ 0 0 cos(qz)

0 0 sin(qz)

cos(qz) sin(qz) 0

⎞⎟⎠

×M−1(�r − �r ′)

⎛⎜⎝ 0 0 cos
(
qz′)

0 0 sin(qz′)
cos

(
qz′) sin

(
qz′) 0

⎞⎟⎠, (31)

�2 = (	2)2

⎛⎜⎝cos(2qz) sin(2qz) 0

sin(2qz) −cos(2qz) 0

0 0 0

⎞⎟⎠

×M−1(�r − �r ′)

⎛⎜⎝cos(2qz′) sin(2qz′) 0

sin(2qz′) −cos(2qz′) 0

0 0 0

⎞⎟⎠. (32)

As one kept only the terms in (z′–z) in the matrix �, Eq. (30)
does not depend any more on r after having carried out the
integral over ρ = (r ′ − r).

One will explicitly look at the terms of the tensor of
gyrotropy being calculated:

γlmk(�r) = −
(

ω

c

)2 [∫
�lk( �ρ)ρmd3ρ

]
. (33)

If we note mij the matrix elements M−1
ij , the diagonal terms

(l = k) are all null, indeed:

γxmx = −1

2

(
ω

c

)2 ∫
ρm[mzz(	1)2 cos (qρz)

+(mxx + myy)(	2)2cos(2qρz)]d
3ρ = 0, (34)

because the function is odd in ρm.
Finally by eliminating all the even terms, there remain only

two terms corresponding to g⊥ and g‖.
In what follows, we replaced w2

c2 by k2
0 .

g⊥
k0

= γxyz = γzxy = −γzyx = −γyxz

= −k2
0

2

∫
ρy[myz(	1)2 sin (qρz)]d

3ρ = 0,

g‖
k0

= γxzy = −γyzx = −k2
0

2

∫
ρz[mzz(	1)2 sin (qρz)

+(mxx + myy)(	2)2sin(2qρz)]d
3ρ. (35)

C. Calculation of g⊥

There are now only three integrals to calculate, the first
giving g⊥: ∫

ρy[myz sin (qρz)]d
3ρ = 0, (36)

for which we need initially the inverse of the Fourier transform:

myz( �ρ) = 1

8π3

∫ −qyqzexp(i �q · �ρ)(
k2
‖k

2
⊥ − k2

‖q2
z − k2

⊥q2
⊥
)d3q, (37)

myz =
−k2

‖k⊥ρyρzexp
(
i
√

k2
‖ρ

2
⊥ + k2

⊥ρ2
z

)
4π

(
k2
‖ρ

2
⊥ + k2

⊥ρ2
z

)5/2

[− (
k2
‖ρ

2
⊥ + k2

⊥ρ2
z

)
−3i

√
k2
‖ρ

2
⊥ + k2

⊥ρ2
z + 3

]
. (38)
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FIG. 1. Representation of the real part of the function of the integral [Eq. (44)] (a) and of the primitive I (ñ,R̃) (b). We see that for R̃ > 1
the function is constant and positive; it depends only on ñ.

If we go back to g⊥,

g⊥ = k3
0 (	1)2

8π

∫
(k‖ρy)2k⊥ρz sin(q ρz)

×
exp

(
i
√

k2
‖ρ

2
⊥ + k2

⊥ρ2
z

)
(
k2
‖ρ

2
⊥ + k2

⊥ρ2
z

)5/2

[ − (
k2
‖ρ

2
⊥ + k2

⊥ρ2
z

)
−3i

√
k2
‖ρ

2
⊥ + k2

⊥ρ2
z + 3

]
d3ρ. (39)

In this expression, sin(qρz) varies very quickly whereas the
terms in kρ are close to zero and vary slowly. We continue the
calculations in spherical coordinates R̃, ϑ, and ϕ:

k‖ρx=R̃sinϑ cos ϕ, k‖ρy=R̃sinϑ sin ϕ, k⊥ρz=R̃cosϑ.

(40)

ϕ varies from 0 to 2 π , ϑ from 0 to π , and ρ from 0 to a
fraction of the wavelength of light (or a fraction of a micron
since it is the length on which one defines the macroscopic
quantities as εij or gij ). Therefore R̃ varies from 0 to π ; on the
other hand because of the parity of the function we integrate

g⊥ = k3
0 (	1)2

8πk2
‖k⊥

∫ ∼π

0
dR̃

∫ π
2

0
sin ϕ2dϕ,

∫ π
2

0
sin ϑ3 cos ϑ sin

(
q

k⊥
R̃ cos ϑ

)
expiR̃(−R̃2 − 3iR̃ + 3)dϑ.

(41)

We carry out the integral on ϕ:

g⊥ = k3
0 (	1)2

8πk2
‖k⊥

∫ π
2

0
sin ϑ3 cos ϑ dϑ

∫ ∼π

0
sin

(
q

k⊥
R̃ cos ϑ

)
×expiR̃(−R̃2 − 3iR̃ + 3)dR̃. (42)

The integral on ϑ gives (with A = q

k⊥
R̃ = ñR̃ and by taking

the notations of Appendix C)∫ π
2

0
sin ϑ3 cos ϑ sin (A cos ϑ)dϑ

= −2
A2 sin A+3A cos A−3 sin A

A4
= f 2(A) = f 2(ñR̃).

(43)

We pass then to integration on R̃:∫ ∼π

0

−2ñ2R̃2 sin ñR̃ + 3ñR̃ cos ñR̃ − 3 sin ñR̃

ñ4R̃4

×(−R̃2 − 3iR̃ + 3)expiR̃dR̃. (44)

The function of the integral (44) is integrable on MAPLE; its
primitive can be put in the form

I (ñ,R̃) = 2 expiR̃

[
i sin(ñR̃) − ñ cos(ñR̃)

ñ2(ñ2 − 1)

+3(1 − iR̃)[ñR̃ cos(ñR̃)] − sin(ñR̃)

ñ4R̃4

]
. (45)

The representation of the real part of the function of the
integral (44) shows oscillations around zero for the large values
of ñ and R̃ [Fig. 1(a)]. Representation of the real part of the
primitive I (ñ,R̃) shows that for R̃ > 1 the function is constant
and positive; it depends only on ñ [Fig. 1(b)]. Fortunately, the
upper limit of (the real part of) the primitive I(ñ,R̃) is small
(about 1.4 × 10−3 for R̃ = π and ñ = 10); then the lower
limit, which is written as

−2ñ

ñ2 − 1
, (46)

dominates (its value is −0.2 for ñ = 10).
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To estimate our g⊥ we take

	1 = εa sin θ cos θ, k0 = 2π

λ
, ñ = q

k⊥
, k2

⊥ = ε̃⊥k2
0,

and k2
‖ = ε̃‖k2

0 : g⊥ = ε2
a

8ε̃‖
sin (2θ)2

p
/
λ

1 − ε̃⊥p2/
λ2

. (47)

If we return to the calculation of Oldano and Ratjeri [21],
we find that the dominant term of g⊥ was in p

λ
.

gOldano
⊥ = −p

λ

ε2
a

8ε̃e

sin (2θ )2. (48)

It is well the same formula (except for the sign) with a
corrective term in powers of ( p

λ
)2. In conclusion, one finds the

solution of Oldano and Ratjeri if one keeps only the term in (p

λ
)

in g⊥ and one finds the limited development of Etxebarria et al.
[23]. Moreover divergence of g⊥ takes place for the selective
reflexion (λ = np).

II. CALCULATION OF g‖

According to Eq. (35) two integrals are to be calculated to
obtain g‖.

(	1)2
∫

ρz(mzz sin qρz)d
3ρ, (49)

(	2)2
∫

ρz[(mxx + myy) sin 2qρz]d
3ρ. (50)

Calculation shows that there is no contribution of 	1 to
g‖. We try to calculate the contribution of 	2. We have the
following:

(mxx + myy)( �ρ) = k2
‖
(
k2
‖ − 2k2

⊥
)

k2
‖ − k2

⊥
I0 + 2�⊥I0

− k2
‖

k2
‖ − k2

⊥
�I0 + I1 + ∂( �ρ)

k2
‖ − k2

⊥
, (51)

where I1 is the inverse Fourier transform of 1
k2
⊥−q2 (cf. Ap-

pendix A):

I1( �ρ) = −exp(ik⊥ρ)

4πρ
. (52)

we want to calculate:

g‖ = −k3
0 (	2)2

2

∫
ρz[(mxx + myy) sin (2qρz)]d

3ρ. (53)

We found the following:

g‖ = −k3
0(	2)2

2

{∫
−ρz sin(2qρz)

expiR̃

4πk⊥R̃

[
k2
‖
(
k2
‖ − 2k2

⊥
)

k2
‖ − k2

⊥

]
d3ρ +

∫
−ρz sin(2qρz)

expiR̃

2πk⊥

×
[

2k2
‖

(
+ i

R̃2
− 1

R̃3

)
+ k4

‖ρ
2
⊥

(
− 1

R̃3
− 3i

R̃4
+ 3

R̃5

)]
d3ρ +

∫
ρz sin(2qρz)

k2
‖expiR̃

4πk⊥
(
k2
‖ − k2

⊥
)

×
[(

k2
‖ + k2

⊥
)(+ i

R̃2
− 1

R̃3

)
+ (

k4
‖ρ

2
⊥ + k4

⊥ρ2
z

)(− 1

R̃3
+ 3i

R̃4
+ 3

R̃5

)]
d3ρ

}
−

∫
ρz sin(2qρz)

exp(ik⊥ρ)

4πρ
d3ρ. (54)

Note that the first term (with I0) and the last (with I1)
are proportional. In fact, with the definition of ρ̃ given in

Appendix A, we have exp(iR̃)

4πk⊥R̃
= 1

k2
⊥

exp(ik⊥ ρ̃)

4πρ̃

k2
⊥

k2
‖

d3ρ̃.

We need three integrations after a few regroupings. We start
with the first:

J1 = k3
0

8π

2k2
‖ − 3k2

⊥
k2
‖ − k2

⊥
(	2)2

∫
ρz sin (2qρz)

exp(ik⊥ρ)

ρ
d3ρ.

(55)

We continue with the second:

J2 = k3
0k

2
‖

8πk⊥

k2
‖ − 5k2

‖k
2
⊥

k2
‖ − k2

⊥
(	2)2

∫
ρz sin (2qρz)

×expiR̃

(
+ i

R̃2
− 1

R̃3

)
d3ρ. (56)

Finally we have

J3 = k3
0k

2
‖

8πk⊥
(
k2
‖ − k2

⊥
) (	2)2

∫
ρz sin (2qρz)expiR̃

[
k2
‖
(
k2
‖

−2k2
⊥
)(

ρ2
⊥ − k4

⊥ρ2
z

)(− 1

R̃3
− 3i

R̃4
+ 3

R̃5

)]
d3ρ. (57)

As before, we continue the calculations in spherical coordi-
nates, the integration on ϕ gives 2π , and that on ϑ gives
(twice)

f 1(ñ,R̃) or f 2(ñ,R̃) or f 3 = f 1 + f 2.

J1 = k3
0

4k3
⊥

2k2
‖ − 3k2

⊥
k2
‖ − k2

⊥
(	2)2

∫ Rm

0
f 1(ñ,R̃)R̃2expiR̃dR̃, (58)

J2 = k3
0k

2
‖

4k3
⊥

k2
‖ − 3k2

⊥
k2
‖ − k2

⊥
(	2)2

∫ Rm

0
f 1(ñ,R̃)(1 + iR̃)expiR̃dR̃,

(59)
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FIG. 2. Representation of the real part of the primitive I1 of the
function of the integral [Eq. (61)]. The upper limit oscillates around
zero and the lower limit is dominant.

J 1
3 = − k3

0k
2
⊥

4k3
⊥
(
k2
‖ − k2

⊥
) (	2)2

∫ Rm

0
f 1(ñ,R̃)(3 + 3iR̃ − R̃2)

×expiR̃dR̃, (60)

J1 + J2 + J 1
3 = k3

0

2k3
⊥

(	2)2
∫ Rm

0
f 1(ñ,R̃)(R̃2 − iR̃ − 1)

×expiR̃ dR̃, (61)

J 2
3 = k3

0

4k5
⊥

(
k2
‖ − k2

⊥
)
(	2)2

∫ Rm

0
f 2(ñ,R̃)(3 + 3iR̃ − R̃2)

×expiR̃dR̃. (62)

These two last expressions are integrable with MAPLE, but it
is certainly more convenient for reasons of clearness to look at
the representations of their primitives. In Fig. 2, (respectively,
in Fig. 2), we present the primitive I1, (respectively, I2), of the
function of the integral J1 + J2 + J 1

3 (respectively, J 2
3 ).

It is noticed that for the two integrals I1 = J1 + J2 + J 1
3 and

I2 = J 2
3 the upper limits oscillate around zero and the lower

limits are dominant (Figs. 2 and 3).
MAPLE calculations give

I1(0) =
ñ5 − 5ñ3 + 2ñ − (ñ2 − 1)2 ln

( |ñ+1|
|ñ−1|

)
ñ2(ñ2 − 1)2 , (63)

I2(0) =
−2ñ5 + 18ñ3 − 18ñ + 3(ñ2 − 1)(ñ2 − 3) ln

( |ñ+1|
|ñ−1|

)
ñ4(ñ2 − 1)2 .

(64)

FIG. 3. Representation of the real part of the primitive I2 of the
function of the integral [Eq. (62)]. The upper limit oscillates around
zero and the lower limit is dominant.

A development of I1(0) and I2(0), for ñ large in front of 1,
gives

I1(0) ≈ ñ3 − 7ñ

(ñ2 − 1)2 and I2(0) ≈ −2ñ3 + 26ñ

(ñ2 − 1)2 . (65)

Finally, one finds by replacing the integrals I1(0) and I2(0)
by their approached expressions in Eqs. (61) and (62), with, to
recall, the following:

	2 = 1

2
εa sin (θ )2, k0 = 2π

λ
,ñ = q

k⊥
,

k2
⊥ = ε̃⊥k2

0, and k2
‖ = ε̃‖k2

0 .

g‖ ≈ ε2
a(2ε̃⊥ − ε̃‖)

8ε̃2
⊥ (1 − ε̃⊥(p/λ)2)

2 sin4(θ )

(
p

λ

)

+ ε2
a(13ε̃‖ − 20ε̃⊥)

8 ε̃⊥(1 − ε̃⊥(p/λ)2)
2 sin4(θ )

(
p

λ

)3

. (66)

This result for g‖ is quite in conformity with the term of the
ORP of de Vries which is in ( p

λ
)3 if the pitch p is higher than

λ. Finally, since the term in ( p

λ
)3 is negligible for low pitch, we

have

g‖ ≈ ε2
a(2ε̃⊥ − ε̃‖)

8ε̃2
⊥ [1 − ε̃⊥(p/λ)2]

2 sin4(θ )

(
p

λ

)
. (67)

III. SUMMARY AND DISCUSSION

In this work we performed a calculation of gyrotropic coeffi-
cients g‖ and g⊥ in mediums with low-pitch helical structures
(which corresponds to the phase Sm-C∗

α of a chiral smectic
liquid crystal). These coefficients are directly related to the
pitch of the helix and conform to experimental results [11,28].
The rigorous calculation we have done give better results than
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those found in the literature. Indeed, the expressions found for
g⊥ and g‖ are presented as a power development of the ratio
( p

λ
). The term of the first order of this development coincides

with the results of Oldano and Ratjeri [21] and those of the
third order ( p3

λ3 ) coincide with the term of the optical rotation

of de Vries which is p3

λ4 in the limit of small helical pitch [13].
Better still, with the found expressions one finds the selective
reflections for a wavelength of the order of the pitch.

The calculation of orders of magnitude with ε‖ ∼
3, ε⊥ ∼ 2.5,

p

λ
∼ 0.1, and θ = 10◦ gives, respectively: g‖ ∼

10−6 and g⊥ ∼ 10−4 . If these orders of magnitude are correct,
g‖ is negligible in front of g⊥, while being different from the
de Vries term, and one must expect an ellipticity independent
of the incident angle and close to 3 × 10−4.

This confirm that the experimental results available are
distorted by the use of no valid formulas, which give over-
estimated values of the ellipticity (as g⊥ ∼ 3 × 10−3 and θ ∼
15°, for example) [23]. Moreover, the values of the ellipticity
predicted are probably overestimated.

Experimental validation of the theoretical results obtained
is necessary, but such an experimental work requires a chiral
smectic liquid crystal that presents the Sm-C∗

α phase over a

fairly wide temperature range, 2 °C–3 °C, minimum, and it
is more difficult, still, to achieve well oriented homeotropic
anchoring cells with thicknesses of the order of 100 μm. For
these reasons we started an experimental work aiming at car-
rying out measurements of gyrotropic coefficients in the case
of quartz. To do this, an alternative experimental method was
used, consisting of a measurement of the ellipticity of the elec-
tromagnetic wave at the exit of the sample following an oblique
propagation with respect to the axis of the helix. Measurements
gave for g‖ a value of 4.7717 × 10−5 ± 1.2771 × 10−6 and for
�g = g⊥ − g‖ a value of 7.4293 × 10−5 ± 5.5611 × 10−6.
The results obtained shall be published soon.

Experimental studies of chiral smectic liquid crystal are
generally done by using SSFLC cells with planar anchoring
[29]. In that case, the samples are produced with the helix
axis parallel to the glass plates. Exact calculations of the
optical properties are therefore particularly difficult, because
the formalism of the Berreman matrix is no longer adequate to
treat this particular geometry, and a more complex approach
is needed [14]. In contrast, the calculation performed in this
paper provides excellent results for all particular purposes (the
perturbative approach to study the propagation at an angle with
the helix).

APPENDIX A: FOURIER TRANSFORMS

We compute I0 and I1:

I0( �ρ) = 1

8π3

∫
exp(i �q �ρ)

k2
‖k

2
⊥ − k2

‖q2
z − k2

⊥q2
⊥

, I1( �ρ) = 1

8π3

∫
exp(i �q �ρ)

k2
‖ − q2

.

For the first integral, we return the switching of the variable,

q⊥ → q̃⊥ = q⊥
k⊥
k‖

and ρ⊥ → ρ̃⊥ = ρ⊥
k⊥
k‖

,

to obtain

I0( �̃ρ) = 1

8π3k2
⊥

∫
exp(i �̃q �̃ρ)

q̃2 − k2
⊥

d3q̃ = 1

k2
⊥

I1( �ρ),

so

I0( �̃ρ) = −1

8π3k2
⊥

∫ ∞

0

1

q̃2 − k2
⊥

sin (q̃ρ̃)

q̃ρ̃
4πq2 dq̃ = −1

2π2k2
⊥ρ̃

∫ ∞

0

1

q̃2 − k2
⊥

sin (q̃ρ̃)q̃dq̃dq̃

= lim
ε→0

i

4π2k2
⊥ρ̃

∫ ∞

−∞

exp(iμ)

μ2 − (k⊥ρ̃ + iε)2 μdμ,

where μ = q̃ρ̃ is taken based on the theorem of residue; it gives the following:

I0(ρ̃) = lim
ε→0

i

4π2k2
⊥ρ̃

2iπ
k⊥ρ̃ + iε

2(k⊥ρ̃ + iε)
expi(k⊥ρ̃+iε) = −1

4πk⊥

expik⊥ρ̃

k⊥ρ̃
,

so

I0(ρ̃) =
−exp

(
i
√

k2
‖ρ

2
⊥ + k2

⊥ρ2
z

)
4πk⊥

√
k2
‖ρ

2
⊥ + k2

⊥ρ2
z

and I1(ρ̃) = −1

4π

expik⊥ρ̃

ρ̃
.
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APPENDIX B: SIMPLIFICATIONS

We need to write 1
�

, where � = (k2
⊥ − q2)(k2

‖k
2
⊥ − k2

‖q
2
z − k2

⊥q2
⊥).

We have two expressions:

1

�
= 1(

k2
⊥ − q2

z

)(
k2
‖ − k2

⊥
)[

1

k2
⊥ − q2

− k2
⊥

k2
⊥k2

‖ − k2
‖q2

z − k2
⊥q2

⊥

]
,

1

�
= 1

q2
⊥
(
k2
‖ − k2

⊥
)[

1

k2
⊥ − q2

− k2
⊥

k2
⊥k2

‖ − k2
‖q2

z − k2
⊥q2

⊥

]
.

APPENDIX C: INTEGRAL FOR ϑ

I 1 =
∫ π

2

0
cos ϑ sin ϑ sin(ñR̃ cos ϑ)dϑ,

I 2 =
∫ π

2

0
sin ϑ3 cos ϑ sin(ñR̃ cos ϑ)dϑ,

I 3 =
∫ π

2

0
sin ϑ cos ϑ3 sin(ñR̃ cos ϑ)dϑ.

Obviously we have

I 1 = I 2 + I 3,

or

I 1 = 1

ñ2R̃2
(sin ñR̃ − ñR̃ cos ñR̃) = f 1(ñR̃) = f 2(ñR̃) + f 3(ñR̃),

I 2 = 2

ñ4R̃4
(3 sin ñR̃ − 3ñR̃ cos ñR̃ − ñ2R̃2) = f 2(ñR̃),

I 3 = 1

ñ4R̃4
(−6 sin ñR̃ + 6ñR̃ cos ñR̃ + 3ñ2R̃2 sin ñR̃ − ñ2R̃2 cos ñR̃) = f 3(ñR̃).
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