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Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The
statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation.
However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome
this limitation, we present a predictive model that relies on two density-dependent timescales: τF , the mean time
particles spend between collisions; and τC , the mean lifetime of a collision. We show that only when τF < τC

do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical
calculations and active particle simulations, we measure these timescales and determine the critical density for
phase separation in both two and three dimensions.
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Statistical physics extracts order from randomness by de-
scribing the average behavior of noisy systems. Such noise
is prevalent in active matter [1,2], where individual particles
generate their own motion by consuming energy from their
environment, whether it be from chemical reactions [3–5],
vibrations [6,7], light [8], or magnetic fields [9,10]. However,
such active systems fall outside the realm of equilibrium
statistical physics because, although they may be at steady
state, they are inherently nonequilibrium and do not obey
detailed balance [11].

Despite these challenges, emergent behaviors are still ob-
served in active matter systems, such as their ability to phase-
separate. In particular, active Brownian particles (ABPs), an
idealized system of self-propelled hard particles, each with a
rotationally diffusing direction of motion [12], have been found
to phase-separate into dense and dilute phases [13,14]. This
robust behavior has also been found for both two and three
dimensions [15], as well as for rodlike [16–18] and shaped
particles [19,20], attractive particles [21,22], contact-triggered
active particles [23], and mixtures of ABPs with passive
particles [24,25].

Two prevailing theories describe motility-induced phase
separation (MIPS) for ABPs. One is a kinetic theory that
balances the density-dependent inward flux of particles into the
dense phase, with a diffusion-dependent outward flux [14,26].
The other is a continuum mean-field theory that attributes phase
separation to the reduction in a particle’s effective speed by
an increasing local density [27–29]. Critical to both of their
formulations is the noise involved in the rotational diffusion
of the particles. Given a rotational diffusion constant of DR ,
the persistence length, �P , of an active particle moving with
a velocity v0 is v0/DR . For the kinetic theory, the rotational
diffusion regulates the rate at which boundary particles become
unblocked and escape the dense phase. This balance leads to the
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incorrect prediction in the limit of �P → ∞ of a critical density
for phase separation of φcrit = 0 [14]. However, previous
simulations at or approaching this ballistic regime show a
nonzero critical density for MIPS (via spinodal decomposition)
of 0.25 � φcrit � 0.35 in two dimensions [28,30–32]. The
range of reported densities is likely due to a small system size,
with higher φcrit being measured for numbers of particles less
than 10 000 [33]. Also, these results are for simulations where
translational diffusion is zero, which approximates the be-
havior of run-and-tumble bacteria [12,34]. When translational
diffusion is proportional to DR , φcrit ≈ 0.4 [13,27]. Finally,
like the kinetic theory, the continuum theory of MIPS is only
meaningful when noise is present for finite �P , because the
effective pressure diverges when DR = 0 [28,31]. And while
results for large �P can still be extracted, numerical fitting
parameters are required [31].

Although these two theories explain MIPS in their re-
spective regimes, and can be used to extract other important
properties such as cluster fraction and growth rates, there exists
a gap in the understanding of MIPS when rotational noise
is absent (or, at minimum, when �P is much greater than a
particle’s diameter). Examples of such ballistic-regime active
matter systems are straight-swimming bacteria that do not
tumble due to mutations [35] or hydrodynamic suppression
[36], and vibrated polar disks [7]. Here we present a model of
MIPS that is independent of rotational noise and sets a lower
bound on the critical density required for phase separation.
Although a system with zero noise is not strictly ergodic for a
finite number of particles, we argue that this detail is irrelevant
for phase separation because the initial stages of spinodal
decomposition happen on a finite length scale where particle
collisions can be considered ergodic.

We demonstrate that the MIPS of ABP systems is dependent
on the relation between two density-dependent timescales
[shown schematically in Fig. 1(a)]: first, the mean free time,
τF , defined as the average span between collisions, which at
low densities is synonymous with the mean free path divided
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FIG. 1. (a) A schematic representation of two key timescales
involved in the triggering of phase separation for active self-propelled
particles. For a single active particle (red), the free time τF considers
the time a particle spends between collision events, while the collision
time τC considers the lifetime of a collision. (b) A schematic
representation of the incident angle of collision θ0, for Eq. (2).

by the particle’s speed; and second, the mean collision time,
τC , defined as the average lifetime of a two-particle collision.
We propose that at the density where τC � τF , which we call
the congestion density, φcon, particles experience a rate of
collisions, τ−1

F , that outpaces their rate of separating from a
collision, τ−1

C . This imbalance results in a positive feedback
effect of particle congestion, which drives the formation of
ABP clusters. Thus φcon sets a strict lower bound on the value
of φcrit required for spinodal phase separation.

Both of these timescales can be calculated for ballistic
ABPs, which we will later compare to simulation results. First,
the mean free time, τF , can be determined from collision
theory [37]. Beginning with two dimensions, we know that
N particles, traveling with a speed v0 at low densities, will
each collide once on average by the time they have moved
through an area equal to the averaged area available to them.
This area is simply the total area divided by N , or πσ 2

4φ
, where σ

is the particles’ diameter, and φ is the area fraction of particles.
The area swept out by an ABP is 2σvavτF , where vav =
1
π

∫ π

0

√
2 − 2 cos θ dθ = 4v0/π is the relative velocity of an

active particle compared to all other particles, averaged over all
possible relative angles θ [37]. Likewise for three dimensions,
the available volume is πσ 3

6φ
, while the swept volume is

πσ 2vavτF , with vav = 1
4π

∫ 2π

0

∫ π

0 sin θ
√

2 − 2 cos θ dθ dψ =
4v0/3. Setting these two areas (or volumes in three dimensions)
equal to each other, the resulting mean free time for a particle

to wait between collisions is

τF = π2σ

32v0φ
(2D),

τF = σ

8v0φ
. (3D). (1)

To solve for the mean collision time τC , we consider on
average how long two frictionless ABPs remain in contact
when colliding. We frame a collision event such that one
particle is held fixed and the other is moving downward with a
velocity vav, and colliding at an incident angle θ0, as shown
in Fig. 1(b). In this instance, the incident angle-dependent
collision time τinc is simply the time it takes the ABP to move
around its fixed neighbor and sweep out the angle between θ0

and π/2,

τinc(θ0) =
∫ π/2

θ0

σ dθ

(1 − φ∗)vav sin θ
. (2)

The correction to the velocity, (1 − φ∗), linearly interpolates
between the ideal unhindered movement of two isolated
particles and the fully arrested state of particles found at a
limiting density φ∗. Such a phenomenological factor has been
measured directly in systems of active Brownian particles,
and it is predicted from various kinetic theories [15,27,28,30].
Our application of this first-order correction to the collision
velocity can be attributed to multibody collisions that act
to hinder particle movement, and it gives τC its necessary
density dependence. Although this linear relationship becomes
inaccurate at higher densities, simulations show that it holds
for φ � 0.5 [28], which includes both the density ranges where
τC ≈ τF , and where phase separation occurs. Averaging over
all possible incident angles θ0 in both two and three dimensions
yields

τC = G

1 − φ/φ∗
2D

(2D),

τC = ln(8)

4(1 − φ/φ∗
3D)

(3D), (3)

where G ≈ 0.916 is Catalan’s constant, and we assume move-
ment becomes fully arrested at the area fraction of hexag-
onally packed disks in two dimensions, φ∗

2D ≈ 0.907, and
the volume fraction of hexagonally close-packed spheres in
three dimensions,φ∗

3D ≈ 0.740 [38]. (Previous studies estimate
these densities using numerical fitting methods, which result
in larger values of φ∗

2D ≈ φ∗
3D = 0.95 [15,27].) Both τF and

τC are plotted with respect to the average area fraction (or
volume fraction in three dimensions), φ, as solid lines in Fig. 2.
Adapting this calculation to various experimental active sys-
tems may require corrections that account for hydrodynamic
effects, friction, and multibody collisions at larger densities;
however, this simple first-order approximation is sufficient for
an initial estimate of φcon. Solving for the critical density for
MIPS when τC = τF yields φcon = 0.25 for two dimensions
and φcon = 0.18 for three dimensions. We predict that for
densities above φcon, ABPs will experience on average a higher
rate of new collisions compared to terminating collisions, thus
resulting in a pileup of ABPs and phase separation.

To verify these values and to explicitly determine both φcon

and φcrit, we perform active particle dynamics simulations that
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FIG. 2. The mean free time τF (blue triangles) and the mean collision time τC (red circles), as a function of area fraction φ, in both two
(a) and three dimensions (b). Solid colored lines represent the predicted values calculated with Eqs. (1) and (3). The congestion density, being
the minimum density required for phase separation, is the point where τC > τF is φcon > 0.25 for two dimensions and φcon > 0.18 for three
dimensions (marked with vertical solid lines). The critical density for phase separation found using simulations is φcrit (marked with the vertical
dashed lines). Visualizations of the results at various densities are shown with particles colored by their cluster size. Local density histograms
are also provided (using the same color scale), showing a transition from unimodal to bimodal distributions upon phase separation. For the 3D
visualization, particles not belonging to a large cluster are reduced in diameter for easier viewing.

obey the Brownian equations of motion,

γ ṙi = FSP
i +

∑
j

FEx
ij , θ̇i =

√
2DRηi, (4)

where γ is the drag coefficient and ηi is Gaussian white
noise, with 〈ηi(t)〉 = 0, and 〈ηi(t)ηj (t ′)〉 = δij δ(t − t ′) [39].
Each ABP experiences a self-propulsion force FSP

i = v0n̂i =
v0(cos θi, sin θi) that undergoes rotational diffusion scaled by
DR . Nearby ABPs interact via a frictionless excluded-volume
repulsive force FEx

ij , given by the steeply repulsive Weeks-
Chandler-Andersen potential (i.e., just the repulsive portion
of the Lennard-Jones potential), with the particle diameter
σ , defined as the distance where FEx

ij = 0 [40]. The persis-
tence length of the self-propulsion path is held constant at

�P = 1000σ . This value is chosen because �P /v0 is several
orders of magnitude greater than the timescales of τC and τF ,
and therefore it should not effect the onset of MIPS. To corrob-
orate this assumption, previous studies have already reported a
φcrit that is independent of �P for �P � 100σ [28,30,31]. Time
is measured in units of τ = σ/v0. The area fraction covered
by N particles is φ = Nπσ 2

4Atot
in two dimensions and φ = Nπσ 3

6Vtot
in three dimensions. All simulations were performed using the
particle simulation toolkit, HOOMD-BLUE (version 2.1) [41],
with a step size of 10−4τ .

Simulations used to measure τF and τC were performed
for N = 2000 particles in both two and three dimensions.
Measurements were taken before steady state was reached
by averaging over only the first 30τ of the simulations. This
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FIG. 3. Timescales τC (solid red line), τF (solid blue line), and
τC − τF (dashed black line), as a function of time τ in two dimensions.
The density is φ = 0.4, well above the spinodal of phase separation
at φcrit = 0.28. Insets show snapshots at two different times, with
particles colored by their cluster size. Each data point is averaged
over at least 10 000 measurements.

choice permits a close comparison to the ideal-gas regime
of the analytical results of Eqs. (1) and (3). Additionally, a
system comprised of only 2000 particles still guarantees that
ABPs have sampled only a fraction of the periodic simulation
box, negating the typical requirement of N � 10 000 necessary
to ignore finite number effects that have been observed in
previous studies [33]. The initial state was generated by
placing particles at random locations and then relaxing their
positions via a repulsive spring force to remove all particle
overlaps. The direction of the self-propulsion force for each
particle, n̂i , was also assigned randomly. This initial state
approximates equilibrated passive particles that then have their
self-propulsion activated. The specific procedure to generate
the initial random state was found to have little effect on the
measurements of τC and τF .

τF is calculated as the mean duration that particles spend
completely free of contact (defined as FEx

ij = 0), while τC is
calculated as the mean duration of any two-particle contacts.
Evidently, the accessible timescales of the initial state are suffi-
cient to determine the final steady-state behavior. The short 30τ

period of time is sufficient to measure the desired timescales
well before phase separation. This is true even in the worst-case
scenario when the density is well above φcrit, where clusters
quickly begin to nucleate and grow, thus greatly changing
τC and τF . To demonstrate this point, Fig. 3 shows steadily
increasing collision and free timescales for φ = 0.4. By 30τ ,
both timescales have increased by less than 10%. The increase
of τC with time is explained by ABPs becoming trapped in ever-
growing clusters, which can be seen in the inset visualizations
at τ = 5 versus τ = 160. Meanwhile, τF also increases with
time because there are fewer particles in the dilute phase, thus
increasing the mean free path of active particles that are not yet
trapped in clusters. Most importantly, however, the difference
between the two timescales, τC − τF , also grows with time,

which acts to further increase the drive for phase separation.
Eventually, the phase-separated steady state is reached (after
∼ 105τ ), resulting in plateaued values of τC and τF with time.
In other words, a system undergoing phase separation enters a
positive feedback loop where clustering decelerates particles,
which locally increases the lifetime of collisions τC , which
leads to growing clusters, which decelerates more particles, and
so on. Alternatively, for densities below φcrit, clusters remain
relatively small and short-lived, effecting little change in τC and
τF beyond what is measured over the first 30τ . Overall, this
behavior confirms that the density φcon at which τC > τF is a
necessary lower bound for φcrit. In the end, we are able to obtain
accurate statistics using only the first 30τ of an initially random
system.

Measurements for τC and τF under these simulation param-
eters for both two and three dimensions are shown in Fig. 2.
The results fit well with the analytical solutions of Eqs. (1) and
(3), even up to φ = 0.4. This density regime is well beyond
where the assumptions of low density are expected to hold,
namely that only uninterrupted two-body collisions are present
(assumed when approximating τC), and, more surprisingly, that
all collisions can be ignored and our system behaves like an
ideal gas (assumed when approximating τF ).

Now that τC and τF are established, we show that the
inequality τC > τF is indeed a minimal requirement for MIPS
of ABPs. To determine the φcrit at which this happens, we
perform full simulations of N = 50 000 particles for 4 × 107τ .
This ensures measurements are made after reaching the final
steady-state behavior, and that finite number (and finite per-
sistence length) effects can be ignored. The measurements
for φcrit are marked as the vertical dashed lines in Fig. 2.
Phase separation is observed at φcrit ≈ 0.28 for two dimensions
and φcrit ≈ 0.34 for three dimensions, determined by the
development of a bimodal distribution in the local density
histogram [14]. Example histograms, along with visualizations
of the systems at four values of φ, both near and far from
the transition, are provided in Fig. 2. Both two-dimensional
(2D) and three-dimensional (3D) measurements of φcrit are
above the minimum values of φcon predicted from both Eqs. (1)
and (3).

The reason φcrit � φcon is because φcon sets the minimum
density required for two-particle clusters to, on average, live
long enough to grow. However, this behavior is not sufficient to
attain full phase separation at φcrit. This is because φcon assumes
only ideal two-particle collisions at low density; but in reality,
the formation of the dense phase requires many multiparticle
collisions. Therefore, one must consider the lifetimes of these
multiparticle clusters to determine if they themselves grow
into a larger phase-separated cluster or disperse back into the
dilute phase. To quantify this behavior, if τC and τF measure
the average timescales experienced by a single particle, we
define similar quantities for a dense cluster consisting of n

particles, where the corresponding rates are not simple linear
functions of n. Specifically, one can argue that the average time
between particles leaving a cluster of size n is τ

(n)
C � τC/n,

because multiparticle clusters can cooperatively act to stabilize
a collision and increase its lifetime; and similarly, the average
time between particles adding to a cluster is τ

(n)
F � τF /n,

because the collision cross section of a cluster is on average less
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FIG. 4. Average timescale measurements from simulations for
clusters consisting of n = 3 particles in both (a) two dimensions
and (b) three dimensions. The average individual timescales for all
particles from Fig. 2 are also shown for comparison. Larger clusters
tend to have a crossover of τ

(n)
C = τ

(n)
F at a density higher than τC = τF

(marked with vertical lines).

than n2σ (or nπσ 2 in three dimensions). Values for τ
(3)
C = τ

(3)
F ,

measured in simulations for clusters of size n = 3, are shown
in Fig. 4; these values verify the above inequalities. The end
result is that φcon, which is set by when τC = τF , is not
sufficient alone to determine φcrit; nevertheless, this timescale
analysis does yield an accurate lower bound density for
MIPS.

Furthermore, these multiparticle collisions explain why the
inequality of φcrit � φcon is greater in three dimensions than
two dimensions, as is obvious in Fig. 2. This behavior can
be largely attributed to the fact that the extra third dimension
provides an additional direction for particles to slide past
each other. Whereas in two dimensions, two particles in
contact occupy 1/6th of their available solid angle, in three
dimensions this decreases to < 1/13th [38]. Therefore, 3D
particles are much less likely to pile up into multiparticle
clusters with many contacts, and consequently have a much
smaller τ

(n)
C than 2D particles for all values of n. This results

in 3D multiparticle clusters that are too short-lived to induce
phase separation, which is only overcome at densities well
above φcon.

In conclusion, by comparing the timescales associated with
collisions of ABPs, we have determined a lower bound on the
critical density, φcrit, required for MIPS. Our findings provide
microscopic insight into the mechanism of early-stage MIPS,
and they supplement the existing kinetic and continuum-based
theories by describing the behavior of ABPs in the ballistic
regime. This theory uniquely describes the ballistic regime
of �P /σ → ∞, where a strict notion of global ergodicity
is lost; however, ergodicity persists on the small size and
time scales relevant to early stage phase separation, which
allows for the determination of a system’s average behavior.
Importantly, we determine that, at minimum, phase separa-
tion requires a density high enough to achieve congestion,
where the mean lifetime of a collision, τC , is larger than
the mean time between collisions, τF . Surprisingly, a simple
ideal gas regime calculation—resulting in Eqs. (1) and (3)—is

sufficient to calculate φcon, which in turn sets a lower bound
for φcrit.

From this foundation, one can now account for the rotational
noise of ABPs and allow τC and τF to be functions of
�P . Interestingly, as long as �P � σ , this results in τF (�P )
being equal to the τF from Eq. (1), because the path of an
active particle still remains relatively straight in this regime.
Similarly, when �P � σ , τC(�P ) remains relatively unchanged
from Eq. (3), because the timescale of rotational diffusion,
D−1

R , is insignificant when larger than the average lifetime
of a two-particle collision. A full analysis, both numerical
and analytical, concludes with a predicted φcon that increases
only when �P � σ . This outcome clearly fails to account for
the observed increase in φcrit(�P ) for as early as �P � 100σ

[28,30,31]. In this regime, our claims of a lower bound on
φcrit set by τC(�P ) > τF (�P ) still hold true; however, there
emerges a new �P -dependent length scale that accounts for the
rate of particles escaping a cluster into the dilute phase. These
events act to further regulate large-scale phase separation by
increasing φcrit with decreasing �P [14,26].

Beyond rotational noise, there are a variety of additional
considerations that can affect φcon, and therefore φcrit. These
include (i) the role of particle shape, which may act to increase
τC , and thus φcrit, if facets are present [19,20], or alternatively
to decrease φcrit by increasing τF in the case of active rods
that have a tendency to swarm [16–18]; (ii) the role of passive
particles mixed with ABPs, which increases φcrit by perhaps
increasing the effective τF [24,25]; (iii) the influence of fixed
barriers, which decrease φcrit, conceivably by trapping particles
and greatly increasing τC [42,43]; (iv) the role of interparticle
attraction, which would lower φcrit through a simultaneous
increase of τC and decrease of τF [21]; (v) the role of particle
elasticity, which could see an increase in φcrit for “softer”
particles through a lowering of τC , as suggested by an in-
creased φcrit = 0.46 found for ballistic active particles with soft
harmonic repulsion [43]; (vi) the role of particle “eccentricity”
(i.e., orbiting ABPs with an off-centered self-propulsion force),
which can lose their ability to phase-separate, possibly because
rotating particles can easily slide past each other and lower
their τC [44]; (vii) the complex role of hydrodynamics, which
may result in either enhanced or diminished phase separation
depending on if the particles are “pushers” versus “pullers,”
and/or if they are fully 3D versus confined quasi-2D [45–48];
(viii) or the role of non-negligible particle inertia [49]. These
examples demonstrate that the multitude of active matter
systems beyond the vanilla ABP model possess a rich behavior
that could possibly be understood in terms of congestion
on the microscopic scale. However, a full quantitative ex-
ploration of τC and τF in each variant is left as an open
question.
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