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Effects of monoclinic symmetry on the properties of biaxial liquid crystals
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Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually
treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic
symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and
invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two
materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high
difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct
cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic
behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are
important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.
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I. INTRODUCTION

Symmetry leads to invariance principles and conservation
laws, providing structure and coherence to the laws of nature
[1]. The symmetry of a phase of matter is central to describ-
ing material physical properties, transitions between differ-
ent phases, and the order parameters associated with those
changes. Liquid crystals have a rich variety of mesophases
with various symmetries. The most widely studied liquid
crystal phases are the nematic (N) and lamellar smectic-A
(Sm-A) phases, in which the molecular anisotropy results
in orientational order about the director n and a cylindrical
symmetry of the phase, described by the D∞h symmetry group
[2]. Recently there has been much interest in the possibility of
biaxial nematic phases and evidence for biaxial polar Sm-A
found in certain bent-core liquid crystals [3–9]. The molecular
bend angle in these systems further reduces the symmetry of
phases they exhibit, leading to biaxial and polar mesophases
even though the constituent molecules are achiral in nature.
These phases may have triclinic or monoclinic symmetry
[6,10], but it is usually assumed that such phases have the
highest symmetry D2h and that the biaxial properties are
orthorhombic. The goal of this work is to present experimental
evidence for the effects of monoclinic symmetry of the Sm-C
phase on the dielectric and optical properties of the phase. We
demonstrate this by allowing a decoupling of the dielectric and
optical properties while still satisfying the invariance principles
of monoclinic symmetry. Additionally, we measure the extent
of monoclinic behavior by interpreting it as a separation of
cone angles for each observable.

In the smectic-C (Sm-C) phase, the director is tilted at
the cone angle θ with respect to the layer normal a (see
Fig. 1). McMillan proposed a model based on dipole-dipole
interactions, where the torque generated by the outbound
dipoles causes the molecules to tilt in the smectic-C phase [11].
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A steric model was later proposed by Wulf, which considered
the packing of symmetric molecules and suggested that a
zigzag molecular shape is the primary driving mechanism in
the breaking of the symmetry and formation of tilt within layers
[12]. This suggests that, for a system to form a Sm-C phase, the
aliphatic end chains of the molecules must be sufficiently long
to induce a zigzag shape but insufficient to make the zigzag
negligible. Since the molecules have monoclinic symmetry
(described by the C2h symmetry group), the Sm-C phase is
inherently biaxial. Understanding the symmetry properties of a
simple Sm-C system is a major stepping stone in understanding
monoclinic symmetry in new noncalamitic liquid crystals.

When chirality is added to the Sm-C phase, the symmetry
is reduced from C2h to the C2 group [13], thereby allowing
for the appearance of the ferroelectric Sm-C* phase [14].
When compared to the dielectric torque used to switch N-based
devices, the ferroelectric torque is usually much stronger,
allowing much faster switching times at lower voltages. This
is because ferroelectric liquid crystals exhibit a polar response
to electric fields, which additionally allows both the “on” and
and the “off” switching mechanisms to be driven electrically.
For this reason, ferroelectric Sm-C* liquid crystals have been
used in various applications [15–17]. Electro-optic behavior
at high electric fields and frequencies beyond that of ferro-
electric switching is dominated by the dielectric biaxiality
[17,18]. Knowing the dielectric biaxiality is critical for un-
derstanding the behavior of devices, from fast electro-optical
shutters to high-resolution liquid crystal on silicon spatial light
modulators.

II. MONOCLINIC SYMMETRY AND THE
DIELECTRIC TENSOR

Assuming orthorhombic symmetry between optical and
permittivity axes allows the individual permittivity compo-
nents to be calculated using the combination of optical and
dielectric measurements. This requires permittivity measure-
ments in planar and homeotropic geometries, εp and εh,
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FIG. 1. Illustration defining the local symmetries of the (a) ne-
matic and (b) smectic-C phases. The directors in both images are
indicated with n, the layer normal of the smectic-C phase by a,
and the corresponding cone angle by θ . D∞ represents the infinite-
fold rotational symmetry of the nematic phase, and C2 represents
the two-fold rotational symmetry of the smectic-C phase; both are
accompanied by perpendicular mirror planes, σh.

respectively. Two similar methods were previously used to
calculate the principal permittivity components in Sm-C*
materials: using electric fields to unwind the helical structure
[19,20] and using surface interactions in devices with suffi-
ciently thin containment regions to permanently suppress the
helix formation [18].

Since the Sm-C phase has monoclinic symmetry, the
principal dielectric axes do not necessarily coincide with
the optical axes. However, all previous measurements of the
biaxial electric permittivities have used the optical cone angle
[18,20]. The monoclinic order parameter will grow continu-
ously from zero below the transition. Hence, the dispersion
of the symmetry axes will also increase significantly. Thus,
differences between the monoclinic physical properties may
be more difficult to measure experimentally. By continuity
principles, the monoclinic properties will appear gradually for
second-order transitions (e.g., Sm-A to Sm-C), and therefore,
monoclinic properties may not have a significant effect and lie
within the experimental error. In such cases, an orthorhombic
approximation is appropriate close to the phase transitions.
However, if the phase transition is highly first order (e.g.,
N to Sm-C, where the biaxiality has a discontinuous jump),
then we expect the monoclinic properties to have a more
pronounced contribution, and monoclinic symmetry must
be considered when studying dielectric properties of such
materials.

As the sample is cooled into and through the Sm-C phase,
the smectic layer spacing typically shrinks, resulting in the
layers tilting to a chevron structure in planar geometry [21].
Typical materials that undergo the Sm-A to Sm-C phase
transition lead to a ratio of layer tilt δ to the cone angle θ that is
roughly constant and around 0.85 [17]. This has been explained
using the argument of monoclinic symmetry of the Sm-C(*)
phase, where the ratio corresponds to that of the mass and
polarizability cone angles. However, in liquid crystals, which
exhibit a first-order N to Sm-C phase transition directly, layers

initially form with an in-plane tilt component in a planar device.
The first-order transition leads to less layer shrinkage and
correspondingly lower values of δ. In such cases, asymptotic
discontinuities arise whenever a Sm-C material exhibits layer
tilts which satisfy

δ � δc = arcsin

(
|sin θ |

√
cos 2θ

2 − 3 sin2 θ

)
, (1)

where δc is the critical layer tilt, below which equations
described in Ref. [18] result in unphysical solutions. Measure-
ments of the biaxial permittivities for materials with an N to
Sm-C phase sequence have not been reported before, partly
because of this issue.

By the consideration of energy conservation and time
reversal symmetry, it can be shown that the dielectric tensor ε̃ij

is always symmetric [22,23]. Hence, we can use the spectral
theorem for symmetric matrices, which states that a symmet-
ric matrix is always orthogonally diagonalizable [24] such
that

εij =

⎛
⎜⎝ε1 0 0

0 ε2 0

0 0 ε3

⎞
⎟⎠ = (u1 u2 u3)Tε̃ij (u1 u2 u3),

where εk are the eigenvalues and uk are the eigenvectors of
ε̃ij , for k = 1,2,3. The eigenvalues of the dielectric tensor
are the principal dielectric permittivities, and the eigenvectors
are the principal dielectric axes, such that u3 is the dielectric
director. By applying invariance principles along the C2 axis,
we can deduce that there exists a principal dielectric axis ε2

parallel to C2, which coincides with analogous optic and other
principal axes. The lack of orthorhombic symmetry results in
a decoupling of the eigenvectors of permittivity and optics by
rotating one with respect to another about the common C2 axis.
This asymmetry can be interpreted as a difference between the
optical and dielectric cone angles

∂θ = θo − θε, (2)

where θo and θε are the cone angles generated by the optical
and dielectric axes, respectively. Figure 2 illustrates the two
cone angles with respect to the layer normal and indicates the
principal optical and permittivity axes.

III. GOVERNING EQUATIONS

When measuring relative permittivities in the Sm-C phase
in the laboratory frame of reference (x,y,z) along the (0,1,0)
direction, one measures

ε = (
Qεij QT

)
yy

, (3)

where Q rotates the director by an angle θ away from z,
by an angle φ around z, and by an angle δ around x. For
the general monoclinic case, ∂θ is not known and repre-
sents the difference between the optical and dielectric cone
angles, θo and θε, respectively. The result of this is that the
measured ε consists of an orthorhombic part εo (the case in
which ∂θ = 0) with an additional monoclinic contribution,
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FIG. 2. Schematic representation of the assumed average molec-
ular configuration of the Sm-C phase, illustrating the differences
between the principal components of the optical and dielectric axes,
indicated by ni and εi (for i = 1,2,3), respectively. The corresponding
cone angles, measured from layer normal a, are indicated by θo

and θε .

given by

ε =
orthorhombic = εo︷ ︸︸ ︷

ε11 + (ε2 − ε11) cos2 δ cos2 φ + (ε33 − ε11) sin2 ζ

+2ε13 sin ζ (cos δ sin φ cos θ + sin δ sin θ )︸ ︷︷ ︸
monoclinic correction

, (4)

where the out-of-plane director tilt, ζ , is given by sin ζ =
(cos δ sin φ sin θ − sin δ cos θ ).

A rotation by an angle ∂θ around the C2 axis of the phase
diagonalizes the dielectric tensor. Therefore, we can choose a
different cone angle to be θε = θo − ∂θ and disassociate the
other two principal dielectric and optical axes, reducing (4) to

ε = ε1 + (ε2 − ε1) cos2 δ cos2 φ + (ε3 − ε1) sin2 ζε, (5)

where ζε now has θ = θε, while δ and φ remain the same.
Since we have chosen ε2 to be in the direction of the C2 axis
of rotation, ε2 and (ε11 + ε33) are invariant under any rotation
about the C2 axis.

If the material is ferroelectric, the director can be switched
to the side of the cone in the planar geometry, and an additional
permittivity measurement can be made by applying a dc bias to
the sample [17]. In the fully switched position of the director
(when the maximal amount of the C2 axis points along the field,
such that φ = 0 and ζε = ζo = δ) the measured permittivity is
given by

εf = ε2 cos2 δ + εh sin2 δ, (6)

where εp and εh are the permittivities measured in planar and
homeotropic geometries, respectively. This allows ε2 to be
calculated directly and reduces the problem to the following
three equations:

εh = ε1 sin2 θε + ε3 cos2 θε, (7)

εp = ε1(1 − cos2 δ cos2 φ − sin2 ζε) + ε3 sin2 ζε

+ε2 cos2 δ cos2 φ, (8)

3ε̄ = ε1 + ε2 + ε3, (9)

OO

FFF

C6H13 C8H17

C9H19C5H11

FF

X: Cry 317 K Sm-C 339 K N 383 K I

Y: Cry 325 K Sm-C 398 K N 415 K I

FIG. 3. Chemical structures for X [2′,3′-difluoro-4-nonyl-4′′-
pentyl-1,1′:4′,1′′-terphenyl] and Y [2,2′,3-trifluoro-4-(hexyloxy)-4′′-
(octyloxy)-1,1′:4′,1′′-terphenyl] liquid crystals, where the phase tran-
sition temperatures are shown under the corresponding structures.

where ε̄ is the mean permittivity, which can be extrapolated
from the uniaxial and isotropic phases. Equations (6)–(9) can
be solved numerically to find a unique solution for the principal
permittivities and the dielectric cone angle. Additionally, these
equations remove the restriction due to the discontinuity for
δ � δc and allow us to calculate relative permittivities for
materials with low δ to θ ratios, such as those with direct N to
Sm-C phase transitions.

IV. MATERIALS AND EXPERIMENTS

In this work, we investigate the dielectric and opti-
cal properties of two partially fluorinated terphenyl liq-
uid crystals with direct N to Sm-C phase transitions,
both of which potentially show highly monoclinic behav-
ior. Compound X, 2′,3′-difluoro-4-nonyl-4′′-pentyl-1,1′:4′,1′′-
terphenyl [25], has a strong coupling between the sole
dipole moment and the polarizability tensor. On the
other hand, compound Y, 2,2′,3-trifluoro-4-(hexyloxy)-4′′-
(octyloxy)-1,1′:4′,1′′-terphenyl [26], was chosen because it has
multiple dipoles, which are therefore less likely to be orientated
along the eigenvectors of its polarizability tensor. Optically
measured phase transition temperatures for both materials are
presented in Fig. 3.

In order to measure optical and dielectric properties of X
and Y, the two achiral materials exhibiting first-order N to
Sm-C phase transitions were doped with 0.5% (w.r.t. mass) of
chiral dopant BE8OF2N. This low concentration introduces
spontaneous polarization (� 5 × 10−6 Cm−2 for the studied
temperature ranges), which allows ferroelectric switching
in the Sm-C* phase [13] while keeping the other physical
properties the same as the undoped Sm-C phase to within
the experimental error range. Measurements were made by
studying doped X and Y in (nominally) 2 μm-spaced planar
(2◦ surface pretilt) and homeotropic devices.

Such low concentrations of the chiral dopant also make the
pitch much longer than the selected cell gaps, which allows the
helix to be unwound by the planar-aligned surfaces, forming
the surface stabilized state [15]. The samples were cooled
from the isotropic phase at a rate of 1 K/min using a Linkam
T95-PE temperature controller with a resolution of 0.01 K and
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stabilized for 60 sec before each set of measurements to achieve
uniform alignment.

Polarized optical microscopy was used to find the director
orientations in planar devices by observing optical extinction
angles as a function of temperature. At each temperature
increasingly stronger electric fields were applied as square
waveforms with corresponding voltages from 0 to 10 V
using the Aim-TTi TGA1241 arbitrary waveform generator.
Following this, θo and δ were calculated from the infinite
voltage asymptotes of the extinction angles [27,28].

After every 1 K interval, measurements of capacitance and
dielectric loss taken with an Agilent E4980A precision LCR
meter were performed on planar and homeotropic devices to
find εp and εh, respectively. Each set of measurements was
taken by applying an ac voltage of 0.05 V at frequencies
ranging from 20 Hz to 2 MHz. Subsequently, an additional dc
voltage bias was applied at ascending magnitudes to the planar
devices to find the infinite voltage asymptotes of capacitance
to find εf, given by Eq. (6).

Capacitance scans on Sm-C* liquid crystals can show two
relaxation modes: due to field-induced fluctuations of the
azimuthal director (Goldstone mode) at low frequencies and
stretching with respect to the cones reference frame (soft mode)
at higher frequencies. The latter occurred particularly close to
the phase transition. Due to the first-order nature of N to Sm-C
phase transitions, no soft mode was observed in X and Y. On
the other hand, a small degree of the Goldstone mode was
expected at low frequencies, but ionic screening was found in
practice. For this reason, a frequency of 10 kHz was selected for
calculating dielectric cone angles and principal permittivities
of X and Y, where no azimuthal fluctuations around the cone
were observed.

V. RESULTS AND DISCUSSION

A comparison of optical and dielectric measurements for
each compound confirms that there is a difference ∂θ between
optical and dielectric cone angles. From Fig. 4 it is clear that ∂θ

increases as the samples are cooled through the Sm-C phases,
showing an increasing degree of disassociation between the
principal optical and permittivity axes. These results show
that θε may differ from θo by a considerable amount. As ∂θ

increases, orthorhombic approximations become less appro-
priate for calculating the dielectric properties.

The introduction of monoclinic symmetry does not have a
significant effect on the magnitude of dielectric anisotropy 	ε,
which already exists in the uniaxial phase. However, dielectric
biaxiality ∂ε appears only in biaxial phases, which makes it
sensitive to the monoclinic nature of the molecular shape.
Since θε < θo, using an orthorhombic approximation for a
monoclinic molecule will result in an overestimated value of
∂ε. Consequently the switching times of ferroelectric Sm-C
materials will show a varying degree of disagreement between
the theoretical estimates and experimental values, depending
on how monoclinic the phase is at a given temperature.

As expected, ∂ε shows a positive correlation with reduced
temperature for both X and Y, as shown in Fig. 5. There is a
first-order jump of ∂ε at the N to Sm-C phase transition, which
is followed by a roughly linear trend below a temperature
slightly below the transition corresponding to the point at

FIG. 4. Plot of the cone angle difference ∂θ against the reduced
temperature below the N to Sm-C phase transition T − Tc. Open
symbols are used for X, and closed symbols are used for Y. Lines
are fits to ∂θ = a1(Tc − T )a2 and are used as guides for the eye only,
where a1 = 2.6 ± 0.9, a2 = 0.39 ± 0.16 for X and a1 = 14.2 ± 0.6,
a2 = 0.10 ± 0.02 for Y.

which the layers become fixed at the device surfaces. Unlike
X, molecules of Y have several polar components, pointing
in different directions, which contribute towards the overall
transverse dipole moment. Thus, we observe higher ∂ε in
Y in comparison to those of X. A comparison of ∂ε to the
results obtained from the orthorhombic approximation shows
that such an approximation would result in an overestimation
by more than a factor of two. However, it is also clear
that this comparison is not appropriate, as the orthorhombic
approximation does not allow the governing equations all to

FIG. 5. Plot of dielectric biaxiality ∂ε against the reduced temper-
ature below the N to Sm-C phase transition T − Tc. Open symbols are
used for X and closed symbols are used for Y. Lines are fits to ∂ε =
b1(Tc − T )b2 + b3 and are used as guides for the eye only, where b1 =
(3.9 ± 2.0) × 10−2, b2 = 0.56 ± 0.16, b3 = (3.9 ± 2.4) × 10−2 for
X and b1 = (6.6 ± 2.3) × 10−2, b2 = 0.74 ± 0.11, b3 = 0.24 ± 0.03
for Y.
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FIG. 6. Density functional theory B3LYP/6-31G(d) minimized
energy configurations of X and Y, where hydrogen, carbon, oxygen
(O), and fluorine (F) atoms are represented by white, black, red,
and cyan spheres, respectively (color online). Blue arrows show the
direction of the net dipole moments given by μX = 6.07 × 10−30 Cm
for X and μY = 9.84 × 10−30 Cm for Y. Magenta arrows represent
the average mass axis of each molecule mX for X and mY for Y.
Yellow arrows represent the direction of the principal polarizability
axis associated with the director αX

3 for X and αY
3 for Y.

be satisfied within experimental error. Dielectric and optical
measurements used for calculating ∂θ and ∂ε can be found in
the Appendix.

In this article, we have assumed that the optical director
(indicated by n3 in Fig. 2) lies in the plane of the device.
However, this is not necessarily the case if the mass axis does
not coincide with the optical director. By simple consideration
of the zigzag shape of the average molecule, we can deduce
that the mass cone angle can be lower than θo. By performing
density functional theory simulations in GAUSSIAN 09 using
B3LYP method and a 6-31G(d) basis set, while maintaining
the general zigzag shape with a maximized transverse dipole
moment to account for the Sm-C phase, we can see that the
mass axis differs from the polarizability axes by 4.1◦ for
X (net dipole moment of μ = 6.07 × 10−30 Cm) and 4.6◦
for Y (μ = 9.84 × 10−30 Cm) (see Fig. 6). The result is for
individual molecules, which will be affected by the ensemble
within the Sm-C phase and is valid only when there are no
intermolecular interactions. Since the optic eigenvalues depend
on polarizability, while the dielectric eignevalues also depend
on dipole moment contributions, we expect that the mass
axis will deviate from the optics as the cone angle increases.
The analysis can also be performed with the assumption
that the dielectric director (indicated by ε3 in Fig. 2) lies
in the plane of the device in the planar geometry. While
the dielectric director is much farther away from the mass
axis, it provides the other extremum to the solution set. The
calculation requires an adjustment to the optical results and
the principal permittivity values. From this, we see that θo and
θε remain within experimental error of each other, while δ has
a significant decrease. Consequently, the angle measurements
associated with monoclinic symmetry can be assumed to have
negligible error generated from our assumption of the mass
axis matching that of the optics. However, the effect on δ

is more significant, which means that ∂ε in Fig. 5 show the
upper bound for the actual values. For this reason, it would be

instructive to measure the layer tilt angle directly using x rays
at a synchrotron source.

VI. CONCLUSIONS

In conclusion, we have investigated monoclinic symmetry
of Sm-C liquid crystals by showing that a disassociation can
exist between the principal optical and dielectric axes with
respect to one another. By applying invariance principles to the
Sm-C phase, we can see that the eigenvector sets for optics and
dielectrics must share at least one common axis, which must be
parallel to the C2 symmetry axis, due to monoclinic symmetry.
The remaining axes need not coincide between optics and
dielectrics, resulting in a disassociation of the two through a
unitary rotation around the C2 axis. This was interpreted as the
existence of a dielectric cone angle θε alongside the optic cone
angle θo. This resulted in a new variable, given by the difference
between the two cone angles ∂θ , which provides a geometrical

FIG. 7. Plot of optical cone angle θo (filled square), dielectric
cone angle θε (filled circle), layer tilt δ (filled diamond), zero voltage
optical extinction angle β0 (open upward pointing triangle), and
infinite voltage optical extinction angle β∞ (open downward pointing
triangle) against the reduced temperature Tc − T for X (a) and Y (b).
Lines serve as guides for the eye only.
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FIG. 8. Plot of principal permittivities ε1 (closed circle), ε2

(closed square), ε3 (closed diamond), planar permittivity εp (open
circle), εf (open square), εh (open diamond), and ε̄ (open triangle)
against the reduced temperature Tc − T for X (a) and Y (b). Lines
serve as guides for the eye only. Dielectric data are shown for the
temperatures corresponding to the optical measurements.

scale for monoclinic behavior. Following this, we have used
two liquid crystal compounds with direct N to Sm-C phase
transitions to verify this hypothesis. Since the nature of the N
to Sm-C phase transition is first order, this resulted in highly
pronounced monoclinic properties. The results indicated that
∂θ increased as the samples were cooled to as much as 20
for compound Y within the studied range of 20 K below the
N to Sm-C phase transition. On the other hand, ∂θ increased
to only roughly half of that for compound X. This suggests
that multiple sources of dipole moment contributions result in
a higher degree of monoclinic behavior. So far, other studies
of ferroelectric liquid crystals have assumed D2h symmetry
for calculations of ∂ε, which resulted in overestimated ∂ε and
switching speeds. However, we have shown that monoclinic
behavior becomes very important with decreasing tempera-
tures and even immediately below first-order phase transitions.
Therefore, this will be particularly important for future novel

FIG. 9. Plot of measured permittivities ε′ (blue lines) and the
corresponding dielectric losses ε′′ (orange lines) for X (a) and Y
(b) at Tc − T = 10 K, where the solid lines represent the planar
geometry, and the dashed lines represent the homeotropic geometry
(color online).

devices, such as those using bent core liquid crystals, which
are known to exhibit highly first-order behavior.
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APPENDIX: DIELECTRIC AND OPTICAL
MEASUREMENTS

To calculate the difference between the optical and dielectric
cone angles ∂θ and subsequently the dielectric biaxiality ∂ε,
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a combination of optical and dielectric measurements were
made.

Optical extinction angles of X and Y were measured as a
function of applied dc voltage in 2 μm-spaced planar devices.
The director was switched to both sides of the layer normal
interchangeably to determine the orientation of the in-plane
component of the layer normal. From this, zero voltage β0

and infinite voltage asymptote β∞ extinction angles were
calculated as a function of reduced temperature (both are
measured in relation to the in-plane component of the layer
normal). This allowed optical cone angles θo and layer tilts δ

to be calculated numerically from

cos δ = cos θo

cos β0
= tan θo

tan β∞
, (A1)

which can be derived by considering the limiting cases for
the relaxed and the fully switched orientations of the director
[27,28]. Calculated values of θo, θε, δ, β0, and β∞ from

optical extinction angle measurements are shown as a function
of reduced temperature in Figs. 7(a) and 7(b) for X and Y,
respectively.

Optical measurements were combined with permittivity
measurements in planar εp, fully switched planar εf , and
homeotropic εh geometries to find the dielectric cone angles
θε and the principal permittivities ε1, ε2, and ε3 of X and Y by
solving in Eqs. (6)–(9). Figures 8(a) and 8(b) show ε1, ε2, ε3,
εp, εf , εh, and ε̄ as a function of reduced temperature for X
and Y, respectively.

Examples of broadband dielectric spectra at 10 K below
the N to Sm-C phase transitions are shown in Figs. 9(a)
and 9(b) for X and Y, respectively, where ε′ represents the
real component of dielectric permittivity and ε′′ represents
its imaginary component. By evaluating the dielectric loss
factor ε′′/ε′ and ε′, we can see that the static regime occurs
around 10 kHz, which was selected for calculations of the main
results.
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