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Detachment dynamics of colloidal spheres with adhesive interactions
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Escape of colloidal-size particles from various kinds of solids, such as aggregates and surfaces, occurs in a
wide variety of settings of both fundamental and applied scientific interest. In this paper an exact solution for the
detachment of adhesive spheres from each other by means of diffusion is presented. The solution takes into account
repeated detachment and reattachment events in the course of time on the way toward the permanently separated
state. For strongly adhesive spheres this state is approached in an exponential manner essentially regardless of how
the bound state is specified. The analytical solution is shown to capture semiquantitatively the escape from more
realistic potential wells using a mapping procedure whereby equality of second virial coefficients is imposed.
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I. INTRODUCTION

The distinguishing feature of the colloidal state in liquid
dispersions is that diffusion of particles is a mode of transport;
particles are not massive enough (for sizes ranging between
1–104 nm) to be unaffected by the thermal motion of the
molecules of the surrounding liquid. Though itself very in-
efficient at transporting particles over macroscopic distances,
diffusion may nevertheless be quite pivotal in that it can
cause particles to migrate short distances over (free) energy
barriers that tend to keep particles immobilized on larger
grains or surfaces via, e.g., van der Waals attractions. Once
such barriers are traversed, particles may be free to travel
appreciable macroscopic distances by flow.

This mechanism of escape of bound particles is expected
to be important in a number of industrial settings, such as
in processes dealing with separations, dispersion, and redis-
persion of dry solids [1–3]. In addition, the mobilization and
leaching of colloidal species is nowadays widely recognized
as playing an important role in the environment [4]. In this
context, the colloidal particles, when liberated, act as a mobile
phase on which numerous sparingly soluble compounds can
piggyback, which may accelerate the transport of, e.g., sorbed
contaminants considerably [5,6]. Of course, sorption of con-
taminants on colloidal particles need not just be detrimental;
it also serves as a key step in water treatment and remediation
strategies [7–9]. Yet, in other cases, it is the colloidal species
themselves that are harmful [10–12]; pathogens, such as some
bacteria, viruses, and protozoa, are generally of colloidal size
and may be mobilized and introduced into the environment
through the same processes that govern nonbiological particles.

The detachment of colloidal particles from surfaces [13]
and other particles [14,15] has been treated in the past by
so-called first-passage time theory [16–18]. In this context,
the theory governs the time evolution of the probability of a
particle detaching for the first time from an initially bound
state. There are some complications with using such results
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as models for detachment of colloidal particles. One concern
is the interaction potentials relevant to colloids, which most
often do not present a barrier to particles returning to the
attached state once detached. Another related complication is
associated with the lack of an obvious definition of what should
be considered bound and unbound states for colloids subject
to such interactions [19]. A third issue concerns the effect of
hydrodynamic interaction, mediated by the solvent in which
the particles are dispersed. In this paper we will be concerned
with the first two of these issues.

In what follows, we begin by presenting results of applying
the first-passage time theory to attachment and detachment
of colloidal spheres subject to the secondary minimum of a
Derjaguin-Landau-Verwey-Overbeek (DLVO) potential. The
purpose is to illustrate the need for an alternative approach
to dealing with the detachment process. Then, particle es-
cape from a simplified interaction potential of square-well
form in three dimensions is analyzed. Taking the so-called
adhesive limit further simplifies the interaction, allowing for
an analytical solution of the governing diffusion equation.
The solution, in terms of the more experimentally relevant
escape probability, exhibits a rather complex behavior with
a crossover from power-law to exponential in time approach to
the detached state as the adhesion is increased. The solution is
tested within a second virial coefficient mapping against exact
numerical solutions of the escape from the secondary minimum
of DLVO potentials.

II. FIRST-PASSAGE TIME APPROACH

It is tempting to apply first-passage time theory to a particle
initially trapped in a potential well even when there is no
barrier to prevent its return to the initial state. Chan and
Halle [14] employed Deutch’s method [20] to derive the
mean first-passage time for the separation of particle pairs
and Bergenholtz et al. [15] solved for the full first-passage
time distribution. Although formally exact, problems may arise
when first-passage time theory is used to model processes with
significant recrossing probabilities. To illustrate this effect we
consider in this section a single particle diffusing in the vicinity
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FIG. 1. The wall-sphere interaction potential U as a function of
surface-surface separation h. At h/a = 0.08, marked by the vertical
line, an absorbing boundary condition is erected. For short separations
corresponding to the shaded region to the left of this boundary, the
particle is considered as bound to the wall. For larger separations,
h/a > 0.08, the sphere is considered detached from the wall.

of a plane wall. The corresponding first-passage time problem
was treated by Zimmer and Dahneke numerically [13].

A colloidal sphere of radius a is considered. It is allowed
to start at a surface-surface separation h from the wall at time
t = 0. The survival probability, �(t |h), i.e., the probability that
the sphere remains in the domain of interest by time t , is given
by [17,18]

∂

∂t
�(t |h) = L†(h)�(t |h)

=
(

∂

∂h
− 1

kBT

∂U

∂h

)
D⊥(h)

∂

∂h
�(t |h), (1)

which is governed by the backward or adjoint Smoluchowski
operator L†(h) involving the mobility D⊥(h)/kBT with the
thermal energy kBT . The above equation is readily solved by
an implicit finite differences scheme in a finite spatial domain.
Here, a particle in the two domains of Fig. 1 is considered.
It is started from h = 4a, i.e., where the influence of the
interaction potential is negligible, and we ask for the time
dependence of the survival probability in the presence of an
absorbing boundary condition at h = 0.08a and a reflecting
boundary at h = 4a to prevent the particle from escaping
altogether. In addition, we perform the corresponding first-
passage time analysis for a starting position at the minimum
of the interaction potential in Fig. 1 with the same absorbing
boundary condition at h = 0.08a. Note that the choice of the
dividing boundary at h = 0.08a between bound and unbound
states has been rather arbitrarily selected at a point where the
interaction is of order kBT .

To evaluate how the first-passage time theory fares for the
two initial conditions, comparison will be made with Brownian
dynamics (BD) simulations of the particle-wall dynamics [21]
using the same interaction potential and also with the same
reflecting boundary. To study the attachment process a particle
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FIG. 2. The fraction of free and bound particles as a function
of dimensionless time from BD simulations with N = 103. The at-
tachment and detachment processes imply having particles in starting
positions given by h/a = 4 and 0.014, respectively. The lines show
results for the survival probability obtained from first-passage time
theory, as given by numerical solution of Eq. (1) with an absorbing
boundary condition at h/a = 0.08 and the same starting positions
as in the BD simulations as labeled. These survival probabilities are
also shown after they have been shifted to account for the equilibrium
reached at long times.

is started at h = 4a and its position is tracked as a function
of time. As long as it is found at h > 0.08a it is considered a
free particle detached from the wall, whereas for h < 0.08a it is
considered as a bound particle attached to the wall. The process
is repeated under the same conditions N times. Out of these
N trials, equivalent to N mutually noninteracting particles,
we track the number of free and bound particles, Nfree and
Nbound, as a function of time. The same procedure is followed
for the study of the detachment process except that the starting
position of the particle is set to the minimum of the interaction
potential, in this case at h ≈ 0.014a.

Figure 2 shows the outcome of BD simulations of particles
detaching from the wall, meaning the particles have to diffuse
out of the well of the interaction potential to enter the domain
0.08 < h/a < 4, as well as the reverse process of attachment
whereby particles have to cross the dividing boundary at h/a =
0.08 from the other direction. For sufficiently long times the
fraction of free and bound particles reach equilibrium values.

To see the extent to which the dynamics can be modeled
by first-passage time theory, Eq. (1) is solved numerically for
the survival probability with an absorbing boundary erected
at h/a = 0.08. The results for the survival probability for the
same two initial conditions as used in the BD simulations are
also shown in Fig. 2. As seen, the initial time dependence for
the attachment process is reproduced well by this first-passage
time theory, whereas the same theory predicts a much more
rapid detachment process than seen in the BD simulations.
The difference between the two is due to the effect of particles
traversing the dividing boundary at h/a = 0.08 multiple times
in the simulations, which is neglected entirely in applying
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the first-passage time theory to the detachment process here.
Indeed, by using an absorbing boundary condition in the theory
one studies the attachment and detachment processes in isola-
tion, treating both as irreversible. As a consequence, as shown
in Fig. 2 and in line with arguments presented by Widom [22],
no information about the equilibrium state can be gained from
such irreversible dynamics. Since the equilibrium condition in
this case is quite trivial, we can supplement the first-passage
time theory with this result, i.e., plotting (1 − feq)�(t) + feq

with feq as the equilibrium fraction of free or bound particles.
Figure 2 shows that for the attachment process this quan-
titatively reproduces the BD simulation results, indicating a
negligible flux of particles across the dividing boundary from
the opposite direction. However, for the detachment process
the first-passage time theory significantly overestimates the
rate of detachment compared to the BD simulations, which is
caused by particles detaching and reattaching several times
before establishing final equilibrium. It follows that unless
there is a significant barrier to prevent recrossing of the dividing
boundary, first-passage time theory is ill suited to treating
detachment dynamics. In what follows, we will pursue an exact
analytical solution to the two-sphere detachment problem in
three dimensions, subject to a simplified interaction and neglect
of hydrodynamic interaction.

III. EXACT SOLUTION FOR A SIMPLIFIED
INTERACTION POTENTIAL

A. Governing equation and boundary conditions

The Smoluchowski equation for the conditional probability
density governing a pair of otherwise isolated particles diffus-
ing under the influence of their mutual interaction U (r) is given
as [14]

∂

∂t
p(r,t |r0) = 2D0

r2

∂

∂r

×
(

r2G(r)e−U (r)/kBT ∂

∂r
[eU (r)/kBT p(r,t |r0)]

)
,

(2)

where G(r) is the mobility along the line of centers, D0 is
the single-sphere diffusion coefficient, and r0 is the separation
at time t = 0. Substituting in a new function, defined as
p(r,t |r0) = e−U (r)/kBT v(r,t |r0), yields the adjoint equation

∂

∂t
v(r,t |r0)

= eU (r)/kBT 2D0

r2

∂

∂r

(
r2G(r)e−U (r)/kBT ∂

∂r
v(r,t |r0)

)
. (3)

This equation is made dimensionless using the particle diam-
eter σ , through τ = 2D0t/σ

2 and x = r/σ , and subsequently
Laplace transformed into

−v(x,0) + sṽ(x,s)

= eU (x)/kBT

x2

∂

∂x

(
x2G(x)e−U (x)/kBT ∂ṽ(x,s)

∂x

)
, (4)

where s is the dimensionless Laplace transform variable and
the dependence on x0 = r0/σ of the Laplace-transformed
function v, denoted by ṽ, has been suppressed. Equation (4)

will be solved for a square-well interaction

U (x) =
⎧⎨
⎩

∞ 0 < x < 1
−ε 1 < x < λ

0 λ < x < ∞
(5)

subject to the initial condition that the separation satisfy 1 <

x0 < λ. The probability density must be normalized to unity at
all times, which means that

∫ λ

1 v(x,0)x2dx = (4πσ 3eε/kBT )−1.
This condition can be met by selecting v(x,0) = a	(λ − x)
in terms of a = [4πσ 3eε/kBT (λ3 − 1)/3]

−1
and the unit step

function.
The procedure used by Weaver [23] is followed to derive

appropriate boundary conditions at the well boundary x = λ.
Integrating Eq. (4) from sphere-sphere contact to an arbitrary
separation leads to

∫ x

1
[−a	(λ − y) + sṽ(y,s)]e−U (y)/kBT y2dy

=
∫ x

1
d

(
y2G(y)e−U (y)/kBT ∂ṽ(y,s)

∂y

)
= F (x,s) (6)

from which one recognizes that the function F (x,s) must be a
continuous function of x. The rightmost integral in Eq. (6) can
be completed as F (x,s) = x2G(x)e−U (x)/kBT ∂ṽ(x,s)

∂x
because

the x = 1 limit vanishes due to the flux vanishing in this limit.
The continuity of F (x,s) results in the following boundary
condition at the well boundary

eε/kBT

(
∂ṽ(x,s)

∂x

)
x→λ−

=
(

∂ṽ(x,s)

∂x

)
x→λ+

. (7)

Rearranging the expression for F (x,s) and integrating it from
contact to an arbitrary separation results in

ṽ(x,s) − ṽ(1,s) =
∫ x

1

eU (y)/kBT F (y,s)

y2G(y)
dy = B(x,s), (8)

where B(x,s) is a another continuous function of x. This
leads to the following, second boundary condition at the well
boundary:

ṽ(λ−,s) = ṽ(λ + ,s). (9)

B. Solution for the square-well interaction

Applying Eq. (4) with the initial condition v(x,0) =
a	(λ − x) to the square-well interaction in Eq. (5) under
neglect of hydrodynamic interactions [G(x) = 1] leads to

∂2ṽ(x,s)

∂x2
+ 2

x

∂ṽ(x,s)

∂x
− sṽ(x,s) = −a (10)

for 1 < x < λ and

∂2ṽ(x,s)

∂x2
+ 2

x

∂ṽ(x,s)

∂x
− sṽ(x,s) = 0 (11)
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for x > λ. The solutions to these equations read as

ṽ(x,s) = −aλ

sx

e
√

sλ

Z(s)

[
e
√

sx + e2
√

s

√
s − 1√
s + 1

e−√
sx

]
+ a

s

(12)

for 1 < x < λ and

ṽ(x,s) = aλ

sx
e
√

sλ

[
1 − e2

√
sλ

Z(s)
− e2

√
s

Z(s)

√
s − 1√
s + 1

]
e−√

sx

(13)

for x > λ, where Z(s) = e2
√

sλ(eε/kBT
√

sλ−1√
sλ+1

+ 1) −
e2

√
s

√
s−1√
s+1

(eε/kBT − 1). These solutions satisfy the boundary
conditions in Eqs. (7) and (9) as well as a no-flux condition at
x = 1 and a boundedness condition at x → ∞.

C. Baxter limit

So far our treatment has mirrored that carried out by
Felderhof for the one-dimensional problem [24]. At this
stage, however, we look for an even simpler model than the
square-well interaction. Baxter’s adhesive sphere potential
[25] represents such a simplification in that the effects of well
depth and well width are subsumed in a single parameter,
defined as τ−1

b = 12δeε/kBT , which takes on finite values in
the double limit δ → 0 and eε/kBT → ∞ where δ = λ − 1.
This limiting procedure applied to Eq. (13) gives

ṽ(x,s) =
[

a

s + 12τb + 12
√

sτb

]
e−√

s(x−1)

x
. (14)

Recognizing that the denominator in Eq. (14) is a quadratic
function of

√
s, we can rewrite Eq. (14) as

ṽ(x,s) = a

[
1√

s − α − β
− 1√

s − α + β

]
e−√

s(x−1)

2βx
(15)

for τb � 1
3 and as

ṽ(x,s) = a

[
1√

s − α − iβ
− 1√

s − α + iβ

]
e−√

s(x−1)

2iβx
(16)

for 0 < τb < 1
3 . In Eqs. (15) and (16),

α = −6τb (17)

β = 2
√

3
√∣∣3τ 2

b − τb

∣∣. (18)

The inverse Laplace transforms of Eqs. (15) and (16) are given
as [26]

v(x,τ ) = a

2βx
e− (x−1)2

4τ {(α + β)w[i(g + h)]

+ (−α + β)w[i(g − h)]} (19)

for τb � 1
3 and as

v(x,τ ) = a

2iβx
e− (x−1)2

4τ [(α + iβ)w(−h + ig)

+ (−α + iβ)w(h + ig)] (20)

for 0 < τb < 1/3, where the so-called Faddeeva function is de-
fined as w(z) = e−z2

erfc(−iz) in terms of the complementary

error function. In Eqs. (19) and (20),

g = −α
√

τ + x − 1

2
√

τ
(21)

h = −β
√

τ . (22)

For a complex argument, z = g + ih, the Faddeeva function
can be split into real and imaginary parts, w(g + ih) =
K(g,h) + iL(g,h), where K and L are real and imaginary
Voigt functions. From this it follows that Eq. (20) can be
expressed as

v(x,τ ) = a

βx
e− (x−1)2

4τ [αL(−h,g) + βK(−h,g)], (23)

which, as before, governs the solution for 0 < τb < 1/3.

D. Escape probability

In experiments one generally defines a bound state and a
corresponding free, unbound state based on the resolution of
the detection [27] or some other pragmatic criterion [28]. Here
we define x1 (>1) as some dimensionless separation beyond
which particles are considered as singlets, whereas within
this separation particles are considered bound to each other
in a doublet. It is assumed that x1 is of order 1. An escape
probability, P+(τ,x1), is now defined. This is the probability
that by time τ particles are separated by at least a distance
x1, which is given by P+(τ,x1) = 4πσ 3

∫ ∞
x1

v(x,τ )x2dx with
v(x,τ ) from either Eq. (19) or (23). It is related to a survival
probability, labeled as P−(τ,x1) to distinguish it from the
corresponding first-passage time quantity �(τ,x1), simply as
P−(τ,x1) + P+(τ,x1) = 1. Integration results in

P+(τ,x1) = 12τb

α2 + β2
erfc

(
x1 − 1

2
√

τ

)
+ 6τb

β
e− (x1−1)2

4τ

×
{(

x1 + 1

α + β

)
w[i(g1 + h1)]

−
(

x1 + 1

α − β

)
w[i(g1 − h1)]

}
, (24)

which applies for τb � 1/3, whereas for 0 < τb < 1/3 the
escape probability is given as

P+(τ,x1) = erfc

(
x1 − 1

2
√

τ

)
+ e− (x1−1)2

4τ

{
−K(−h1,g1)

+
(

12τbx1 + α

β

)
L(−h1,g1)

}
, (25)

where g1 and h1 are the quantities in Eqs. (21) and (22)
evaluated at x = x1.

E. Asymptotic analysis

Here we extract the long-time asymptotic behavior of the
escape probability, both for modest adhesion, τb � 1/3, and
in the limit of very strong adhesion τb → 0. Starting with
Eq. (24), for τb � 1/3, the argument of the Faddeeva function
is purely imaginary, which gives the following expansion
w(ih) = π−1/2(h−1 − h−3/2 + . . .). From this one concludes
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FIG. 3. The survival probability, P−(τ,x1), for the detachment of
an adhesive sphere doublet with x1 = 1.2, shown as solid lines, and
the corresponding first-passage time result, �(τ,x1), as a function of
the Baxter stickiness parameter τb. Also shown, as the chain curves,
are the two leading-order long-time asymptotic terms for τb = 0.0001
as well as the τ−3/2 long-time tail for the hard-sphere (τb → ∞) case.

that the escape probability at long times behaves as

P+(τ,x1) ∼ 1 − π−1/2Aτ−3/2, (26)

where

A = 2 − x1 − 2τb

(
5 − 3x1 − 3x2

1 + x3
1

)
24τb

(27)

is positive as long as x1 is of order unity as tacitly assumed
in setting up the definition of a bound state. For a pair of hard
spheres, for which τb → ∞, the above reduces to

P+(τ,x1) ∼ 1 +
(

5 − 3x1 − 3x2
1 + x3

1

12
√

π

)
τ−3/2. (28)

For small values of τb and for large values of the time
τ , −h1 ∼ 2

√
3τbτ and g1 ∼ 6τb

√
τ , which leads to the es-

cape probability from Eq. (25) behaving as P+(x1,τ ) ∼ 1 −
K(−h1,g1). Since, asymptotically, −h1 � g1 as τ → 0, the
Voigt function can be approximated by one of its special values
[29], leading to the prediction

P+(τ,x1) ≈ 1 − K(−h1,0) = 1 − e−12τbτ . (29)

Thus, for strongly adhesive particles the escape probability
approaches unity in an exponential manner. As long as x1 is
of order 1, the escape probability becomes independent of the
definition of the bound state in this limit, which is not the case
for the moderately adhesive spheres.

IV. RESULTS AND DISCUSSION

Figure 3 shows the survival probability, P−(τ,x1) = 1 −
P+(τ,x1), for a range of stickiness parameters τb, evaluated
for x1 = 1.2. In addition, the figure shows the corresponding
results obtained by applying the first-passage time theory to
the same problem [15]. Recall that once particles diffuse apart

from initial contact, there is no barrier to prevent their returning
to adhesive contact even after separating beyond the x1 = 1.2
distance used to define them as single, unbound particles.
The choice of x1 = 1.2, which defines separations at which
the particles go from being considered part of a doublet to
being free or vice versa, has been selected according to the
criterion suggested by Zaccone and Terentjev [19]. In practice
this amounts to setting x1 equal to the separation at which
the effective potential U (x)

kBT
− 2 ln x exhibits a maximum at

separations beyond the potential minimum.
The τb → ∞ limit corresponds to the hard-sphere case,

which vanishes with a τ−3/2 long-time tail. Similar long-time
tails have been noted in related problems involving relative
diffusion of hard-sphere colloidal particles [30]. The first-
passage time result does not vanish with a similar long-time
tail, and it is seen to give a significant overprediction of
the rate of doublet breakup. As the particles are made more
adhesive by decreasing τb, the survival probability remains
finite for longer times. This holds also for the first-passage time
theory, but it remains a rather poor approximation regardless
of the adhesiveness. For smaller τb, the qualitative behavior
of the survival probability changes. The dynamics crosses
over from the power-law decay to an exponential decay. As
a consequence, the first-passage time theory comes to agree
qualitatively with this decay.

For strong adhesiveness the survival probability behaves,
according to Eq. (29), as P−(τ,x1) ≈ exp(−12τbτ ). The first-
passage time theory, in the same limit, gives instead [15]
�(τ,x1) ≈ exp (−12τbτ

x1
x1−1 ). These two asymptotic predic-

tions are also shown in Fig. 3 for τb = 0.00001. They reproduce
the full solutions of the two theories quantitatively over the
entire time domain. However, as the asymptotic analysis
reveals, there is a fundamental difference between the two.
Whereas the first-passage time theory exhibits a dependence
on how one defines the bound state, via its dependence on x1,
the analytical solution becomes independent of this definition.
However, this only holds for sufficiently strong attractions
[cf. Eq. (26) and the hard-sphere limit in Eq. (28)]. This is
a physically intuitive result in that, for strong adhesiveness,
particles spend a long time in adhesive contact when one allows
for particles revisiting this state and thereby comparatively
little time diffusing the distance to reach separation x1. It is
also a satisfying result because it shows that the separation
dynamics is not sensitive to the definition of the bound state in
this limit.

One may wonder how representative the analytical solution
is for the detachment dynamics of the adhesive sphere doublets.
After all, the interaction does not exhibit a finite attractive
range. However, it is well known that the models furnished
by applying Baxter’s adhesive sphere potential can often
be brought into qualitative or even quantitative accord with
experimental data for a range of properties [32–35]. Here
we examine whether the analytical solution for the adhesive
sphere doublets can be used to model detachment of spheres
interacting via the secondary minimum of a DLVO potential.

First, however, a way to compute the escape probability
for a pair of spheres initially captured by their mutual DLVO
interaction potential is needed. Figure 4 shows a comparison
of a numerical, finite difference solution of the backward
Smoluchowski equation, as described in the Appendix, and BD

042610-5



J. BERGENHOLTZ PHYSICAL REVIEW E 97, 042610 (2018)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

τ
0

0.2

0.4

0.6

0.8

1

P
+
(τ

,x
1)

5 6 7 8 9
τ

0.25

0.3

0.35
P

+
(τ

,x
1)

FIG. 4. The escape probability, P+(τ,x1), as a function of dimen-
sionless time for the detachment of a doublet interacting with the
DLVO potential in Fig. 5 at 10 mM salt concentration with x1 = 1.2.
The solid line is the numerical finite difference solution and the
symbols are BD simulation data using the algorithm suggested by
Mittal and Hummer [31]. The inset is an enhancement of the same
results and data for a smaller range of times.

simulation data. The same DLVO potential for a salt concentra-
tion of 10 mM (cf. Fig. 5) has been used for both methods. The
agreement between the two is excellent, though, as the inset
in Fig. 4 demonstrates, the progression in time of the escape
probability for the small number of particles used in the BD
simulations, here 103 pairs, is nonmonotonic. This is caused by
fluctuations where, intermittently, slightly more particles cross
x1 = 1.2 to enter the attached state compared to the opposite
direction. In other words, particles clearly undergo multiple
crossings of the dividing point between the bound and unbound
state on their way toward the permanently unbound state.

The DLVO potentials investigated, shown in Fig. 5, vary
in the depth of the attractive minimum, which is achieved by
changing the concentration of monovalent electrolyte. More
specifically, particles of radius 1 μm, a surface potential of
50 mV, and a Hamaker constant of 1.37 × 10−20 J were
considered using a nonretarded van der Waals attraction and
a linear superposition approximation for the treatment of the
double layer repulsion. As seen in Fig. 5, the variation of
the salt concentration results in well depths of −5.5, −8.8,
and −11.5 kBT . As mentioned already, the description of the
numerical method used to compute the true escape probability
for doublets interacting via these DLVO potentials is given in
the Appendix. The results in Fig. 5 show that the escape is
increasingly retarded as the salt concentration is increased as
must be the case. Considering the relatively small changes in
the DLVO potential, the doublet breakup time appears to be
quite sensitive to the strength of the attraction.

The analytical solution for the adhesive sphere doublet can
be used in a predictive manner, by determining a stickiness
parameter τb such that the second virial coefficient of the
adhesive sphere system equals that of the system of interest.
In the case of a DLVO potential, this second virial coefficient

1.0 1.1 1.1 1.1 1.2
x

-10

-8

-6

-4

-2

0

2

4

U
(x

)/
k B

T

DLVO: 5 mM
DLVO: 10 mM
DLVO: 15 mM

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

τ=2D0t/σ
2

0

0.2

0.4

0.6

0.8

1

P
+
(τ

,x
1)

DLVO: 5 mM
DLVO: 10 mM
DLVO: 15 mM
τb=0.0361

τb=0.00286

τb=0.000286

FIG. 5. Top: DLVO potentials as a function of dimensionless
separation and salt concentration, as labeled. Bottom: Escape prob-
ability as a function of dimensionless time for the three DLVO
potentials as obtained from the numerical solution of Eq. (A3) and
from the analytical solution for adhesive spheres in Eq. (25) via
matching of the second virial coefficients.

mapping leads to

Bahs
2 /σ 3 = 2π

3

(
1 − 1

4τb

)
= BDLVO

2 /σ 3, (30)

where BDLVO
2 /σ 3 = −2π

∫ ∞
0 (e−U (x)/kBT − 1)x2dx has been

determined by numerical integration. Given the parameters
governing the DLVO potential, the above equation can be
solved for τb. The escape probability is then computed for this
τb value using the appropriate choice of Eqs. (24) and (25).

The result of the B2 mapping is shown in Fig. 5. For a
salt concentration of 5 mM, giving a rather shallow secondary
DLVO minimum, the agreement with the full numerical result
is fair. The agreement improves considerably as the minimum
is made deeper by increasing the salt concentration. Although
not shown, for the 15 mM case the simple asymptotic result in
Eq. (29) delivers a result that is almost in as good an agreement
as is the solution from Eq. (25).

It is prudent to caution that the results obtained here hold
in the infinite dilute limit and applying them at finite particle
concentrations needs care. The typical time expended by
particles of radius a in reaching a neighboring particle by
diffusion is tφ = a2φ−2/3/D0 [36]. For small but nevertheless
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nonzero volume fractions φ, this time scale should be weighed
against typical detachment times in order to ascertain whether
three-particle effects might be important. For example, in going
from φ = 0.00001 to 0.01, tφ goes from 104 s to 102 s for the
parameters used for the DLVO potentials in Fig. 5. Reading
off the dimensionless times for which detachment is complete
in Fig. 5, yields roughly τ = 103 for 15 mM and 10 for 5 mM.
These correspond to actual times of about 9 × 103 s and 90 s,
respectively. It follows that in experiments on thermal breakup
of doublets at φ = 0.01, a 5 mM salt concentration should
be on the safe side as far as interference from three-particle
effects, whereas a 15 mM salt concentration would necessitate
a lower particle concentration, φ ≈ 0.00001, for the particle
size and diffusion coefficient considered here.

V. CONCLUSIONS

Escape of colloidal particles from doublet states caused by
interparticle attractions has been studied with focus on relaxing
the restriction of it proceeding by just a single detachment
event as imposed by adopting a first-passage time descrip-
tion. This has been achieved by analyzing the two-particle
Smoluchowski equation for a sufficiently simple adhesive
interaction so that an analytical solution can be worked out
for the probability density. The solution obtained is somewhat
similar mathematically to the potential-free solution derived by
Kim and Shin [37]. However, their solution requires finding the
roots of a cubic equation, whereas the solution for adhesive
spheres here is based on the roots of a quadratic equation
[cf. Eq. (14)].

Thez experimentally more relevant quantities, escape and
survival probabilities, were derived by integrating the prob-
ability density. The long-time behavior of these has been
analyzed and exhibits power-law decay for weaker adhesive
interactions that crosses over to an exponential decay for strong
adhesion. In the limit of strong adhesion, the escape and
survival probabilities were found to become independent of
how one assigns a bound state. Finally, this analytical solution
for the adhesive sphere doublet was shown to be useful for
predicting the detachment dynamics of particles interacting via
more realistic interaction potentials, provided the stickiness
parameter was determined by matching the second virial
coefficients.
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APPENDIX: NUMERICAL SOLUTION FOR THE ESCAPE
PROBABILITY FROM A DLVO POTENTIAL

The Smoluchowski equation can be expressed in backward
form [17,18], as

∂

∂τ
p(x,τ |x0) = eU (x0)/kBT

x2
0

∂

∂x0

×
(

x2
0G(x0)e−U (x0)/kBT ∂

∂x0
p(x,τ |x0)

)
,

(A1)

where x0 is the initial coordinate. This equation can be
integrated over the x coordinate to yield an equation of motion
for the escape probability as

∂

∂τ
P+(τ,x1|x0) (A2)

= eU (x0)/kBT

x2
0

∂

∂x0

(
x2

0G(x0)e−U (x0)/kBT ∂

∂x0
P+(τ,x1|x0)

)

= A(x0)
∂P+(τ,x1|x0)

∂x0
+ ∂2P+(τ,x1|x0)

∂x2
0

, (A3)

where, in the last step, hydrodynamic interactions were ne-
glected [G(x0) = 1] and A(x0) = 2/x0 − 1

kBT

∂U (x0)
∂x0

was in-
troduced. This equation is subject to the initial condition:
P+(0,x1|x0) = 	(x0 − x1). In order to determine a solution in
the entire radial domain, the starting coordinate is transformed
as q = 1/x0, which transforms the governing equation into

∂P+(τ,q1|q)

∂τ
= (2q3 − A(q)q2)

∂P+(τ,q1|q)

∂q

+ q4 ∂2P+(τ,q1|q)

∂q2
, (A4)

where q1 = 1/x1. This equation is discretized using qj =
j�q and τi = i�τ , such that 0 < qj < 1, by introducing a
centered finite difference approximation for derivatives with
respect to q and a backward finite difference approximation for
the time derivative. After imposing the boundary conditions
P+(τ,q1|q = 0) = 0 and ∂

∂q
P+(τ,q1|q = 1) = 0, the partial

differential equation is turned into a matrix equation that is
tridiagonal. It is solved at every time step using an efficient back
substitution method [38]. A further technical detail concerns
the removal of the primary DLVO minimum, which otherwise
introduces a singularity. It is removed from the problem
by imposing a constant repulsive force at the apex of the
repulsive DLVO barrier. The finite difference equation was
solved using 3500 nodes, equispaced along the transformed
radial q coordinate.
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