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Mechanical instability and percolation of deformable particles through porous networks
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The transport of micron-sized particles such as bacteria, cells, or synthetic lipid vesicles through porous spaces
is a process relevant to drug delivery, separation systems, or sensors, to cite a few examples. Often, the motion of
these particles depends on their ability to squeeze through small constrictions, making their capacity to deform an
important factor for their permeation. However, it is still unclear how the mechanical behavior of these particles
affects collective transport through porous networks. To address this issue, we present a method to reconcile the
pore-scale mechanics of the particles with the Darcy scale to understand the motion of a deformable particle
through a porous network. We first show that particle transport is governed by a mechanical instability occurring
at the pore scale, which leads to a binary permeation response on each pore. Then, using the principles of directed
bond percolation, we are able to link this microscopic behavior to the probability of permeating through a random
porous network. We show that this instability, together with network uniformity, are key to understanding the
nonlinear permeation of particles at a given pressure gradient. The results are then summarized by a phase
diagram that predicts three distinct permeation regimes based on particle properties and the randomness of the
pore network.
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I. INTRODUCTION

The transport and diffusion of soft, colloidal particles
through porous media is at the heart of important processes
in medicine [1,2] and biology [3] but also in areas such
as cosmetics, food, or oil recovery [4]. These applications
indeed rely on multiphase fluids that contain a myriad of small
deformable particles (microbubbles, droplets, cells, bacteria, or
viruses) that often need to permeate via physical barriers. For
instance, the transport of bacteria through filtration membranes
has shown a correlation between the permeation outcome and
the size, shape, and deformability of the bacterial wall [5,6].
Particle deformability has also been found to be a major player
in cell sorting using microfluidics [7], or in the permeation of
nanoparticles through the openings in different organs such as
the spleen [8]. However, while the differentiation of particles
based on size [9], shape [10], or even pore characteristics
[11,12] has been well studied, the role of their deformability
is still poorly understood. The challenge in answering this
question is the existence of two disparate length scales: the
macroscale (or Darcy scale) and the microscale (or pore scale),
both of which play distinct yet critical roles in particle trans-
port. At the pore scale, models have been developed to elucidate
the relation between particle mechanics [13–17] and motion
[18–22] for different types of particles and flow conditions.
Such relations typically characterize the entry of particles with
various size, shape, structure, and adhesion properties [23–29]
in narrow constrictions such as the nozzle of micropipettes. By
contrast, Darcy scale models have concentrated on the effect of
the porous medium (i.e., the pore network topology) on overall
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particle transport. In this context, Yiotis et al. have developed
a lattice Boltzmann approach to study the coalescence and
breakup dynamics of multiphase flows in porous media [30],
while Foucard et al. used a finite-element approach [17,31] to
study the effect of network geometry on soft particle transport
[32]. The above models are usually computationally expensive
and are thus limited to low particle numbers and small domains;
this has precluded a more fundamental understanding of the
problem at hand. Recognizing these limitations, alternative
approaches based on statistical mechanics have been intro-
duced to study transport in complex lattices [33,34]. The
concept of percolation theory has proven to be critical in
exploring a variety of situations involving the transport and
spreading of multiphase fluids in porous media [35–39], the
clogging mechanisms of rigid particles [40], or the spreading of
micro-organisms in bioclogging [41] and bioremediation [42].
Despite this progress, there is not yet a theory that connects
pore-scale models on soft particles to Darcy-scale models
(involving network statistics).

The present work addresses this need by introducing a
theoretical framework that can help us to understand and
characterize the dynamics of a single particle traveling through
a random medium under an overall pressure gradient. We focus
in particular on situations in which the particles are larger than
the average pore opening. In this case, particle deformability
becomes an essential component of their transport by allowing
them to squeeze through pore constrictions under sufficient
pressure forces [15,43]. This mechanism has been used, for
instance, for the construction of bubble-based logical circuits
[44]. The objective of this study is to better understand how
these concepts affect the nonlinear transport of droplets [45]
in random networks. We also aim to characterize the role
of droplet properties and network geometry in this process.
This will be done in three steps. In the next section, we
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FIG. 1. (a) Section of a PDMS microfluidic channel with a solution of hexadecane with two dispersed water droplets coated with SPAN-80.
The system is subjected to an increasing pressure drop �P from top to bottom, which eventually (�Pc) pushes the smaller particle out of
the system. (b) In the model of a porous medium, each pore is idealized as a connection of three axisymmetric sections in series whose
direction is determined by the position of the obstacles. The external chambers are then assigned a permeability κ and the central one to a lower
permeability κc that represents the narrowing of the pore throat. (c) The semianalytical solution [29] for the critical pressure (δp∗

c = s

2γ
δpc) vs

the relative radius of the particle (R∗ = R/s) is plotted for two toroidal pores (b∗ = 2,b∗ = 10). The results are compared to the approximation
of Eq. (1) at a = 1.068 (solid line). The inset shows an example of a signature curve for a nonadhesive particle with radius R∗ = 1.5 using a
3D approximation (solid line) [29] and a 2D one (dashed line) [43]. In it, the normalized equilibrium pressure drop (δp∗) is plotted against the
position of the center of mass of the vesicle inside the pore (zc.m.)

construct the transport model and highlight its connection
to the mechanics of a soft particle permeating through a
narrow pore. In Sec. III, the model is used in conjunction
with percolation theory to predict particle transport in various
conditions. In Sec. IV, we finally discuss the significance of
these results and their connection to crowding and jamming in
complex networks.

II. MODEL FORMULATION

We are interested here in characterizing the transport of
deformable particles in a porous medium whose average pore
size (2s0) is smaller than the average particle diameter (2R).
For the sake of simplicity, the particles are modeled here as
immiscible fluid droplets with surface tension γ and no ad-
hesion energy. However, the same analysis can be extended to
particles with complex membranes or even elastic bodies. Such
a situation was reproduced in the laboratory by fabricating a
PDMS microfluidic channel in which we pushed a solution of
hexadecane with dispersed water droplets coated with SPAN-
80 [Fig. 1(a)]. In this experiment, the channel consists of an
array of micropillars separated by a constant distance 2s0, and
the solution was pushed using a global pressure drop �P .
After successfully trapping droplets inside the channel, we
made the following observations: for a small pressure drop, the
droplets did not exhibit motion despite the surrounding fluid
flow. However, as �P reached a critical value, the smaller
droplet suddenly and rapidly permeated through the pillar
network. The larger one eventually exhibited a similar behavior
when subjected to a larger pressure. Although real porous
networks are typically more random, these simple observations
indicate that the permeation process is extremely fast compared
to pore clogging, which implies that the permeation of soft
colloids is a nonlinear process dominated by the latter. In
other words, the model needs to be accurate regarding the
critical pressure at which a particle permeates a pore, but it
may remain approximate regarding the dynamics of a particle

between constrictions. Hence, we constructed a numerical
model that considers the above system at two distinct scales:
(a) at the pore scale, we will use an accurate solution to
understand the critical pressure drop at which a particle is
allowed to permeate. (b) At the Darcy scale, the porous
network will be approximated as a network of long, cylindrical
channels with a central constriction [Figs. 1(a) and 1(b)]where
the flow will be resolved using the Hagen-Poiseuille solu-
tion. Our aim will be to quantify the effect of the porous
medium geometry and topology on particle transport at both
length scales.

Pore-scale physics have traditionally been investigated in
the context of micropipette aspiration [46], microfluidics [47],
and membrane filtration [48], among others. These studies
showed that a deformable particle would remain trapped by
a constriction unless the pore pressure (δp), i.e., the pres-
sure difference across the pore, exceeded a critical pressure
(δpc) [15]. For pressures below the threshold (δp � δpc), the
particles block the pore but do not permeate. For pressures
above the threshold (δp > δpc), the particle becomes unstable
and crosses the pore. We have recently characterized this
behavior via a pressure-displacement curve shown in the inset
of Fig. 1(c), which allows a evaluation of the critical pressure in
terms of its size, surface tension, adhesion, and pore geometry
[29]. We noticed that normalized solutions for different pore
shapes, or even two-dimensional (2D) versus (3D) models [see
the inset in Fig. 1(c)], follow the same trends. Hence, for the
sake of clarity, we concentrate here on toroidal, axisymmetric
pores [Fig. 1(c)] with internal constriction 2s. In this scenario,
δpc scales linearly with the factor 2γ /s and its value varies
with the relative size of the particles (R∗ = R/s), and to a
lesser extent, with the size of the pore (b∗ = b/s). We found
that a good estimation of the relationship between the critical
pressure and the normalized particle radius is provided by

δpc =
{

0 if R∗ � a,
2γ

s

(
1 − a

R∗
)

if R∗ > a,
(1)
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(b)          σ = 0.1

(c)          σ = 0.2 (d)          σ = 0.3

(a)          σ = 0

FIG. 2. Example of four networks at different values of the
randomness parameter σ = 0, 0.1, 0.2, and 0.4. The networks are
created in a domain Lx = Ly = [−1,1] for an average value s0 = 0.08
and b/s0 = 2. The lines represent all the pores in the system regardless
of their pressure or open or closed state.

where a is a constant depending on the pore shape and size
(b). In the rest of this article, we considered toroidal pores
with b∗ = 2, for which we obtained a = 1.068.

Let us now explore how this pore-scale response affects
the transport of particles at the Darcy scale. For this, we first
need to characterize the pressure distribution and fluid flow in
a porous medium modeled as a network of constricted pipes
[49,50]. A single pore is regarded here as the connection of
three axisymmetric sections connected in series: two wider
chambers with a permeability κ , and a central, narrower one
with a permeability κc representing the pore throat. For throat
diameters on the order of microns, flows are in the Stokes
regime so that the fluid flux q in a section can be determined
as q = −κ[p], where [p] is the pressure difference across the
chamber. Using the Hagen-Poiseuille solution, the permeabil-
ity can further be found as κ = πr4

8μL
, where r corresponds to

the radius of the section, μ is the viscosity of the fluid, and L is
the length of the chamber. Note that these assumptions would
break down for larger Reynolds numbers (i.e., larger pores or
small viscosities).

Such a network of pipes was constructed in a rectangular,
two-dimensional domain � = 2Lx × 2Ly , where pores are
generated with a periodic Voronoi diagram based on the center
of randomly located circular obstacles (Fig. 2). The channel
constrictions are then determined based on the space between
obstacles. Hence, the network geometry is characterized by
three main parameters: (i) the size b of the obstacles, (ii) the
average distance 2s0 between them, and (iii) the randomness σ

of their location (see Appendix A for details on obstacle collo-
cation). As shown in Fig. 2, σ is a measure of the disturbance of
the obstacle location from that of a perfect lattice arrangement.
We found that as long as σ � 0.3, the obstacles do not exces-
sively overlap, and the pore size follows a truncated normal
distribution fs ∼ N (s,σ ). This is consistent with the fact that
most porous networks are characterized by the distributions of
their pores throats fs , which are commonly taken as log-normal

or truncated normal distributions [51]. We therefore limit
ourselves to this range for the remainder of the paper. The
network is then solved considering the pressure at each node
in the vector p, and determining its value by enforcing the
local balance of mass on each node (

∑
q = 0). This leads to

the linear system K p = 0, where K is the node conductance
matrix [52]. To account for the fact that we are only modeling
a portion of a larger porous media, we solved the system
using periodic boundary conditions enforcing equal flux on
each boundary (qleft = qright and qtop = qbottom) and a vertical
pressure drop �P (pleft = pright and pbottom = ptop + �P ).

Let us now consider the motion of a single particle within
this network. In this context, we recognize that the particle’s
effect is twofold: (a) if the particle is in a constriction whose
pressure drop [p] is below its critical value, it remains im-
mobile, and the pore permeability is significantly reduced. In
this study, we assume that the permeability vanishes (κc = 0).
Hence, the trapped particle divides the pore into two chambers
of constant pressure and zero flux whose values are determined
by solving the previous linear system. (b) If the local pressure
drop [p] exceeds its critical value, the particle will cross the
pore. In other words, there is a two-way coupling between fluid
and particle transport. When the particle is trapped, it blocks
a single pore and locally redistributes flow and pressures.
This redistribution may feed back onto the particle and either
accelerate or postpone its permeation depending on the local
network topology. Hence, we will define the pore pressure (δp)
on channel i as the pressure drop [p] obtained by solving the
linear system with κi

c = 0. This corresponds to the effective
pressure applied to a trapped particle.

Finally, let us introduce the following normalization on the
pressure gradient: ∇P ∗ = ∇P (L2

y/γ ), which will allow us to
concentrate on the effects of particle size (R∗) and network
uniformity (σ ). Using this normalization, we further performed
a convergence analysis to determine the optimal network size to
avoid boundary effects. We observed that for a square domain
and parameter s∗

0 = s0/Ly � 0.015, the distributions for both
the pore size and nodal pressures converged with an error below
1%, so we will stay in this range for the remainder of the
paper.

III. NETWORK PERMEABILITY
AND PERCOLATION THEORY

To determine whether a particle can percolate through the
pore network, one needs first to estimate its chances of passing
through a series of constrictions whose pressure drop δp is
larger than the critical value δpc. For this, let us split the pore
population into three categories (Fig. 3): (i) wide pores (with a
number fraction Ow) are characterized by a throat size that is
larger than the particle (i.e., δpc = 0); (ii) narrow pores (with
a number fraction On), whose size is smaller than the particles
(δpc > 0); and (iii) blocked pores (with a number fraction Ob)
that can never be crossed because the obstacles are touching
or overlapping (s < 0). This information can be found via the
knowledge of the pore throat distribution fs as

Ow = 1 − P (s � R) and Ob = P (s � 0), (2)

where P is the cumulative distribution of fs . Because these
pores span the entire pore population, the number fractions
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FIG. 3. (a) Scheme of the pore classification according to their geometry [wide (Oc), narrow (On), and blocked (Ob)] and their status
[opened (π ) or closed (1 − π )]. These two classifications are related via the pressure drop �P , which determines the proportion of narrow,
open pores G. (b) Evolution of the probability π as a function of the pressure. The three insets show a pore network at different pressure drops
in which the channels where δp > δpc (regardless of their connectivity) are depicted with black lines.

satisfy the condition Ow + On + Ob = 1. To relate these frac-
tions to particle transport, we further subdivide the population
of narrow pores by their open (particles permeate through
them) and closed (particles do not permeate through them)
fractions G and 1 − G, respectively. It is clear here that the
fraction G = G(�P ) is dependent on pressure gradient, i.e.,
for low pressure gradient G → 0, while when the pressure is
large, all pores are open and G → 1. Based on this classifica-
tion, the total fraction of open (π ) and closed (1 − π ) pores is
written, respectively, as

π = Ow + OnG, (3a)

1 − π = Ob + (1 − G)On. (3b)

Note that both G and π are monotonically increasing
functions of the pressure. Indeed, for pressures close to zero
(G → 0), the particle can only permeate through those spaces
that require no deformation, π = Ow. As this pressure in-
creases, more constrictions become permeable (not necessarily
connected) until the total amount of open pores reaches its
maximum at π = 1 − Ob (Fig. 3).

Interestingly, once the proportion (π ) of open pores is
known, it is possible to estimate particle permeation through
the porous medium by determining the probability θ of finding
an open path that connects both ends of the network. This
quantity might be estimated with directed bond percolation
via the power law

θ (∇P )

{
0 if π < πc,

∼ [π (∇P ) − πc]β if π > πc,
(4)

where πc and β are constants that only depend on network
topology and dimension. On the one hand, the exponent β is a
universal constant that only varies with the spatial dimension of
the problem [53]. For the two-dimensional lattices considered
in this article, this value is estimated at β = 0.277 [54]. On the
other hand, πc corresponds to the percolation threshold that

separates an absorbing (i.e., no particles permeating) from a
percolating state. This value is also completely independent of
the physics discussed here and depends only on the dimension
of the problem and the pore lattice [55].

From (3) and (4), it is clear that our understanding of particle
permeation eventually relies on finding the probability function
G(�P ), interpreted here as the likelihood that δp > δpc for any
pore in the network. To this end, if we introduce the probability
distribution f∩ of finding a pore with given values of δp and
δpc, the fraction G is then found as the integral

G =
∫ ∞

0

(∫ ∞

δpc

f∩(δpc,δp)d(δp)

)
d(δpc). (5)

To determine the distribution f∩, we note that the cal-
culation of the pore pressure (δp) does not depend on the
pore-particle properties, i.e., it is only a function of the network
topology. In contrast, the critical permeation pressure (δpc) is
exclusively a function of the pore-scale characteristics (size
and shape of the pore) and does not depend on the pore
location within the network. As a consequence, the vari-
ables δpc and δp can be treated as independent, and the
probability density f∩ becomes the product of two simple
probability functions:

f∩ = fcfp, (6)

where fc and fp denote, respectively, the probability density
function of δpc and δp in narrow pores. Let us next determine
their expressions in terms of network and particle properties.

A. Probability density function of the critical pressure (δpc)

Since the probability distribution fs of the pore throats
is known from the network geometry, it is possible to find
the distribution of any continuous and differentiable func-
tion that depends on fs . In particular, using the relation
δpc = δpc(s) established in Eq. (1), we can write the actual

042607-4



MECHANICAL INSTABILITY AND PERCOLATION OF … PHYSICAL REVIEW E 97, 042607 (2018)

0 200
0.000

0.018

0 200
0.000

0.072

(b)(a)

fc

Critical pressure, δpc*

σ = 0.1
σ = 0.2
σ = 0.3

0

0.018

R*=1.5

R*=3
fc

R*=1

0 200
0

0.02

γ=2γ0

γ=γ0

γ=γ0/2

fc

δpc*

fp

Pore pressure, δp*

∇P* = 1000
∇P* = 2000
∇P* = 3000

0

20

σ = 0.1
σ = 0.2
σ = 0.3

μp

0 1000
0

20 σ = 0.1
σ = 0.2
σ = 0.3

σp

ΔP*

FIG. 4. (a) Density distribution of the critical pressure on three different networks with σ = 0.1, 0.2, and 0.3. The top inset shows the
same curves for three different values of the relative radius R∗, and the bottom one is the same problem but for three different values of the
surface tension, where we took γ0 = 1. (b) Density distribution of the pore pressure for three different values of the relative pressure gradient
applied to the system. The two insets show the evolution of the mean and standard deviation of the pore pressure in three different networks
(σ = 0.1−0.3).

density distribution of the critical pressure in narrow pores as
(Appendix B)

fc = s2

2γ

fs

On

, (7)

where s(δpc) is found by inverting Eq. (1). Figure 4(a) shows
the distribution of the critical pressure on three networks
characterized by different values of sigma (σ = 0.1, 0.2,
and 0.3). As expected, in uniform networks (small σ ), the
distribution is concentrated around the average value δpc(s0).
This distribution, however, tends to spread out as the network
loses regularity. We also note that the peak of the distribution
shifts to lower pressure values, which is a consequence of
finding more wide pores in the network. The effects of surface
tension and the relative radius of the particles are further shown
in the insets of Fig. 4. We see there that those two parameters
exhibit similar trends: a lower surface tension γ or small
particle size R∗ improve particle permeation by lowering their
critical pressure δpc.

B. Probability density function of the pore pressure (δp)

This distribution was found by fitting the results given by nu-
merical simulations. More specifically, for a given macroscopic
pressure drop, the value of δp on each pore was determined by
setting its permeability to zero to simulate a blocked particle
in the pore. This process was then repeated on a large number
of network models following the same statistics until the
histograms converged with an error below 1%. The results
showed that for values of σ < 0.3, the pore pressure in narrow
pores is well approximated by a normal distribution as

fp ∼ N (μp; σp), (8)

where μp and σp are, respectively, the mean and standard
deviation. Appendix C shows the details of the calculation
as well as the obtained values of μp and σp for each value
of σ . Additionally, since the solution comes from a linear

system, this distribution will also scale linearly with the applied
pressure, i.e., μp = ∇P ∗μ1

p and σp = ∇P ∗σ 1
p , where μ1

p and
σ 1

p correspond to the solution at ∇P ∗ = 1. As a result, the
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FIG. 5. Evolution of the probability π with the applied pressure
on the system. (a) The probability is plotted for three different particles
with radii R∗ = 1, 1.5, and 3 and a network with parameter σ = 0.2.
(b) The same curves are plotted here for four different networks with
values of σ = 0, 0.1, 0.2, 0.3, and a radius R∗ = 1.5. The vertical
bars in both graphics correspond to the numerical histograms of the
network for two different values of σ = 0.1 and 0.2 and a particle of
radius R∗ = 1.5.
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with σ = 0, 0.1, 0.2, and 0.3. (c) The insets A, B, and C show three examples of the obtained percolation network at π < πc, π = πc, and
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function fp translates to higher values and spreads out as the
macroscopic pressure gradient ∇P increases [Fig. 4(b)]. We
further found that while the mean pore pressure μp is not
very sensitive to network uniformity σ [insets in Fig. 4(b)],
the standard deviation σp does increase with σ .

By introducing expressions (7) and (8) into (3a) and (5), it
is now possible to express how the proportion of open pores
(π ) grows with applied pressure drop �P . Furthermore, it is
possible to understand the effect of geometrical parameters
such as pore shape, particle size, and surface tension via
the functions fc and fp. However, since there is no simple
analytical solution for the integral in (5) and the obtained
distributions, we used numerical integration (Appendix D)
to obtain the results shown in Fig. 5 for different scenarios.
These results were further verified by computing the actual
value of π from direct numerical simulations where π was
determined as the average number of open pores (δpc > δp)
divided by the total number of pores. The results plotted in
Fig. 5 correspond to a total number of networks such that the
histograms converged with an error below 1%. We observe
an excellent agreement between the numerical results and our
predictions, with a maximum relative error of 1.2% between
the analytical and numerical predictions. The results show how
the amount of open pores at zero pressure (Ow) decreases
with particle size and network uniformity (low σ ). A similar
observation can be made for blocked pores (Ob) as we are less
likely to find them in regular networks or for large particles.
We further see that the proportion of open pores increases
nonlinearly with the pressure gradient with a steeper increase
around δpc(s0) [Fig. 5(b)], the pressure at which approximately
half the narrow pores open. As the network becomes more
regular, both the distributions δpc and δp become more uniform
and the transition between closed and open pores occurs at a

narrower region of the applied pressure. As expected, when
σ = 0, the distribution becomes a perfect step function.

To close this section, we need to determine the value of πc.
For this, we defined θ as the fraction of top nodes connected
(via open pores) to the bottom edge at a given pressure. Its value
was then determined by simulating several random scenarios
until the values converged. We noticed that a minimum domain
of Ly = 3Lx was needed to avoid boundary effects in the
computation of θ ; see Fig. 6(a). Knowing the functions of
π (�P ) and θ (�P ), we can construct the percolation curve
(θ − π ) and determine πc by fitting θ = (π − πc)0.277. We
found that πc varies nonlinearly from 0.64 to approximately
0.6 when σ = 0.3, which is consistent with values reported in
the literature (πc = 0.6447) for square lattices in a diagonal
direction [56].

IV. RESULTS AND DISCUSSION

We are now in a position to explore how the probability
θ relates to the overall permeability of particles through the
network. In Fig. 6 we plot the evolution of this probability as a
function of the applied pressure and for different variations
of the particle size and network randomness. Two main
observations can be drawn from these results.

(i) There is a critical pressure ∇Pc analogous to πc below
which there is no droplet permeation. This pressure increases
with the particle size and network uniformity. The effect of
droplet size is expected since larger particles typically require
more pressure to permeate the same pore [Fig. 1(c)]. The
effect of network uniformity is, however, less intuitive and
may be interpreted by the fact that nonuniform networks
(larger σ ) have a larger chance of creating a wider path (with
lower ∇Pc). These networks also possess a larger number of
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FIG. 7. (a) Phase diagram of the three different permeating stages of the porous network as a function of the relative particle radius R∗,
network uniformity σ , and applied pressure ∇P ∗. Slices of the phase diagram at the values of σ = 0.2 (b) and R∗ = 1.5 (c) showing the
variation of the minimum pressure (or ∇P ∗

c ) and the semipermeable or permeable distinction.

narrower throats; this means that a higher pressure is required
to converge to θ = 1 − Ob. Furthermore, the numerical curves
exhibit a small tail around �Pc, which induces imprecisions
in the numerical evaluation of �Pc. This is a consequence of
the finite size of our system, and it is known to disappear as
the domain becomes infinite [57,58].

(ii) The behavior predicted by these curves is divided into
three stages. The network is (a) droplet-impermeable below
∇Pc, i.e., only the fluid is able to permeate. Once this value is
reached, there is a sharp increment around (∇P = ∇Pc) where
the network undergoes a (b) weakly permeable transition as θ

increases rapidly. In this regime, the number of available paths
reduces as the droplet moves through the network [Fig. 6(c)].
Finally, the network becomes strongly permeable (c) when the
majority of pores are open. In this regime, the probability θ

keeps increasing with pressure, but this occurs at a much lower
rate. The size of the clusters exhibited in each of these three
regions is also given by universal exponents and the critical
pressure. Hence, given the probability p, their values are only
a function of each lattice type [53].

Interestingly, when the applied pressure is relatively low, the
trajectory taken by the droplet eventually tends to converge
to a single path [regime A and B, Fig. 6(c)]. To understand
this, we first note that the trajectory chosen by a droplet at
a junction between pores [59,60] is driven by the direction
of maximum fluid velocity. Consequently, particles tend to
be attracted to series of connected pores in which the fluid
velocity is maximum, which is analogous to the enhanced
fluid flux when a crack is present in fractured porous media
[61,62]. This implies that soft particles in a dilute system are
inevitably attracted and concentrate in a specific region within
the network, while other regions remain totally unexplored.
This effect, however, disappears for larger pressures since
particles are allowed to permeate more pores.

To better understand the distinct roles of particles and
network on permeation, we show in Fig. 7(a) a phase diagram
showing the three regions (A, B, and C) in the parameter
space (R∗,σ ). In this diagram, the boundary between regions
A and B is given by the condition ∇P = ∇Pc, while the

boundary between B and C is chosen as the value of ∇P

when 50% of narrow pores are open (corresponding to a global
probability θ ≈ 0.7). The diagram shows that the weakly
permeable regime (B) only exists as the network becomes
nonuniform. Indeed, highly uniform networks tend to have
an “all or nothing” response in which all pores open at the
same critical pressure, Fig. 6(b). This response smoothes out
as lattice disorder is introduced. A similar effect is observed as
the relative size of the particle is varied; smaller particles tend
to percolate at a smaller range of pressures reducing the range
of the weakly permeable regime.

V. CONCLUSIONS

In summary, we presented a theoretical framework based
on directed percolation in order to describe the permeation
of soft particles in random pore networks. Focusing on a
dilute concentration of particles whose size is comparable
to that of the pores, we found that permeation is a highly
nonlinear function of applied pressure. The model predicts the
existence of three regimes of permeation: (a) when the applied
pressure is smaller than a critical value, particles are unable
to permeate the pores and remain jammed in the network.
(b) When the applied pressure exceeds this critical value, the
system enters a so-called weakly permeable regime, during
which particles tend to converge to predefined trajectories and
thus only explore limited regions of the network. (c) When
the applied pressure is large, particles are able to permeate
through most of the pores in the network, and a strongly
permeable regime is observed. Importantly, our model shows
how these behaviors vary in terms of particle size, properties,
and network geometry. A phase diagram was constructed to
visualize the effect of these physical parameters on the system’s
response. This may provide a useful tool with which one can
tune the operational pressure �P applied on a membrane or
microfluidic device in order to meet a particular objective such
as permeation, separation, or trapping.

On a final note, while this work concentrated on simple
droplets (characterized by their size and surface tension) and
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pore shapes (toroidal), it is possible to include other important
physics related to varying pore shape, size, or even pore-
droplet adhesion. This can be done by modifying the critical
pressure defined in Eq. (1) based on previous studies [29].
Furthermore, the role of particle kinetics was not explored,
but we expect it to play a large role in subsequent jamming at
higher concentrations. Future models may, therefore, include
the time necessary to permeate a pore, which can be determined
via time-dependent pore-scale models of particle permeation
[15,20,22]. Viscoelastic models of particle deformation should
also be considered in the future [63]. We further expect the
system’s behavior to deviate from our predictions when the
droplet concentration increases above the dilute regime. In
this situation, the presence of multiple droplets will tend to
drastically change the pressure distribution on the network
and probably lower the critical pressure for permeation as
predicted in a previous study [43]. Further research effort
will, therefore, be necessary to fundamentally understand the
motion of soft particles or macromolecules in porous media
under the action of driving pressure, self-propulsion [64], and
more. Applications in particle separation, filtration, sorting,
as well as our ability to control macromolecule transport in
polymers for tissue engineering [65–67] will depend critically
on this understanding.
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APPENDIX A: NETWORK CONSTRUCTION

We describe here the general approach taken to construct a
random network of pores inside a square domain 2Lx × 2Ly .
We start by locating a diamond grid of equally spaced, circular
obstacles of radius b, where the space left between two
obstacles is 2s0; see case σ = 0 in Fig. 2. The randomness
is then introduced by moving the center of each obstacle (xi)
a random distance and direction dx = [dx,dy], where dx and
dy are taken from a random normal distribution N (0,σs). For
convenience, we took σs = 2s0σ , where σ is a parameter that
allows us to control the level of randomness in the system.
The final position of the pores is obtained by generating
a Voronoi diagram based on the resulting location of the
obstacles’ center. The throat size of each pore is then assigned
as the minimum distance between the edges of the circles.
This method, however, introduces a lot of small-sized pores
that simply connect different nodes at the junctions but which
have no constriction; they are part Ow. Hence, we only use the
word “pores” to refer to those connections in the system whose
length is at least as long as the obstacle (2b). Using these rules,
we observed that the resulting pore throats follow a normal
distribution such that

s ∼ N (s0,σ s0), (A1)

where s0 and σs0 are the mean and standard deviation,
respectively.

APPENDIX B: CRITICAL PRESSURE DISTRIBUTION

The critical pressure is a magnitude that can only be defined
in narrow pores (0 < s < R). Additionally, we know from
Eq. (1) that δpc is related to s by the following expression:

s = 2γR

δpcR + 2γ a
, (B1)

so we can redefine the distribution of δpc as a conditional
probability density function fc = fc(δpc|0 < s < R), i.e., the
probability density of δpc constrained to the narrow pores.
Since the distribution of pore throats fs is known, we can use
Eq. (B1) to derive the distribution of fc. For this, we start by
building the cumulative distribution of the critical pressure (Pc)
and write

Pc = 1 − P (δpc > X|0 < s < R), (B2)

where X is any given value of δpc. Using the Bayes theorem,
we can rewrite this function as

Pc = 1 − P (0 < s < R|δpc > X)P (δpc > X)

P (0 < s < R)
, (B3)

where the probability P (0 < s < R|δpc > X) is equal to 1
since constrictions with nonzero critical pressure will naturally
be narrow pores. The bottom probability P (0 < s < R) simply
corresponds to the fraction of narrow pores, or On. Hence, we
can rewrite the value of Pc as

Pc = 1 − P (δpc > X)

On

. (B4)

From Eq. (B1) we can directly establish that the probability
P (δpc > X) is equivalent to P [0 < s < s(X)], which is found
using the cumulative density distribution of the pore size.
Based on that, we can write

Pc = 1 − P [s < s(X)] − Ob

On

. (B5)

Finally, the probability density can be found by taking the
derivative as

fc = ∂Pc

∂(δpc)
= − fs

On

∂s

∂(δpc)

= 2γR2

(δpcR + 2γ a)

fs

On

= s2

2γ

fs

On

,

which implies that the distribution of the critical pressure given
a particle size can be directly found from the distribution of
pore throats.

APPENDIX C: PORE PRESSURE DISTRIBUTION

Our simulations showed that the distribution of the pore
pressure was strongly correlated with the pore throat distribu-
tion. To determine this relationship in a single network, we first
computed the pore pressure (δp) for each channel at a pressure
gradient �P ∗ = 1. Then, we constructed the corresponding
frequency histogram based on the obtained results. This pro-
cess was repeated for a large number of networks until the
average of the histograms converged with an error below 1%.
We observed that for the range 0 < σ < 0.3, the normalized
histogram of the pore pressure is well approximated by a
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truncated normal distribution. The parameters of this normal
were found next using least-squares fitting. The following table
summarizes the obtained values for a normalized network with
s∗ = 0.015, b∗ = 0.015, and Ly = 3Lx :

σ μ1
p σ 1

p

0 0.0208 0
0.1 0.0245 0.0087
0.2 0.0276 0.0159
0.3 0.0265 0.0205

APPENDIX D: PROBABILITY OF CROSSING
A NARROW PORE (G)

The probability of crossing a single pore depends on the
probability distribution of both the critical pressure and the
pore pressure. Hence, this result might vary among problems.
In this work, we obtained two normal distributions, which can
be introduced here to obtain

G =
∫ ∞

0

s2e
− (s̄−s)2

2σ2
s

2γOn

√
2πσs

⎛
⎜⎝

∫ ∞

δpc

e
− (δ̄p−δp)2

2σ2
p

√
2πσp

d(δp)

⎞
⎟⎠d(δpc). (D1)

Since our system is originally defined based on the distribution
of pore sizes, we can integrate the second part and introduce

a change of variable as defined in Eq. (B1). Hence, we obtain
an integral on the pore distribution as

G =
∫ R/a

0

[
1 − erf

(
δpc(s)−δ̄p

σp

√
2

)]
e
− (s̄−s)2

2σ2
s ds

On

√
2πσs

. (D2)

This equation can be further simplified to obtain the follow-
ing expression:

G = A − B

∫ R/a

0
erf

(
C

s
− D

)
e
− (s̄−s)2

2σ2 ds, (D3)

where

A = − 1

4On

erf

(
R/a + s̄√

2σ

)
,

B = 1

2On

√
2πσ 2

,

C = 2γ√
2σp

,

D = − 2

γ a
R

√
2σp − μp

σp

,

which was integrated numerically.
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