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Direct determination of forces between charged nanogels through coarse-grained simulations
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In this work, electrostatic forces between charged nanogels are explored through coarse-grained simulations.
These simulations allow us to explicitly consider the complex topology of these nanoparticles and provide reliable
force values to examine highly charged nanogels of a few tens of nanometers. The results obtained here clearly
reveal that the electrostatic interactions between these nanoparticles are not governed by the net charge of the
nanogel, which includes not only the charge of the polymer network but also the charge of ions inside. Thus
two theoretical procedures for predicting effective charges are also proposed and investigated. Both provide
predictions of the same order and capture the behavior found for the effective charge obtained from simulations.
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I. INTRODUCTION

Nanogels are nanometer-sized particles that consist of
crosslinked polymer networks with the ability to swell in a
thermodynamically good solvent. When their mean diameter
is of the order of hundreds of nanometers, they are also known
as microgels. In any case, the small size of these colloidal
particles enables them to develop a rapid kinetic response
to environmental stimuli (such as temperature or pH). This
stimulus responsiveness makes nanogels excellent candidates
for biotechnological applications such as biomaterials and drug
delivery [1–3]. Nanogels are also employed as “model atoms”
in experiments addressing condensed matter problems such as
structure formation, dynamics, or phase transitions [4,5]. Due
to the vast assortment of applications, these nanoparticles have
gained considerable attention during the last decades.

In many instances, the polymer chains forming nanogels
carry ionized groups. Thus the precise knowledge of the
electrostatic forces between these nanoparticles is essential
in any attempt to understand their behavior and control the
processes in which they are involved. However, the theoretical
determination of such forces constitutes an issue which has not
been fully resolved yet for hard colloids and presents its own
peculiarities in soft matter [6,7]. For example, a key feature
that distinguishes nanogels from hard colloidal particles is their
permeability. Thus electrostatic interactions between nanogels
are expected to be governed by the charge of the system formed
by the polymeric backbone and the ions inside, to which we
will refer to as the net charge of the nanogel.

There are a few theoretical studies supporting this idea
[8–10]. In these surveys the complexity of such many-body
systems is faced with the help of effective interactions, a
powerful tool in statistical mechanics that characterizes the
macromolecular aggregates as a whole, including not only the
direct interactions between them but also the indirect effects
of solvent and small ions. In this way, it is possible to make
valuable predictions on the structural and phase behavior of
ionic microgels [11–13]. However, it should be mentioned that
certain effects, such as the flexibility and fluctuations of the

polymer chains or the high degree of crosslinking, are usually
neglected by these approaches. In fact, the complex topology
of nanogels could justify why theoretical treatments are rarer
for these systems. In addition, some approximations made in
these treatments might fail for highly charged nanoparticles.

In this work we present coarse-grained simulations of the
electrostatic interactions between charged nanogels which
allow us to explicitly account for the topology of these polymer
networks, the flexibility of their polymer chains, the fluctua-
tions of charge distributions, or the nonexistence of a perfect
spherical surface. In the absence of directly measured forces
in three dimensions, these results constitute a valuable tool for
finding out the precise functional form of this interaction and
how these forces depend on the charge of these nanoparticles.
In fact, these simulations reveal that the electrostatic forces be-
tween nanogels of a few tens of nanometers are not controlled
by the bare charge of their backbones or by the net charge. An
effective charge must be employed instead. From the results
presented here, two theoretical approaches to estimating this
parameter are proposed. One of them is an easy and intuitive
prescription inspired by the notion of ionic condensation. The
other is based on the Ornstein-Zernike (OZ) integral equation
theory within the hypernetted-chain closure (HNC).

The rest of the paper is organized as follows. First, the model
used and some details on the simulation technique are given.
Then the results are presented and discussed. Finally, some
outstanding conclusions are highlighted.

II. MODEL AND SIMULATIONS

The coarse-grained picture employed in our simulations is
the so-called bead-spring model for polyelectrolyte in which
ions and monomer units are represented as spheres whereas
the solvent is considered as a dielectric continuum (primitive
model). This representation of reality has been widely used in
the research of adsorption and collapse of charged polyelec-
trolytes [14,15] and in the study of different single-nanogel
properties [16–23], but here, coarse-grained simulations of two
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charged nanogels are employed in the explicit computation of
interaction forces between these nanoparticles.

The simulation cell is a cubic box of length L that contains
two negatively charged nanogels, monovalent cations, and
anions in a fixed number determined by the bulk electrolyte
concentration and an excess of monovalent cations neutralizing
the charge of the nanogels. Each nanogel particle consists of
100 polyelectrolyte chains connected by 66 crosslinkers. The
topology is the same employed in a previous survey [24]. Each
polyelectrolyte chain has four monomers to avoid extremely
time-consuming simulations. A fraction f of monomers
are negatively charged (f = 0.625,0.125,0.25,0.50,0.75, and
1.00) so that the charge of each nanogel is Ze = −25e,

−50e,−100e,−200e,−300e, and −400e (where e is the el-
ementary charge). The diameter of monomers, crosslinkers,
and ions is d = 0.7 nm. For ions, this size includes the
corresponding hydration shell [25]. The short-range repulsion
between any pair of these particles due to excluded volume
effects was modeled by means of a purely repulsive Weeks-
Chandler-Andersen potential:

uWCA(r) =
{

4εLJ
(

d12

r12 − d6

r6 + 1
4

)
r � 6

√
2d

0 r >
6
√

2d
, (1)

where r is the center-to-center distance between a given pair of
particles, εLJ = 4.11 × 10−21J, and d is the monomer diameter.
The interaction connecting monomer units and crosslink-
ers with their neighbors was modeled by harmonic bonds,
ubond(r) = 0.5kbond(r − r0)2, where kbond is the elastic constant
(0.4 N/m) and r0 is the equilibrium length corresponding
to this harmonic potential (0.7 nm in this case). All the
charged species interact through the Coulomb potential,u(r) =
ZiZje

2/4πε0εrr , where Zi is the valence of species i, and ε0

and εr are the vacuum permittivity and relative permittivity of
the solvent, respectively.

Initially, both nanogels were placed symmetrically along
a diagonal of the cubic simulation cell. The center of the
cube coincided with the center of mass (c.m.) of the two
nanoparticles (see Fig. 1). The distance between the surface
of the nanogels and the nearest side of the cube is 3 times
the Debye length (lD). In this way, the electric double layers
of the nanogels are fully developed inside the simulation cell.
According to this prescription and the geometry of the initial
configuration, the length of the simulation cell is given by
L ≈ 2(r/2

√
3 + 3lD + Rn). Three kinds of Monte Carlo (MC)

movements were employed: (i) single-particle translations
for ions, monomers, and crosslinkers; (ii) translations of the
whole nanogels and the ions inside them; and (iii) rotations
of the nanogels around their c.m.’s (including also the ions
inside). Rotations were attempted with a frequency of 0.002
in all cases. However, the frequency of translations of all the
nanogels was 0.05 for the systems (Z = −100,0.1 mM), (Z =
−100,0.5 mM), (Z = −100,10 mM), and (Z = −400,1 mM),
which have the greatest numbers of particles in the simulation
cell, and 0.03 in the other cases. The rest of the movements cor-
respond to single-particle translations. In addition, expansions
and contractions of the whole nanogel were employed to ac-
celerate the relaxation of the network during thermalization. In
all these movements, maximum displacements were adjusted
after periods of 1 × 105 configurations so that its respective

FIG. 1. Snapshot of the simulation cell. L, Rn,lD , and r denote
the length of the simulation box, the mean radius of the nanogels, the
Debye length, and the center-to-center distance between the nanogels,
respectively. The beads of different colors are neutral and charged
monomers of the nanogels and monovalent cations and ions.

acceptance ratio was close to 50%. In the case of single-beads
translations, the maximum displacements were individually
updated.

Three-direction periodic boundary conditions were applied.
Before performing two-nanogel simulations, isolated charged
nanogels were simulated following the procedure described
in a previous paper to compute their distributions of mass
and the ionic profiles [26]. Long-range Coulomb forces were
handled through Ewald sums, which were implemented with
algorithms and recommendations similar to those reported in
previous papers [26,27].

In this work, the mean force between the two nanogels
at a given distance was computed from the potential of
mean force, which in turn was calculated as follows. First,
nanogels were placed at the desired separation. During the
runs, the distance between their c.m.’s was allowed to explore
a narrow window around the distance under study with the
help of a bias potential (an example is briefly commented
below) and the probability P (r) of finding their respective
c.m.’s at a separation r was computed. For each separation,
six independent runs with different initial relative orienta-
tions of the nanogels were executed. For thermalization and
averaging, 1 × 107 and 4 × 107 MC steps were employed
in each run, respectively. Thus a total number of 3 × 108

steps (on average 1.4 × 105 steps per particle) were required
to compute the function P (r) in a small interval of r val-
ues around the distance under examination. After obtain-
ing P (r), the nanogel-nanogel potential of mean force was
computed as U

pmf
nn (r) = −kBT ln (P (r)), where kB is Boltz-

mann’s constant and T is the absolute temperature (298 K).
A similar procedure was employed in a previous work for
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TABLE I. Radius, net charge, and different effective charges of the nanogels.

Salt −Zeff obtained −Zeff estimated from −Zeff estimated from
−Z concentration (mM) Radius (nm) −Znet by fitting force the OZ-HNC formalism charge-potential profiles

25 1 6.07 ± 0.10 20.9 19.3 ± 0.2 20.5 20.5
50 1 6.24 ± 0.13 36.3 30.3 ± 0.3 33.1 30.4
100 0.1 7.05 ± 0.13 67.0 45.0 ± 0.5 52.2 50.9
100 0.5 6.88 ± 0.12 57.3 38.8 ± 0.2 46.1 41.4
100 1 6.80 ± 0.14 54.2 37.0 ± 0.1 44.0 39.0
100 10 6.61 ± 0.12 40.6 38.8 ± 1.6 38.8 38.2
200 1 7.70 ± 0.14 77.6 42.9 ± 0.2 56.4 48.5
300 1 8.26 ± 0.12 94.7 45.6 ± 0.3 63.4 54.0
400 1 8.65 ± 0.09 109.0 49.8 ± 0.3 71.4 58.1

the computation of potential of mean force of ideal neutral
nanogels [24].

III. RESULTS AND DISCUSSION

A. Nanogel properties

Table I summarizes the main properties of the nanogels
studied in this work, including the geometrical radius of
the nanogel considered in a first approximation as a sphere
(Rn), which was computed from the radius of gyration (Rg)
considering the relationship between the geometrical radius
and radius of gyration of a homogenous sphere, Rn = √

5/3Rg

[24]. The uncertainties in Rn and Rg were estimated from
the fluctuations of R2

g in time, which was monitored to check
that an equilibrium value was reached after equilibration. The
uncertainty in Rn (also included in Table I) is not greater that
2% in the systems studied. Thus nanogel fluctuations seem to
be small. However, we should keep in mind that the degree of
crosslinking of the nanogels of this work is considerably high.

As mentioned previously, single-nanogel simulations were
performed before determining the force between pairs of
nanogels. Such simulations provided useful information on
charge distribution. In particular, it is possible to compute the
charge enclosed by a sphere of radius r centered at the center of
mass of the nanogel Q(r) as a function of r , plotted in Fig. 2.
As can be seen in such a figure, the absolute value of Q(r)
exhibits a maximum at r ≈ Rn, which can be interpreted as the
net charge of the nanogel (Znet) since it included the charge of
the polymeric network, the charge inside the nanogel, and the
charge in the immediate neighborhood. We might also employ
the charge enclosed by Rn, but this yields slightly smaller net
charges because part of the nanogel is outside.

Q(r) also presents a small peak in the region r < Rn, which
reveals that the charge is not uniformly distributed inside the
nanogel. This uneven charge distribution might be attributed
to the existence of accumulation of charged monomers near
the crosslinkers, particularly in the case of highly charged
nanogels.

A spherically averaged electric field at a distance r from
the center of mass can be obtained from Q(r) applying Gauss’
law. Then a spherically averaged electrostatic potential (ψ(r))
was estimated integrating this electric field from the border of
the simulation cell. The profiles corresponding to this property
are plotted in Fig. 3. In general, the behavior of this function is
not monotonous inside the nanogel, which is again attributed

to uneven charge distributions. This figure also shows that
|eψ |/kBT is much greater than 1 inside the nanogels studied
in this work and even in the proximity of their surfaces for
most of them. The normalized electrostatic potential is of the
order of 1 (or smaller) in the neighborhood of the particle
only in the cases (Z = −25,1 mM) and (Z = −100,5 mM).
This implies that the counterions inside the polymer network
as well as the counterions in the vicinity of the nanoparticle
are strongly bound to the nanogel (with the two exceptions
previously pointed out).

From the data displayed in Figs. 2 and 3 it is possible to con-
struct charge-potential profiles for the nanogels investigated in
this work. These profiles are shown in Fig. 4. As mentioned
before, the greatest charge of a given profile can be interpreted
as the net charge of the nanogel, since it takes place for r values
of the order of the nanogel radius.

B. Determining forces and effective charges

The force at a given separation of the centers of mass of the
nanogels was determined allowing these nanoparticles to move
in an interval of distances [rmin,rmax] centered in the separation
of interest. For instance, to determine the force at 20 nm, the

FIG. 2. Charge enclosed by a sphere of radius r (in elementary
units), Q(r)/e, as a function of the distance to the center of mass (r)
normalized by the geometrical radius of the nanogel, Rn.
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FIG. 3. Normalized electrostatic potential, eψ/kBT , as a function
of the distance to the center of mass (r) normalized by the geometrical
radius of the nanogel, Rn.

movements of the nanogels were restricted to c.m. separations
between rmin = 19.7 and rmax = 20.3 nm. This restriction was
implemented through the bias potential

ubias(r) =
{

0 rmin < r < rmax

∞ otherwise . (2)

Here r is the distance between the c.m.’s of the nanogels.
Six independent runs starting from different relative orienta-
tions were performed to compute the probability of finding
the c.m.’s of the nanogels at a separation r , P (r). Just as
an example, Fig. 5 shows −ln(P (r)) for different pairs of
nanogels at 1 mM employed to compute the force when the
distance between them is 20 nm. The quantity −ln(P (r)) can
be identified with the normalized nanogel-nanogel potential
of mean force, U

pmf
nn (r)/kBT (determined except an additive

FIG. 4. Charge enclosed by a sphere of radius r (in elementary
units), Q(r)/e, as a function of normalized electrostatic potential,
eψ/kBT .

FIG. 5. Minus logarithm of the probability of finding the nanogel
c.m.’s at a separation r , −ln(P (r)), as a function of r for different
pairs of nanogels at 1 mM (r is restricted to the interval [19.7,20.3]
through a bias potential).

constant). Finally, the mean force was estimated as minus the
slope of U

pmf
nn (r) at the desired distance. It should be also

mentioned in relation to this procedure that the mean force can
also be determined by fixing the distance between nanogels
and averaging the total force between them directly. However,
preliminary simulations following this approach revealed that
the uncertainty in the contribution due to short-range excluded
volume interactions was considerably high. For that reason,
the force was derived from the potential in small windows.

Figure 6 shows the forces obtained for each pair of nanogels
studied here as a function of the distance between their c.m.’s.
It is worth finding out if the functional form of these forces
can be derived from the interaction potential proposed by

FIG. 6. Force (F ) between a pair of nanogels as a function of
the distance (r) between their c.m.’s obtained in simulations for
the nanogels studied at 1 mM. Lines denote the fits obtained using
Denton’s potential and the charge as the only adjustable parameter.
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FIG. 7. Effective charges obtained by fitting force data in Fig. 6,
predicted by the OZ-HNC theory, and estimated from charge-potential
profiles as a function of the net charge.

Denton some years ago [8], which is similar to the classical
Yukawa-like electrostatic interaction potential for hard col-
loids. In fact, it can be easily proved that Denton’s expression
exactly leads to the widely known Yukawa [or Derjaguin-
Landau-Verwey-Overbeek (DLVO)] form if the bare charge
of the nanogel is replaced by the net charge:

U
pmf
nn (r)

kBT
= λBZ2

net

(
eκRn

1 + κRn

)2
e−κr

r
. (3)

Here λB is the so-called Bjerrum length and κ is the recip-
rocal of the Debye length. Indeed, the expression obtained by
Denton can be appealing and friendly for a broad community
of scientists and engineers interested in nanogels. Also, a few
recent works have estimated the effective charge of nonover-
lapping microgels [28,29] assuming this potential; however,
it is based on a linear response theory. Consequently, the
charge involved must be considered an effective charge rather
than a real one. In addition, Denton’s potential ignores the
fluctuations of charge distributions, the flexibility of polymer
chains, and the complex topology of nanogels.

The force derived from such a potential is

F (r) = λBkBT Z2
eff

(
eκRn

1 + κRn

)2
e−κr

r2
(1 + κr). (4)

Here Zeff is the effective charge (instead of the net charge).
In the fits performed in Fig. 6 the only adjustable parameter was
the effective charge, whose values are also included in Table I.
Analyzing the values of Z and Zeff , it can be easily concluded
that the effective charge only increases 64% when the bare
charge and the net charge are multiplied by 8 and 3, respec-
tively. In addition, the effective charge considerably deviates
from the net charge with increasing the bare charge. In fact, for
Z = −400,Znet is approximately twice larger than Zeff . The
discrepancies betweenZeff andZnet can be graphically appreci-
ated in Fig. 7, which clearly reveals that: (i) both charges agree
only for very low Znet values, and (ii) for larger net charges,
Zeff grows much more slowly than Znet. Thus nonlinear effects

FIG. 8. Force (F ) between a pair of nanogels as a function of
the distance (r) between their c.m.’s obtained in simulations for
the nanogels with Z = −100 at different electrolyte concentrations.
Lines denote the fits obtained using Denton’s potential and the charge
as the only adjustable parameter.

have outstanding consequences in the nanogels studied here
(unlike previous surveys for nanogels with radii greater than
70 nm [9,10]) and an additional procedure for estimating the
effective is required. Without such formalism, the capability
of prediction of Denton’s potential would vanish because the
net charge does not characterize electrostatic interactions for
highly charged nanogels. Regarding Fig. 7, it should be also
mentioned that the effective charge does not seem to reach a
saturation value. This behavior is likely to be related to the fact
that the nanogel size increases with the net charge.

We have also simulated nanogels with the same bare charge
(Z = −100) at different electrolyte concentrations ranging
from 0.1 to 10 mM. The results are plotted in Fig. 8, which
also shows the fits with Zeff as the only adjustable parameter.
As can be seen, these data can also be approximately fitted
using Eq. (4). It is worth stressing that the effective charges
obtained for 0.5, 1, and 10 mM are very similar, although the
corresponding net charges differ.

C. Predicting effective charges from charge-potential profiles

A simple and intuitive prescription for predicting the ef-
fective charge from the bare charge and electrostatic potential
is proposed and explored in this survey. In the case of many
nanoparticles simulated here, the electrostatic energy of coun-
terions near the nanogel or inside it is much greater than kBT

(as pointed out previously). Thus some authors say that these
counterions are electrostatically bound to (or condensed on) the
colloidal particle. There are different criteria to define which
counterions can be considered condensed [30]. In this work,
however, we have chosen the simplest one: only ions feeling an
electrostatic attraction stronger than the thermal energy (kBT )
are bound to the nanogel and contribute to the effective charge.
According to the criterion adopted previously, the effective
charge corresponds to |eψ |/kBT = 1 in the charge-potential
profiles plotted in Fig. 4.
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TABLE II. Values of R and δ describing the charge distribution
in the nanogels and employed in the HNC predictions of the effective
charge.

−Z Salt concentration (mM) R (nm) δ (nm)

25 1 6.14 2.34
50 1 6.42 2.53
100 0.1 6.63 2.49
100 0.5 6.56 2.50
100 1 6.51 2.63
100 10 6.19 2.65
200 1 7.17 2.72
300 1 7.73 2.63
400 1 8.30 2.62

The effective charges obtained in this way are also included
in Table I and plotted in Fig. 7 (for 1 mM). As can be seen,
these values are close to the effective charge obtained by fitting
forces and capture the main features of the qualitative behavior
exhibited by Zeff . It is worth stressing that, according to this
figure, the systems with Z = −100 should have very similar
effective charges for 0.5, 1, and 10 mM, although they have
different net charges, in agreement with the effective charge
obtained by fitting forces in Fig. 8.

D. Predicting effective charges from OZ-HNC

It would be interesting to explore if the quantitative agree-
ment can be improved by employing a more sophisticated
scheme. Thus the effective charge was estimated from an
OZ integral equation theory for the three-component system
formed by nanogels, counterions, and coions, within the HNC
approximation. In this theory, the hard-core Coulomb poten-
tial was employed for the ion-ion interaction, i.e., uij (r) =
ZiZje

2/4πε0εrr for r > d, and u(r) = ∞ for r � d [9].
This theory assumes that the bare charge of the nanogels is
uniformly distributed in a core of radius R − δ and then the
charge density decays to 0 in an external shell of thickness
2δ [9]. The values of R and δ (shown in Table II) were
calculated from the bare charge density distributions provided
by single-nanogel simulations, taking into account that the
local concentration of charged monomers decays with the
maximum slope at R and vanishes at R + δ, since the local
concentration of monomers must vanish beyond their farthest
positions. The electrostatic interaction between an ion and
the nanogel was computed by integrating the electrostatic
field generated by the charge distribution of the nanogel.
More details about the explicit expression of the ion-nanogel
interaction can be found in Ref. [9].

In the limit of infinite dilution of nanogel particles, the
six OZ equations can be split into three subsets. Three of
these equations provide the ion-ion pair distribution functions.
There are two other equations leading to the ionic density
profiles inside and around the nanogel. Finally, the sixth
equation makes use of the ion-ion and ion-nanogel pair distri-
bution functions to determine the so-called indirect correlation
function between two isolated nanogels immersed in a bulk
suspension of ions given by γnn(r) = gnn(r) − cnn(r) − 1,
where gnn(r) and cnn(r) are the pair distribution function and

FIG. 9. Function y(r ′) obtained for the nanogel with Z = −200
and 1 mM. The dashed line is the function ln A − κ ′r ′, which
illustrates the asymptotic part of y(r ′).

the direct distribution function, respectively. Although HNC is
in fact an approximation that neglects the contribution of the
bridge functions to the pair correlation functions, it has two
important advantages. First, it leads to realistic predictions
for the kind of system and particle interactions addressed in
this study by still keeping the simplicity. Second, the HNC
allows a straightforward calculation of the effective interac-
tion between microgels. In fact, such effective potential is
given by U

pmf
nn (r) = unn(r) + γnn(r), where unn(r) is the bare

Coulomb interaction between the charge distribution of both
microgels. Once the effective potential has been determined,
the corresponding effective charge can be calculated by fitting
its asymptotic behavior for large interparticle distances using
the following dimensionless form of the Yukawa-like pair
potential:

βUpmf
nn (r) = A

e−κ ′r ′

r ′ (5)

with

A = λB

Rn

Z2
eff

(
eκ ′

1 + κ ′

)2

, (6)

where β = 1/kBT , κ ′ = κRn, and r ′ = r/Rn. In order to
confirm that the simulation and theoretical results are well
represented by this Yukawa potential, the function y(r ′) =
ln[r ′βU

pmf
nn (r ′)] is plotted. If the nanogel-nanogel effective

pair potential has a Yukawa tail, then this function must
decrease linearly with r ′:

ln
[
r ′βUpmf

nn (r ′)
] = ln A − κ ′r ′. (7)

The slope of the straight line provides the reciprocal of the
Debye screening length κ , whereas the zero intercept obtained
by extrapolation leads to the nanogel effective charge. In all
cases, the obtained value for κ agrees with the expression κ =√

8πλBcs , where cs is the concentration of monovalent salt. In
Fig. 9, an example of this fitting procedure is illustrated. The
graph displays the function y(r ′) obtained from the solution of
the OZ-HNC equations for Z = −200 and a salt concentration
of 1 mM. The plot clearly shows the linear decay of y(r ′).
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It should be emphasized that for long interparticle distances,
the theoretically predicted effective electrostatic pair potential
between nanogels is in all cases very well described by
the Yukawa functional form with κ values very close to the
theoretical ones. However, the values of the effective charge
(included in Table I and Fig. 7) change when the bare charge
is modified, exhibiting the same trends as the simulated result:
For highly charged nanogels Zeff is significantly smaller than
Znet and increases slowly. Thus the predictions provided by the
HNC are able to qualitatively capture the behavior reported for
Zeff . Quantitatively speaking, such predictions are in general
very good for weakly charged nanogels, but they worsen
when the nanogel charge increases, as the HNC systematically
overestimates the effective charge of the particle, as expected
for strongly charged particles.

IV. CONCLUSIONS

Coarse-grained simulations reveal that the electrostatic
forces between charged nanogels can be approximately derived

from a Yukawa-like potential. This is a nontrivial result
because Denton’s potential neglects the fluctuations of charge
distributions, the flexibility of polymer chains, and the complex
topology of nanogels (explicitly considered in the model em-
ployed here). In addition, it should be stressed that electrostatic
interactions are not always controlled by the net charge of
the nanogels. In this respect, two theoretical procedures for
predicting the effective charge have been proposed. Both
provide predictions of the same order and reproduce to a great
extent the behavior reported for the effective charge obtained
from simulations.
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