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We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing
a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are
equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion
of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The
temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed
points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of
the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal
variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that
lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the
complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR
that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform
complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a
desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by
the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to
navigate through complex information landscapes with such a simple NCS whose internal state can be stored in
one bit. These ideas may prove useful for the engineering of miniaturized robots.
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I. INTRODUCTION

As early as 1959, Feynman discussed the technology trans-
fer from the macro- to the microscale, a highly relevant field
of research nowadays in terms of medical applications such as
targeted drug delivery and microsurgery [1]. In recent years, the
remarkable advance of nanoscience has made the fabrication
of synthetic and molecular machines such as sensors and
actuators possible [2–4]. Moreover, micrometer-sized devices
capable of moving autonomously in a fluid are already a reality.
We refer to these microdevices as microrobots. Microrobots
can transport cargo and invade cells; healthcare applications
for early diagnosis, targeted drug delivery, and/or nanosurgery
appear therefore realizable in the not too distant future [5–8].
There exists a large variety of microrobots, rigid and soft ones,
whose self-propulsion can be achieved via electrical, chemical,
and/or optical stimulation [5–8]. The direction of navigation
of these devices can be controlled remotely, for instance via
a magnetic field in chemically driven nanorods [4]. However,
the ultimate goal is to design and fabricate microrobots with
a programmable, autonomous navigation system on board
integrating sensors, an energy source, and actuators. At present,
the miniaturization of autonomous robots has advanced to
the millimeter scale [9,10]. Further progress along these lines
requires the development of minimal yet robust algorithms in
the sense that they should work reliably in the presence of noise.

Physical properties of small-size objects, e.g. at the mi-
croscale, impose technical constraints on the design of micro-
robots: Viscous forces dominate over inertial ones, fluctuations
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of thermal origin are not negligible, and the instantaneous
sensing of external signals can only involve local values,
never gradients [11–13]. For this reason, here we consider a
class of autonomous, self-propelled particles, which we refer
to as Markovian robots (MR), that move at constant speed,
are subject to fluctuations, and can only sense local values
of an external field (see Fig. 1). Notice that we adopt the
same constraints small objects are subjected to, but we do
not need to assume necessarily that we work at microscopic
scales: The proposed navigation strategies are also of interest
for macroscopic robots exposed to weakly modulated signals.
Nevertheless, the long-term motivation of this study is to
pave the way for the engineering, in a near future, of tiny,
autonomous robots. With this intention in mind, we aim at
conceiving simple machines that are able to navigate across
a complex field—providing valuable information clues—in
an autonomous way with a minimum of information storage
capacity. Specifically, we equip these machines with a nav-
igation control system (NCS) that triggers random changes
in the self-propulsion direction of the robots. An essential
aspect of the NCS is that it exhibits only two internal states,
meaning that the NCS state can be stored in a single internal
Boolean variable that adopts two values. Transitions between
these Boolean values are determined by a closed Markov chain,
with transition rates that may depend on the instantaneous local
value of the external field; see Fig. 1 for sketches of the two
relevant NCS discussed in this work. Only one of the transition
pathways in the closed two-state Markov chain triggers random
reorientation in the moving direction. It is worth noticing
that the closed-loop nature of the investigated Markov chains
ensures the constant resetting of the internal Boolean variable,
preventing the presence of fixed points in the dynamics of
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FIG. 1. Illustration of the general dynamics of Markovian robots.
A robot that had initially moved from left to right in an external field
c(x) changed its direction of active motion after some time �t . The
navigation control system (NCS) controls the moving direction of the
robot, by triggering reorientation events. It is connected to a sensor
which measures the local field values. The internal state of the NCS
is given by a single Boolean variable adopting the values 1 or 2. The
NCS dynamics obeys a closed Markov chain, with transition rates
that may depend on the value of the external field as measured by
the sensor. The red arrow corresponds to the transition that triggers a
reorientation event.

this variable. Importantly, the NCS does not store previous
measurements in the form of internal continuous variables,
preventing a priori any mathematical operation to estimate
the gradient of the external field. We show that despite the
strong requested constraints, it is possible to conceive closed
Markov chain motifs that lead to nontrivial motility behaviors.
By analytically reducing the complexity in the NCS dynamics,
we obtain an effective description of the long-time motility
behavior of the MR that allows us to identify the minimum
requirements in the design of NCS motifs and transition rates
to perform complex navigation tasks such as adaptive gradient
following, detection of minima or maxima, or selection of a
desired value in a dynamical, external field. We show that MR
exhibit nontrivial motility behaviors in one, two, and three
dimensions.

We put these concepts into practice by assembling a
macroscopic robot that operates by the proposed NCS and
is subjected to the constraints indicated above. A series of
statistical tests allows us to assess the robustness of the pro-
posed minimalistic navigation algorithms. The performance
of the robot provides solid evidence in favor of the practical
interest of these ideas as well as a proof of concept that is
possible to navigate through a complex information landscape
with only 1 bit of memory. These ideas may prove of help in
the engineering of miniature robots.

The minimalistic navigation strategies discussed here are
fundamentally different from bacterial chemotactic strategies
[12–20] as explained in the following. In Ref. [14], Celani and
Vergassola have cleverly shown that bacterial chemotaxis can
be described in a Markovian way by enlarging the space of
variables, beyond position and velocity variables, to include
continuous (as opposed to Boolean) internal variables. The

temporal dynamics of these continuous variables obeys a
chain of ordinary differential equations, where the first of
them depends on the external field. The frequency of changes
in the moving direction of the bacterium is a function of these
variables. According to Ref. [14], chemotactic behavior is
already obtained by keeping the first two of these internal
continuous variables. The past measurements are encoded
by these continuous variables [14], that, from an algorithmic
point of view, need to be constantly updated; see Fig. 2. These
dynamical variables are somehow connected to intracellular
chemical species; see Ref. [21] for more details. It is worth
mentioning that mathematical procedures similar to the ones
utilized here have also been used in the context of bacterial
chemotaxis, namely a reduction of a complex internal dynam-
ics in order to obtain the effective long-time motility behavior;
see, e.g., Refs. [14,15,22]. However, we stress that the analogy
between bacterial chemotaxis and the navigation strategies
discussed here is limited to the observations that both strategies
are Markovian and make use of internal states. Notably, there
is no direct link between them; see Fig. 2 for a comparison at
the algorithmic level. The differences become evident when
looking closely: Here, we discuss navigation strategies that
make use of a single internal Boolean variable to describe
the internal state of the moving entity, while in Ref. [14] the
internal state of the bacterium is described by (a minimum of)
two continuous variables. From this, it is evident that MR have
only two possible internal states, while in Ref. [14] the internal
state of a bacterium is given by vector q = (A,B), with A � 0
and B � 0 being two internal continuous variables, implying
that there is an infinite (or at least a very large) number of
potential internal states. Furthermore, the temporal evolution
of the continuous variables A and B is given, as indicated
above, by a hierarchy of ordinary differential equations, while
in MR the temporal evolution of the Boolean variable is given
by a closed Markov chain. The differences between both
strategies are evident even for a trivial scenario where the
external field is constant. The internal variables A and B would
converge in this scenario to a fixed point and, thus, the internal
state reaches a stationary state. In contrast, the internal state
of MR never converges to a stationary value but oscillates ad
infinitum. Another indication of how different these strategies
are is the following: The frequency at which the direction of
motion changes in the model [14] is a function of the internal
state, i.e., Q(A,B) in Fig. 2, while that is not the case for MR.
In summary, the mathematical structures of both strategies
are, analytically and algorithmically, fundamentally different.

While the goal of bacterial chemotaxis models is to under-
stand bacterial navigation, we aim here at conceiving minimal
navigation algorithms to engineer simple self-propelled robots.
Our intention is to provide new perspectives on the engineering
of artificial active particles [23–26] by concentrating on the
design of the navigation control system, while previous studies
primarily focused on the design of autonomous self-propulsion
mechanisms [27–33].

II. MARKOVIAN ROBOTS

In this section, several variants of MR are introduced
with a particular focus on their capability of responding
to a static, external (scalar) field. At first, the general
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FIG. 2. Flowcharts of the algorithms for bacterial chemotaxis, according to Ref. [14], and Markovian robots (MR), motifs 1 and 2. The
initial condition is not explicitly shown. Notice the presence of two continuous variables, A and B, for bacterial chemotaxis, which are absent
for MRs. Further, we point out that the dynamics of A and B evolves toward a fixed point for constant c(x), implying that the internal state
in the bacterial chemotaxis model reaches a steady state. In MR, on the other hand, the internal state always oscillates. The symbols Q, α, β,
and γ refer to transition rates, �t to the time step, c(x) to the value of the external field at position x, v0 to the speed, and s to the moving
direction (+1 or −1) in one dimension; rnd() is a uniformly distributed, random number between 0 and 1. The definitions of α, β, and γ are
provided in the main text; notice that these rates do only depend on c(x). On the other hand, Q(A,B) is a function of the internal state itself,
Q(A,B) = d1 A − d2 B, where d1 and d2 as well as a and b are constant; for details on the bacterial chemotaxis algorithm see Ref. [14].

dynamics in space—equal for all model variants—is formu-
lated. Subsequently, several examples of increasing complexity
of the internal robot dynamics, which controls the occurrence
of reorientation events, are studied. In particular, an effective
Langevin dynamics is derived analytically for each case, which
reveals the large-scale robot dynamics in the diffusive limit.
These concepts are illustrated within a didactic introduction
first by means of a simplified version of the model where the
reorientation rate is directly a function of the external field.

A. Spatial dynamics

Throughout, individual robots are assumed to move at
constant speed v0 by means of an active self-propulsion mech-
anism. For simplicity, we focus on one-dimensional systems
of linear size L; generalizations to higher dimensions are
discussed in Sec. IV. In one dimension, the dynamics of the
robot is given by

ẋ(t) = v0s(t) +
√

2D0 ξ (t), (1)

where x(t) is the position of the robot at time t , v0 denotes
its active speed, D0 is the bare diffusivity in the absence of
active motion (v0 = 0), ξ (t) abbreviates white Gaussian noise,
and s(t) ∈ {−1,1} indicates the direction of active motion
at time t . The temporal dynamics of s(t) is controlled by a
navigation control system (abbreviated NCS for short in the
following), which we consider to operate with one internal
Boolean variable that adopts two values. The dynamics of
this internal Boolean variable is dictated by a closed Markov
chain; see Fig. 1, which illustrates several NCS motifs and
the robot dynamics. Notice that the dynamics of the NCS is
affected by the external field c(x) via the c dependency of the
transition rates. In all of these motifs, there is one particular
transition leading to state 1 (depicted by a red, dashed arrow

in Fig. 1), which triggers a reversal of the driving engine and
thus induces the inversion of the direction of active motion of
the robot: s(t) → −s(t). Given a certain NCS motif, we want
to understand the motility response of the robot to an external
field c(x). This is addressed in the following.

B. A didactic introduction

We start by studying the long-time behavior of the simplest
possible scenario where the reorientation rate depends directly
on the external field; i.e., there is no internal dynamics. Let
us stress that we use this case as a didactic introduction to
illustrate a series of fundamental concepts that will allow us
to obtain a simplified long-time dynamics of NCS motifs of
higher complexity (NCS motifs 1 and 2). Here, reversal events
occur at a rate α[c], which depends on the external signal
c(x). The temporal evolution of the system can be expressed
in terms of the probabilities P +(x,t) and P −(x,t) to find a
robot at position x at time t moving to the right and to the left,
respectively. The associated master equation [34] reads

∂tP
+ = −v0∂xP

+ − α[c]P + + α[c]P − + D0∂
2
xP +, (2a)

∂tP
− = v0∂xP

− − α[c]P − + α[c]P + + D0∂
2
xP −. (2b)

By introducing the new variables P (x,t) = P +(x,t) +
P −(x,t) and m(x,t) = P +(x,t) − P −(x,t), we recast Eq. (2)
into

∂tP = −v0∂xm + D0∂
2
xP, (3a)

∂tm = −v0∂xP + D0∂
2
xm − 2α[c]m. (3b)

The variable of interest is P (x,t), representing the prob-
ability of finding the robot at position x at time t . Since
the local dynamics of m(x,t) [Eq. (3b)] is faster than P (x,t)
[Eq. (3a)] and we are interested in the long-time behavior of the
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latter, we approximately set ∂tm ≈ 0, enabling us to express
m ≈ − v0

2α
∂xP to lowest order in spatial gradients. Inserting this

expression into Eq. (3a) yields the following effective equation
for the density:

∂tP = ∂x

[(
D0 + v2

0

2α[c]

)
∂xP

]

= −∂x

[
P∂x

(
v2

0

2α[c]

)]
+ ∂2

x

[
P

(
D0 + v2

0

2α[c]

)]
. (4)

All details related to the reorientation dynamics were coarse
grained by deriving the effective scalar equation (4) for P (x,t).
This approach is valid as long as the mean distance traversed
by a robot in between two transitions is shorter than the
characteristic scales at which the external field varies.

C. Effective Langevin dynamics

Now we consider the inverse problem: Starting with Eq. (4)
for the density P (x,t), we aim at finding a suitable Langevin
equation in Ito’s interpretation [34,35] of the form

ẋ = f (x) +
√

2D(x) ξ (t), (5)

whose associated Fokker-Planck equation

∂tP = −∂x[Pf (x)] + ∂2
x [PD(x)] (6)

for the evolution of the density P (x,t) is structurally identical
to Eq. (4).1 This approach is advantageous in several regards.
By obtaining an effective drift term f (x) and an effective
diffusion coefficient D(x), we characterize the transport prop-
erties of the MR, encoding the details of the NCS in f (x) and
D(x). The physical interpretation of f (x) and D(x) as drift and
dispersion, respectively, results from the short-time solution of
Eq. (6) for the propagator [36]

P (x,t + τ |x ′,t) � 1√
4πD(x ′)τ

exp

{
− [x − x ′ − τf (x ′)]2

4D(x ′)τ

}
,

which determines the probability of finding a robot at position
x after a short observation time τ given that it was observed at
position x ′ at time t . Notably, the propagator provides a direct
way how to measure the mean local drift or bias f (x) as well
as the position-dependent dispersion D(x).

Knowing drift and diffusion coefficient, we can further
determine whether a NCS motif lets the MR display a long-time
motility response to the external field as follows. The steady-
state solution Ps(x) of Eq. (6) for no-flux boundary conditions
takes the form

Ps(x) = N
D(x)

exp

[∫ x

0
dx ′ f (x ′)

D(x ′)

]
(7)

with a normalization coefficient N . In general, a MR is
said not to exhibit a long-term response to a nonconstant
external field c(x) if the stationary density is constant, i.e.,
Ps(x) = P0 = const. Otherwise, the motif under consideration
induces a response in the sense that the coupling to the external
field increases or decreases the probability of finding a robot

1The use of Stratonovich’s interpretation leads to a different Fokker-
Planck equation [35].

in certain areas in space. The sign of the derivative of the
stationary density distribution is determined by the simple
criterion

∂xPs(x) ≷ 0 ⇔ f (x) ≷ ∂xD(x), (8)

which follows directly from Eq. (7). A constant density Ps(x)
requires all x dependencies in Eq. (7) to compensate each other.
This implies the specific relation f (x) = ∂xD(x) between drift
and diffusion. The nature and form of the response depends on
the topology of the motif and the functional form of the rates;
this is addressed further below.

Notice that it is possible to obtain a motility response to
an external field c(x) without involving biased motion. This is
evident from Eq. (7): If f (x) = 0 and D(x) is still a function
of x, a nontrivial, stationary density profile will emerge. This
kind of motility response is known in biology as chemokinesis.
In contrast, directed motion requires a nonvanishing f (x).
In biology, a motility response involving a bias is known as
chemotaxis.

For the introductory example considered above, the com-
parison of Eqs. (4) and (6) reveals

f (x) = ∂x

[
v2

0

2α[c(x)]

]
, D(x) = D0 + v2

0

2α[c(x)]
, (9)

which satisfies the above-mentioned relation, i.e., f (x) =
∂xD(x), implying Ps(x) = P0 = const. We observe that
though the diffusion depends on x and the local drift f (x)
is nonzero and varies over space, there is no long-time motility
response—the long-time density distribution is flat as noticed
when memory kernels were introduced [12,15]. Using the ter-
minology of chemotaxis, one can summarize that chemotactic
and chemokinetic parts compensate each other in this case.

In the following, the powerful approach outlined above
is used to express the motility response of MR in the form
of Eq. (5) for each motif illustrated in Fig. 1, where the
specific form of f (x) and D(x) depends on the motif under
consideration.

D. NCS motif 1: Up- and downgradient motion

Now, we focus on a more complex scenario where the
state of the navigation control system is given by an internal
Boolean variable that adopts two values: 1 and 2. The possible
transitions are 1 → 2 with rate α = α[c] and 2 → 1 with
rate β = β[c]. The latter transition triggers a reversal of the
direction of active motion. This is motif 1 in Fig. 1. Because
of the presence of two internal states, we introduce four
fields P +

i (x,t) and P −
i (x,t) with i = {1,2}, which denote the

probability of finding a robot at position x at time t with internal
state i moving to the right (+) and to the left (−), respectively.
The temporal evolution of these fields is determined by the
following master equation:

∂tP
+
1 = −v0∂xP

+
1 − α[c]P +

1 + β[c]P −
2 + D0∂

2
xP +

1 , (10a)

∂tP
−
1 = v0∂xP

−
1 − α[c]P −

1 + β[c]P +
2 + D0∂

2
xP −

1 , (10b)

∂tP
+
2 = −v0∂xP

+
2 − β[c]P +

2 + α[c]P +
1 + D0∂

2
xP +

2 , (10c)

∂tP
−
2 = v0∂xP

−
2 − β[c]P −

2 + α[c]P −
1 + D0∂

2
xP −

2 . (10d)
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By introducing the change of variables Pi = P +
i + P −

i and
mi = P +

i − P −
i , we recast Eq. (10) into two groups of equa-

tions for the densities Pi(x,t),

∂tP1 = −v0∂xm1 − α[c]P1 + β[c]P2 + D0∂
2
xP1,

∂tP2 = −v0∂xm2 + α[c]P1 − β[c]P2 + D0∂
2
xP2,

(11a)

and for the differences mi(x,t),

∂tm1 = −v0∂xP1 − α[c]m1 − β[c]m2 + D0∂
2
xm1,

∂tm2 = −v0∂xP2 + α[c]m1 − β[c]m2 + D0∂
2
xm2.

(11b)

This seemingly innocent change of variables simplifies the
problem substantially. If spatial derivatives in Eqs. (11) were
absent, Eqs. (11a) would decouple completely from Eqs. (11b).
Further, we note that the eigenvalues associated to the lo-
cal dynamics of Eqs. (11a) are λ1 = 0 and λ2 = −(α + β),
while the real parts of those associated to Eqs. (11b) are
both negative, i.e., Re[λ3], Re[λ4] < 0. The lesson is that in
the long-wavelength limit, there is one eigenvector whose
temporal evolution is slow while the other three are fast.
Accordingly, we can define a new set of four fields by linear
combination of those in Eqs. (11) in such a way that only one
of those fields is slow. Because of number conservation, the
total density P = P1 + P2, which is the primary quantity of
interest, is the slow field (λ1 = 0). In order to reduce Eqs. (11)
to the density dynamics, we request local equilibrium and
take ∂tm1 = ∂tm2 = 0, allowing us to express all fields as
function of P and spatial derivatives of it (see Appendix C
for further details). By keeping all terms up to second-order
spatial derivatives of the density P , we obtain an effective
Fokker-Planck equation, cf. Eq. (6), where f (x) and D(x)
adopt the form

f (x) = v2
0

2(α + β)

[
(β − α)∂x

(
1

α

)
+ (β + α)∂x

(
1

β

)]
,

(12a)

D(x) = D0 + v2
0

2

α2 + β2

αβ(α + β)
. (12b)

We highlight that α[c] = β[c] yields the relation f (x) =
∂xD(x) and, thus, the stationary density Ps(x) would be a
constant according to Eq. (7). In other words, we learn that we
need to require α[c] 	= β[c] and at least one of the rates should
depend on c(x) in a nontrivial way in order to design robots that
respond to the external field c(x). In the spatially homogeneous
case, the diffusion coefficient [Eq. (12b)] reduces to the
expression which was derived in Ref. [37].

The potentially simplest example that leads to upgradient
motion of MR is α[c] ∝ c(x) and β[c] = β0, where β0 is a
constant; see Fig. 3. It is interesting to observe that the robots
move downgradient if we make the opposite choice, namely
α = const. and β ∝ c(x). Thus, the previous discussion reveals
how the field dependence of the transition rates controls
whether robots tend to move up- or downgradient.

Notably, both types of robots are entirely indistinguishable
in spatially homogeneous environments; it is therefore a priori
impossible to infer information about the type of response
on the basis of measurements, which are performed in spa-
tially homogeneous external fields, i.e., c(x) = c0 = const. at

0 L0

1

0 L
0,5

1

1,5

2

FIG. 3. The motility response of MR—controlled by NCS motif 1
as shown, cf. Fig. 1—to an external field c(x) = x/L (see inset). The
main figure illustrates the stationary probability distributions Ps(x) for
two variants of the internal robot dynamics. In the first case (α[c] =
9c + 1, β[c] = 5), robots tend to accumulate upgradient in the long-
time limit (circles). In contrast, robots accumulate on the opposite side
if the two transitions are interchanged (α[c] = 5, β[c] = 9c + 1) as
shown by squares. Points denote individual-based model simulations
(robot number N = 104). Lines correspond to the approximative
analytical solution [Eq. (7)] where the respective functional forms of
f (x) and D(x) were inserted [Eqs. (12)]. Further parameters: L = 1,
v0 = 0.01, D0 = 0, reflecting boundary conditions.

different levels of c0. To be concrete, consider the following
gedanken experiment: two types of robots, robots of type A

with α[c] = 9c + 1 and β = 5 and robots of type B with α = 5
and β[c] = 9c + 1, exposed to the same external field c(x).
This scenario is depicted in Fig. 3. If c(x) corresponds to an
homogeneous environment such that c(x) = c0, with c0 being a
constant, the diffusion coefficient and the mean rate of reversals
are identical for both robot types; notice that the latter increases
with the field value c0. One could easily be misled to think that
robots tend to accumulate in those regions in space where the
reversal rate is high, leading to an effective “trapping” of the
robots in those regions. However, the distinct long-time behav-
iors of robots of types A and B provide clear evidence against
this simplified picture. While robots of type A tend to move
upgradient and accumulate close to x = L, robots of type B
tend to move downgradient and accumulate close to x = 0; see
Fig. 3. Despite this evident qualitative difference, both types
exhibit a higher reversal rate close to x = L. This finding, i.e.,
the existence of different motility responses for robots of types
A and B, highlights how subtle and nontrivial the impact of the
NCS design is on the long-time motility response of robots: By
exchanging the functional form of the transitions from 1 → 2
and 2 → 1, we switch from up- to downgradient motion.

In addition, the previous analysis reveals that robots navigat-
ing by NCS motif 1 exhibit a motility response that involves
both directed motion and position-dependent diffusion; i.e.,
it is neither purely chemotactic nor purely chemokinetic but
involves a combination of both, in the sense that the force f (x)
and the diffusion coefficient D(x) are nonvanishing functions,
which depend on the position via c(x).

E. NCS motif 2: Adaptation

We introduce NCS motif 2 (cf. Fig. 1) to obtain robots
whose motility response is purely chemotactic, with a bias
resulting from f (x) only. Adopting the terminology of
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bacterial chemotaxis, we call robots whose diffusion coeffi-
cient possesses an explicit dependency on c(x) and thus on x

nonadaptive, while those with a constant diffusion coefficient
are referred to as adaptive robots. Following this nomenclature,
we seek to create chemotactic, adaptive robots. Adaptive MR
are characterized by the independence of their motility pattern
from the intensity of external stimuli in spatially homogeneous
environments—the diffusion coefficient, for example, is inde-
pendent of the basis level of the external field. We insist that
only NCS motif 2 can yield adaptive robots; motif 1 leads
always to nonadaptive motility responses.

Motif 2 differs from motif 1 by the existence of a backward
transition from state 2 to 1, which does not activate a reversal,
and whose associated transition rate is γ [c]. Following the an-
alytical procedure outlined before, we first write the equations
for P ±

i and perform the change of variables Pi = P +
i + P −

i

and mi = P +
i − P −

i for all i. Again, the dynamics of the mi’s
is fast and, furthermore, the system of equations for the Pi’s
contains one fast and one slow mode allowing us, eventually,
to reduce the four-dimensional system to the slow dynamics
of the density P = P1 + P2. Keeping derivatives up to second
order, we obtain a Fokker-Planck equation of the form given
by Eq. (6), where

f (x) = v2
0

2

[
∂x

(
α + γ

αβ

)
+ (β + γ − α)

(α + β + γ )
∂x

(
1

α

)]
, (13a)

D(x) = D0 + v2
0

2

α2 + (β + γ )2 + 2αγ

αβ(α + β + γ )
. (13b)

In the limit γ → 0, Eqs. (12) are recovered. Again, if all rates
are equal, α[c] = β[c] = γ [c], chemotactic and chemokinetic
parts are related by f (x) = ∂xD(x) and thus the stationary
density Ps(x) is constant.

So far, no restrictions have been imposed on the rates α,
β, and γ . Consequently, the terms f (x) and D(x) given by
Eqs. (13) are generic for motif 2. In order to obtain adaptive
robots, we want to choose these rates in such a way that D(x)
becomes independent of c(x), while f (x) still depends on it.
With this idea in mind, we define

α[c] = β+β−
β[c]

, (14a)

γ [c] = β+ + β− − (α[c] + β[c]). (14b)

In order to ensure all rates to be positive, we further choose
β− < β[c] < β+, where β− and β+ are positive constants. By
inserting these rates into Eq. (13), we find

f (x) = − v2
0

β+ + β−
∂x(ln β[c]) = μ[c]∂xc(x), (15a)

D(x) = D0 + v2
0

2

β2
+ + β2

−
β+β−(β+ + β−)

. (15b)

Notably, Eq. (15b) is structurally identical to Eq. (12b)
for motif 1; however, by definition it is independent of c(x).
Further, we defined the response function

μ[c] = − v2
0

β+ + β−

∂cβ[c]

β[c]
. (16)

Notice that any function restricting the values of β[c] between
β− and β+ serves our purpose. This freedom of choice may be
used to design μ[c] according to the desired response.

With the above choice of rates, we obtain purely adaptive,
chemotactic robots whose directed motion is controlled by
f (x) only [cf. Eq. (15)]. In the absence of a external field
gradient, ∂xc(x) = 0, robots diffuse with a constant diffusion
coefficient given by Eq. (15b) that is independent of the
external field value. We notice that requesting D = const. is
equivalent to fixing the average and variance of the runtime
distribution of the robots; accordingly, their behavior in ho-
mogeneous environments of different (constant) field values is
microscopically indistinguishable.

III. PERFORMING COMPLEX TASKS

In the following, we discuss the possibility of designing MR
to perform multiple complex tasks by playing with the response
function μ[c], cf. Eq. (16), on the basis of NCS motif 2. If we
define β[c] such that μ[c] > 0 in the interval of interest of
field values, robots move upgradient. As a consequence, they
accumulate around the maxima of c(x) in a complex landscape
as shown in Figs. 4(a) and 4(b). This requires β[c] to be a
decreasing function of c. In addition, we have to make sure that
β[c] is bounded by β ∈ (β−,β+). As an example, we consider
β[c] = A + B tanh [(c − c∗)/w], where A and B are chosen
such that β[c → 0] = β+ and β[c → ∞] = β−, and where w

and c∗ are constants. On the other hand, if robots are supposed
to move downgradient to accumulate in the minima of c(x), the
response function has to be a decreasing function of the signal,
μ[c] < 0, and, thus, β[c] should be an increasing function of
c. This can be achieved by using the same functional form as
before, but requesting β[c → 0] = β− and β[c → ∞] = β+;
cf. Figs. 4(a) and 4(b).

We can further design robots to accumulate at a given value
c∗ of the external field as shown in Figs. 4(c) and 4(d). For
this task, we need μ[c] to be positive for c < c∗ and negative
for c > c∗. Figure 4(c) illustrates this type of robot design:
β[c] = A − BN (c; c∗,w2), where N (c; c∗,w2) is a Gaussian
distribution centered at c∗ and of variance w2. The coefficients
A and B are chosen such that β[c → c∗] = β− and β[c →
0] = β+.

As a final example, we study how robots chase a signal that
moves at speed v as shown in Figs. 4(e)–4(i). The analyzed
scenario is analogous to recent bacterial chemotactic experi-
ments performed with a moving chemoattractant signal [38].
For this purpose, the MR design for the detection of maxima
is used; cf. the discussion of Figs. 4(a) and 4(b). As a signal,
we use a Gaussian distribution that moves at a constant speed
v (remember that robots move at constant speed v0). There
is a critical signal speed vc above which the robots become
decreasingly responsive. In the limit of high signal speeds
(v 
 vc), robots just diffuse around as they would do in
an homogeneous field. We quantify the efficiency of robots
by the deviation from the homogeneous distribution � ∝∫ L

0 dx|Ps(x) − P0|, see Fig. 4(e), which is large if robots follow
the moving signal and decreases to zero for nonresponsive MR.
Considering a simplified scenario, we derive a rough estimate
of the crossover speed beyond which robots cannot follow
the moving signal. The estimation is based on the idea of a
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0.0001 0.001 0.01

FIG. 4. Illustration of complex tasks performed by suitably tuned robots controlled by the adaptive NCS motif 2. The detection of maxima
and minima in a complex landscape c(x) is shown at the bottom of panel (b) [c(x) is displayed at the top of panel (b)]. The corresponding
functional dependencies of β[c] are shown in panel (a): For increasing β[c], minima are detected (black, solid curves), whereas robots accumulate
around maxima for decreasing β[c] (red, dashed lines). Moreover, the accumulation of robots around a preferred external field value [dotted
line in panel (d)] is demonstrated for the functional dependence β[c] shown in panel (c). As a third example, robots chasing a moving signal
(white, dashed line) are depicted in panels (e)–(i). Spacetime plots (f)–(i) reveal that robots become less responsive to a moving signal above
a critical speed vc, estimated by Eq. (17), which is shown by a vertical red (dashed) line in panel (e). Further, the performance is quantified
in panel (e), where � denotes the deviation of the robot density from the spatially homogeneous distribution. Parameters: c∗ = 1, w = 0.5,
β− = 1, β+ = 10, v0 = 0.01, L = 1, D0 = 0; see main text for the functional forms of the rate β[c]. Boundary conditions: reflecting in panels
(b) and (d), periodic in panels (e)–(i).

quasistationary situation: The density distribution of robots
should have relaxed into the stationary state before the signal
has moved to ensure that robots can follow a dynamic signal.
Imagine first a static field c(x) = c̄ exp[−(x − x0)2/(2h2)],
where x0 and h are constants such that f (x) = −μ[c]c(x)(x −
x0)/h2 = −κ(x − x0); notice that h is a length scale that
characterizes the spatial extent of the gradient. Assuming that
we can linearize around x0, we approximate κ ≈ μ[c̄]c̄/h2,
yielding a linear restoring force f (x) as if it was coming from
a harmonic potential. The characteristic relaxation time for an
harmonic potential is κ−1. The critical speed is now given by
the product of the relaxation rate and a characteristic size of
the signal; therefore, we estimate that robots can follow any
signal that travels at a speed less or equal to

vc = hκ � μ[c̄]c̄

h
. (17)

For the parameters used in the simulations shown in Fig. 4, the
critical speed yields vc ≈ 3 × 10−4, indicated by a red (dashed)
line in Fig. 4(e).

IV. TWO- AND THREE-DIMENSIONAL SYSTEMS

The results obtained so far regarding the motility response
of MR, based on a one-dimensional approach, hold true
qualitatively in higher dimensions. Below, we briefly outline
how biased motion of MR can be addressed in higher spatial
dimensions within the same theoretical framework and provide
a proof of principle. Technical details as well as a full account

of the general dynamics in two as well as in three dimensions
can be found in Appendixes D and E, respectively.

A. Two-dimensional case

The equation of motion of a MR in two dimensions reads

ṙ(t) = v0ŝ[ϕ(t)] +
√

2D0 ξ (t), (18)

where r(t) is the position of a robot in two dimensions and
ŝ[ϕ] = (cos ϕ, sin ϕ) is a unit vector pointing in the direction
of motion parametrized by the polar angle ϕ. The polar angle
may undergo a stochastic, rotational dynamics due to small-
scale spatial heterogeneities, thermal fluctuations, or temporal
variations of the active driving force [39–42]:

ϕ̇(t) =
√

2Dr η(t). (19)

The noise amplitude Dr parametrizes the persistence of tra-
jectories during run phases, and η(t) denotes white, Gaussian
noise.

The internal robot dynamics, which controls abrupt changes
of the direction of motion, is determined as before by a certain
NCS. The reorientation of robots may be implemented in
several ways: The new direction of active motion could be
selected from a probability distribution of reorientation angles,
representing, for example, a cone centered around the previous
orientation, or it could be chosen uncorrelated with respect to
the previous direction of motion. The qualitative behavior is
independent of this choice.

At first, we put forward a heuristic argument valid for
low angular noise intensities to illustrate why the results
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derived so far based on one-dimensional systems should hold
in higher dimensions. Consider a robot equipped with some
NCS, which controls the moments in time when the robot
selects a new direction of motion from a certain probability
distribution. The velocity of a robot may always be divided
into its components parallel and perpendicular to the gradient
orientation. The upgradient climbing speed v⊥ is a random
variable, which changes at each reorientation event. Thus,
the speed has to be rescaled to obtain an average climbing
speed. Furthermore, not every reorientation inevitably leads to
a reversal of the direction of active motion with respect to the
gradient orientation. Upon reorientation, the projection of the
new direction of active motion onto the gradient is positive
or negative with equal probability (p = 1/2) if the direction
of self-propulsion of a robot at each reorientation event is
chosen randomly from the interval [−π,π ) in two dimensions;
in general, there is a reversal probability pr that the robot
moves upgradient (downgradient) given that it was moving
downgradient (upgradient) before the reorientation. These
arguments indicate that it is always possible to come up with
an effective one-dimensional description—in the sense of a
projection—for the motion along the local gradient orientation,
which is analogous to the problem considered in previous
sections.

We now turn to a quantitative analysis of the problem in
two dimensions. For the sake of concreteness, we formulate
the problem for adaptive robots as discussed in Sec. II, which
are controlled by NCS motif 2, cf. Fig. 1. In contrast to one
dimension, where only two directions of motion (denoted by
±) are possible, a continuum of orientations parametrized by
the polar angle ϕ exists in two dimensions. Therefore, the
probability densities P

(±)
i (x,t) are replaced by the probability

densitiesPi(r,ϕ,t) to find a robot at position r in state i, moving
into direction ϕ at time t . We introduced the new symbol
Pi(r,ϕ,t) in order to avoid confusion with the probability
density

Pi(r,t) =
∫ π

−π

dϕ Pi(r,ϕ,t) (20)

to find a robot at a certain position r at time t in state i,
independent of its direction of motion. Altogether, the full set
of master equations for robots controlled by NCS motif 2 in
two dimensions reads

∂tP1(r,ϕ,t) = −v0 ŝ[ϕ] · ∇P1 + Dr∂
2
ϕP1 + D0�P1

−α[c]P1 + γ [c]P2 + β[c]

×
∫ π

−π

dϕ′ g(ϕ − ϕ′)P2(r,ϕ′,t), (21a)

∂tP2(r,ϕ,t) = −v0 ŝ[ϕ] · ∇P2 + Dr∂
2
ϕP2 + D0�P2

− (β[c] + γ [c])P2 + α[c]P1. (21b)

The details of the stochastic reorientation event, triggered by
the NCS, are determined by the probability density function
g(ϕ). For unbiased reorientations, this function should be
symmetric: g(−ϕ) = g(ϕ).

Just as in one dimension, the total density dynamics is a slow
quantity since it is locally conserved. It is therefore possible
to reduce the set of master equations to the Fokker-Planck

equation

∂tP (r,t) = −∇ · [f(r)P (r,t)] + �[D(r)P (r,t)] (22)

for the density P (r,t) = ∑
i Pi(r,t). Technically, the deriva-

tion follows the same logic as in one dimension. At first, the
dynamics of the probability densities Pi(r,t), cf. Eq. (20), are
derived by integration of Eqs. (21) over the angular variable ϕ.
Those equations are coupled to the flux, which is determined
by the local order parameter

mi(r,t) =
∫

dϕ ŝ[ϕ]Pi(r,ϕ,t) =
∫

dϕ

(
cos ϕ

sin ϕ

)
Pi(r,ϕ,t)

(23)

in two dimensions. The fields mi , which replace mi from
the one-dimensional discussion, may again be adiabatically
eliminated to obtain a reduced set of equations for the densities
Pi(r,t). Finally, the density dynamics follows by assuming
local equilibrium. Details on this derivation are summarized
in Appendix D. For the example considered above, namely
adaptive MR with NCS motif 2, one obtains the local drift

f(r) = −�2∇(ln β[c]) (24)

with the parameter-dependent prefactor

�2 = v2
0

2

β+β−(1 − G)

(β+ + β−) · [(β+ + Dr )(β− + Dr ) − β+β−G ]
.

(25)

Further, the constant diffusion coefficient reads

D = D0 + v2
0

2

β2
+ + β2

− + β+β−(1 + G) + Dr (β+ + β−)

(β+ + β−)[(β+ + Dr )(β− + Dr ) − β+β−G]
.

(26)

In these effective transport quantities, the mean cosine of the
reorientation distribution g(ϕ) was abbreviated by G:

G = 〈cos ϕ〉 =
∫ π

−π

dϕ g(ϕ) cos ϕ . (27)

These results constitute a straightforward generalization of the
results for the one-dimensional case.

The stationary density distribution, i.e., the stationary so-
lution of the Fokker-Planck equation (22), for adaptive MR in
two dimensions reads

Ps(r) = N
(β[c])�2/D

. (28)

It is illustrated in Fig. 5 together with a comparison to
individual-based model simulations.

B. Three-dimensional case

For the sake of completeness, we finally consider MR in
three spatial dimensions. Their transport characteristics turn
out to be marginally different from those in two dimensions, as
explained below. This implies in particular that all qualitative
statements made above hold true in three dimensions as
well. However, there are some technical complications as a
consequence of the three-dimensional motion regarding the
implementation of angular fluctuations as well as the angular
reorientation, which are explained below for this reason. Again,
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FIG. 5. Illustration of adaptive MR in two dimensions. In the left panel, the external field c(r) = 1 + 0.5 sin (2πx) cos (3πy) is shown.
The middle panel represents the stationary probability density Ps(r) obtained from individual-based model (IBM) simulations. On the right,
several cross sections as indicated in the middle panel by white (dashed) lines are shown in comparison to predictions of the drift-diffusion
approximation [Eq. (28)]. Model specification: upon reorientation, a robot chooses a new direction of motion from the uniform probability
distribution g(ϕ) = 1/(2π ), such that G = 0; adaptive NCS motif 2, cf. Eqs. (14); β[c] as shown in Fig. 4 (red line) and the corresponding
comments in the main text (β− = 1, β+ = 10). Other parameters: L = 1, v0 = 0.01, D0 = 0, Dr = 0, N = 104 robots in IBM simulations;
reflecting boundary conditions.

adaptive MR controlled by NCS motif 2 are considered for
simplicity as an example. All details concerning the gen-
eral dynamics of MR in three dimensions can be found in
Appendix E.

The dynamics in space for MR in three dimensions,

ṙ(t) = v0ŝ +
√

2D0 ξ (t), (29)

is unchanged with respect to previous cases. However, the
orientation of the active driving force, determined by the
unit vector ŝ, has to be parametrized differently in three
dimensions. One could, for example, use spherical coordinates
ŝ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ), where θ ∈ [0,π ] and ϕ ∈
[−π,π ). The angular dynamics for unbiased, orientational
fluctuations reads then as follows:

θ̇ = Dr cot θ +
√

2Dr ηθ (t), (30a)

ϕ̇ =
√

2Dr csc θ ηϕ(t). (30b)

For a derivation of these equations, see Ref. [43], and for a
detailed discussion on Brownian motion in 3D we refer the
reader to Refs. [44–48]. All interpretations of multiplicative
noise terms in the angular dynamics [Eq. (30)] are equivalent
in this particular case. From a technical point of view, it is,
however, more convenient to use Cartesian coordinates for the
director ŝ = (sx,sy,sz), at least for analytical calculations.

Besides the continuous fluctuations of the direction of
motion due to rotational diffusion [Eq. (30)], robots change
the orientation of the active driving force in a discontinuous
fashion each time that the NCS triggers one of this events:
ŝ′ → ŝ. Given that the previous direction of motion was ŝ′,
a novel orientation ŝ is chosen from a transition probability
density g(ŝ|ŝ′). Since reorientations are supposed to occur in
an unbiased manner, the transition probability density g(ŝ|ŝ′)
can only depend on the scalar product ŝ · ŝ′. Further, the
normalization of the director, |ŝ| = 1, has to be preserved. One
may, therefore, parametrize

g(ŝ|ŝ′) = δ(1 − |ŝ|)
2π

H (ŝ · ŝ′), (31)

where H (ŝ · ŝ′) is the probability distribution function for the
scalar product of the orientations just right before and after a
reorientation event. Put differently, it denotes the probability
density for the cosine of the angle ψ between the vectors ŝ and
ŝ′, i.e., cos ψ = ŝ · ŝ′.

The internal robot dynamics is independent of the spatial
dimension. Therefore, the general structure of the master
equations, which describe the dynamics of MR, remains
unchanged in three dimensions, but transport terms are adapted
accordingly. For MR controlled by NCS motif 2, these master
equations are given by

∂tP1(r,ŝ,t) = −v0 ŝ · ∇P1 + DrL[Pi] + D0�P1

−α[c]P1 + γ [c]P2 + β[c]

×
∫

d3s ′ g(ŝ|ŝ′)P2(r,ŝ′,t), (32a)

∂tP2(r,ŝ,t) = −v0 ŝ · ∇P2 + DrL[Pi] + D0�P2

− (β[c] + γ [c])P2 + α[c]P1, (32b)

which is the analog of Eq. (21) for the corresponding two-
dimensional case: The convective term is replaced by its three-
dimensional equivalent, the reorientation distribution g(ϕ) is
replaced by g(ŝ|ŝ′), and the implementation of the director
dynamics due to rotational noise has changed. The latter is
determined in Cartesian coordinates by the operator

L[Pi] = ∂sμ
[2sμPi] + ∂sμ

∂sν
[(δμν − sμsν)Pi], (33)

where a sum over μ and ν is implicit. This parametrization is
entirely equivalent to the angular representation [Eqs. (30)],
which can be verified by insertion of the parametrization of ŝ
via spherical coordinates [43].

In the diffusive limit, i.e., if the external signal c(r) varies
weakly on spatial scales, which a robot traverses in between
two reorientation events, a drift-diffusion approximation in the
same spirit as in one and two spatial dimensions is feasible. The
basic prerequisites of this derivation and its logic are analogous
to the arguments put forward before; technical subtleties are
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summarized in Appendix E. It turns out that solely the speed
and the angular noise intensity are rescaled by numerical
factors, which depend on the spatial dimension. The drift reads
[cf. Eq. (24)]

f(r) = −�3∇(ln β[c]) (34)

in three dimensions, where the prefactor �3 is structurally very
similar to �2 determined by Eq. (25) in two dimensions. Here,
the prefactor �3 is determined by

�3 = v2
0

3

β+β−(1 − G)

(β+ + β−)[(β+ + 2Dr )(β− + 2Dr ) − β+β−G ]
.

(35)

Along similar lines, only a few numerical factors are replaced
in the expression for the effective diffusion coefficient, which
reads in three dimensions as follows:

D = D0 + v2
0

3

β2
+ + β2

− + β+β−(1 + G) + 2Dr (β+ + β−)

(β+ + β−)[(β+ + 2Dr )(β− + 2Dr ) − β+β−G ]
.

(36)

Just as in two dimensions, the parameter G denotes the mean
cosine of the angle between the directors before and after the
reorientation event. In three dimensions, it may be expressed
by

G = 〈cos ψ〉 =
∫

d3s ŝ · ŝ′g(ŝ|ŝ′) =
∫ 1

−1
d(cos ψ) H (cos ψ).

(37)

The stationary probability density is thus determined by

Ps(r) = N
(β[c])�3/D

(38)

for adaptive MR controlled by NCS motif 2.
Notably, the simple rescaling of speed and rotational dif-

fusion described above is not a particularity of the example
under consideration, but it is generally the only quantitative
difference of the transport properties of MR in two and three
dimensions. The proof of this result is sketched in Appendix E.
In short, the behavior of MR is qualitatively independent of the
spatial dimension.

A comparison of individual-based model simulations and
theoretical predictions in terms of the stationary probability
density Ps(r), as shown in Fig. 6, serves as sanity check that
the analytically obtained transport coefficients, drift [Eq. (34)]
and diffusion [Eq. (36)], provide a reasonable description of
the large-scale transport of MR in the diffusive limit.

V. TESTS WITH A REAL ROBOT

We tested the concepts developed before in practice by
assembling a macroscopic robot that operates with NCS motif
2 as defined above. The robot—a Lego Mindstorms EV3 shown
in Fig. 7(a)—was equipped with a single light sensor capable
of reading light intensities, providing a signal S in arbitrary
units between 0 and 100 at the current position. A gray scale
from black to white printed on paper (total length: 81 cm) was
utilized as an external field [cf. the top panel of Fig. 7(c)]. The
robot possessed two synchronously steered motors in the front,
each of which are connected to one wheel. A metallic roller

FIG. 6. Comparison of the stationary probability density Ps(r)
of MR controlled by NCS motif 2 as obtained from individual-
based model (IBM) simulations and the corresponding drift-
diffusion approximation, cf. Eq. (38), in three spatial dimensions.
A Gaussian modulation is used as an external signal: c(r) =
c0[1 + ε exp (−|r−r0 |2

2σ 2 )]. The data points in the main panel (IBM)
were reconstructed from the radial distribution function g(R) =∫

d3r Ps(r)δ(R − |r − r0|) shown in the inset via division by the
angular measure factor. The inset on the left represents a three-
dimensional histogram of the position of MR, where the color code
indicates the value of Ps(r). The main panel is a cut of Ps(r) along
r = (x,1/2,1/2)T . Parameters: c0 = 1/2, ε = 2, σ = √

3/2/10 ≈
0.12, r0 = (1/2,1/2,1/2)T . Further parameters as in Fig. 5; reflecting
boundary conditions have been used.

in the back of the robot served as stabilization. For simplicity,
we focused on the one-dimensional scenario: The robot was
attached to a metallic rail to prevent turns, thereby ensuring
straight trajectories.

Being a real-world system, the robot was naturally subjected
to a series of fluctuations. Vibrations of the arm that connected
the light sensor to the robot and, moreover, imperfections in the
printed gray scale itself resulted in noisy measurements of the
signal intensity S . Furthermore, imperfect rotations of the
wheels imply varying step lengths and, hence, led effectively
to noise in the particle position.

The robot was programed in the LabVIEW-based Lego
Mindstorms EV3 software. The basic flowchart of the algo-
rithm is shown in Fig. 2. The temporal update was composed
of a streaming and a signal processing step that were repeated
continuously. The length of one streaming step was fixed
to be 2/3 of the wheel perimeter, resulting in a step length
of approximately 11.7 cm. Afterward, the signal strength S
was read from the sensor. Based on this measurement, the
internal state was updated and, possibly, a reversal of the
direction of rotation of the wheels could be triggered. The
transition rates α[c], β[c], and γ [c] were translated into prob-
abilities Pα(S ) = b+b−/Pβ(S ), Pβ(S ) = b+(b−/b+)S /100

and Pγ (S ) = b+ + b− − Pα − Pβ for the corresponding tran-
sitions, where b+ = 1 and b− = 0.8 were used.

In the following, we aimed at testing the theoretical pre-
dictions at the level of exit probabilities. For this purpose, a
single experimental run proceeded as follows: It was monitored
whether a robot which was initially placed in the middle of
the experimental setup reached the left (black) or right (white)
boundary of the system first. Once the robot touched one of the
boundaries, the experiment was stopped and repeated. In total,
N = 40 realizations were recorded. In n = 28 cases, the robot
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FIG. 7. (a) A photo of the robot, a Lego Mindstorms EV3.
(b) Binomial distribution B40(n|�) determining the probability that
the robot leaves the system n times via the right boundary in 40
realizations of the experiment, whereby the robot was initially placed
at the center of the system, given that the probability for the same event
in one realization is �; cf. Eq. (39). The black circles correspond to
an unbiased random walker (� = 0.5), and the red squares show the
Binomial distribution for the theoretically predicted value (� = 0.65).
The experimentally observed situation—in n = 28 cases the robot
touched the right boundary first—is indicated by a vertical blue
line. A representative trajectory is shown in panel (c), on top of
which the robot is depicted moving on the printed gray scale. The
probability distribution P40(�|n = 28) for � given the experimental
result (n = 28), inferred from the Bayesian theorem [Eq. (41)], is
shown as an inset of panel (b); the experimental observation is in line
with the theoretical prediction.

left the system via the right boundary. A typical trajectory for
an exit on the right boundary is displayed in Fig. 7(c); see also
the Supplemental Material for a corresponding movie [49].

Based on this experimental result, we first test the null
hypothesis that the robot performed just an unbiased random
walk. The exit probability on the right side of the system for
a single experimental run should therefore be � = 0.5. The
probability to observe n exits on the right, given N realizations
in total, is determined by the Binomial distribution

BN (n|�) =
(

N

n

)
�n(1 − �)N−n. (39)

This distribution is shown for N = 40 and � = 0.5 in Fig. 7(b)
by black circles. The total probability to observe n = 28 exits
to the right of the system or a more extreme result than this is
determined by the tails of the Binomial distribution. It thereby
constitutes the p value under the null hypothesis the robot
performs an unbiased random walk [50]. In the case under
consideration, we obtain a p value of approximately 0.017.
Accordingly, the null hypothesis may be discarded based on the
standard significance level 0.05. In short, there is considerable
statistical significance that the motion of the robot is biased
due to the NCS at work.

The NCS was implemented such that the robot tended to
move toward brighter areas in terms of the gray value and, thus,

we expect the number of exits to the right to be larger than to the
left. Simulations of the corresponding process predict that the
probability to touch the right boundary first is � = 0.65(1). The
binomial distribution B40(n|�) for this � value is represented
by red squares in Fig. 7(b). The experimentally observed result
(n = 28) is indicated by a blue, vertical line. Apparently, the
likelihood for the observed result given � = 0.65 is higher than
for the random walk:

B40(n = 28|� = 0.65) > B40(n = 28|� = 0.5). (40)

Based on the Akaike information criterion [51], we infer that
the theoretically predicted value � = 0.65 is considerably
more likely than the random walk hypothesis corresponding
to � = 0.5.

Finally, we specify the last statements regarding the likeli-
hood of certain � values given the experimental observation.
Using the Bayesian theorem [52], the following expression
for the probability distribution PN (�|n) for � given a certain
number n of exits to the right out of N total experimental
realizations is deduced:

PN (�|n) = BN (n|�)P(�)∫ 1
0 d�′ BN (n|�′)P(�′)

. (41)

In the equation above, P(�) determines the prior knowledge
(before the experiment) about the probability distribution of
�. Here, we assume a uniform prior, i.e., P(�) = 1 for
� ∈ [0,1] and zero otherwise. The probability distribution
P40(�|n = 28), which is relevant for the experimental result,
is shown as an inset in Fig. 7. Apparently, the distribution is
shifted toward the right, implying that there is a drift toward
the right boundary as expected. The resulting distribution
P40(�|n = 28) possesses a mean and standard deviation of �̄ =
0.69(7), which is well in line with the theoretical expectation.

In summary, the experimental results provide an empirical
demonstration that the proposed navigation algorithm, which is
simple to implement in a real robot, yields a directed, nontrivial
motility response as predicted by theoretical considerations,
which is, notably, robust with respect to fluctuations.

VI. SUMMARY AND PERSPECTIVES

This study provides a solid proof of concept, including
analytical derivations and a practical implementation, that it
is possible to design robots that are capable of navigating
through complex dynamical external fields in any spatial
dimension—performing local measurements only—without
making use of internal continuous variables to store previous
measurements of the external field. The navigation strategies
proposed and analyzed here are fundamentally different from
bacterial chemotaxis (see Sec. I for a detailed comparison).
It requires the robots to possess a minimum of two internal
states to exhibit nontrivial, persistent motility responses such
as migration toward minima or maxima of the external field or
even surfing at a desired field value in a complex, dynamical
landscape. Transitions between these two internal states are
dictated by a closed Markov chain, with transition rates that
depend on the local, instantaneous value of the external field.
This implies that the internal dynamics of the robots is such that
fixed points are excluded. In summary, we have shown here that
robots with such a minimal navigation control system, where
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the internal state can be stored in single Boolean variable, i.e.,
in 1 bit, are able to explore complex information landscapes.

Furthermore, we have shown that the proposed minimalistic
navigation strategies can be efficiently implemented in real
macroscopic robots. However, the main interest of conceiving
navigation algorithms with limited memory storage capacity as
the ones proposed here is to pave the way to engineer miniature,
micrometer-size robots in a near future. Miniaturizing robotic
systems as the one used in Sec. V is a major technological
challenge [9,10]. Our study does not provide a recipe of how to
combine the existing micrometer-size actuators, sensors, and
switches to produce the proposed Markovian robots, which
is certainly beyond the scope of this basically theoretical
work. Nevertheless, the developed concepts may serve as
guiding principles to design autonomous, tiny robots capable
of displaying complex motility behaviors by identifying the
minimum requirements to navigate with limited memory
storage capacity.

Finally, extensions of this initial study including more
complex, biologically motivated motifs with a larger number
of internal states may help to elucidate the navigation strategies
of some microorganisms [53–56]. Studying ensembles of inter-
acting robots as those studied in Ref. [57], operating with our
proposed navigation algorithms, is another promising research
direction that may unveil cheap and efficient ways to obtain
complex, self-organized collective behavior of autonomous,
self-propelled agents.
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APPENDIX A: INDIVIDUAL-BASED MODEL (IBM)
SIMULATIONS

IBM simulations using N = 104 robots were performed in
order to check the validity of analytical approximations in the
context of the reduction of the master equation on the Fokker-
Planck dynamics. The state of a robot is characterized by three
variables: its position, its direction of active motion, and the
internal state depending on the motif under consideration. For
motif 1, for example, the internal state can take the values 1 and
2. The spatial dynamics [Eq. (1)] was solved by a stochastic
Euler-Maruyama method [34] with a time step �t = 0.01.
The occurrence of reversal events are dictated by the internal
variable as follows. We implemented the evolution of the
internal state using random numbers, which are uniformly
distributed between 0 and 1. In each time step and for each
robot, a transition in the motif was triggered if the random
number is smaller than the product of the numerical time
step �t and the respective transition rate. Only one particular

transition is accompanied by reversal, depicted by a dashed
red arrow in each motif in Fig. 1. To get the stationary density
distribution Ps(x), a histogram of robot positions was averaged
over time. The total observation time was fixed to tobs = 20 000
to ensure relaxation toward the stationary state.

APPENDIX B: NUMERICAL SOLUTION
OF MASTER EQUATIONS

Individual-based simulations were validated by the direct
integration of the master equations [Eqs. (2) and (10)] corre-
sponding to the NCS motif under consideration. Furthermore,
the response of MR to a dynamic field gradient was performed
numerically on the basis of the respective system of master
equations; cf. Fig. 4. To solve those master equations, a central
finite difference discretization was employed in space and the
temporal integration was performed using an explicit forward
Euler algorithm [58]. In particular, the spatial discretization
�x = 10−2 and temporal time step �t = 10−3 was used in
the context of Fig. 4.

APPENDIX C: DRIFT-DIFFUSION APPROXIMATION IN 1D

In the main text, the derivation of position-dependent drift
and diffusion from the full set of master equations is briefly
sketched. In this paragraph, technical details of this derivation
are presented in more detail for the one-dimensional case.
Along with the general discussion of the principal ideas behind
this derivation, NCS motif 1 is considered as an example.
Effective Langevin equations for more complicated cases
follow from the same procedure in a similar way.

Starting from the full master equation for the proba-
bilities P ±

i (x,t) [cf. Eqs. (10) for example], the change
of variables Pi(x,t) = P +

i (x,t) + P −
i (x,t) and mi(x,t) =

P +
i (x,t) − P −

i (x,t) is performed as a first step, allowing us to
recast the master equation into two subgroups for the densities
Pi(x,t) and the differences mi(x,t) [cf. Eqs. (11)]:

∂tPi = −v0∂xmi + D0∂
2
xPi − Qij [c]Pj , (C1a)

∂tmi = −v0∂xPi + D0∂
2
xmi − Mij [c]mj . (C1b)

Henceforward, Einstein’s sum convention is used for the
sake of compact notation. In the case of NCS motif 1, the local
transitions between the internal states are accounted for by the
following matrices:

Q[c] =
(

α[c] −β[c]
−α[c] β[c]

)
, M[c] =

(
α[c] β[c]

−α[c] β[c]

)
.

(C2)

We begin the analysis with the dynamics of the differences
mi(x,t), given by Eq. (C1b). The terms appearing are essen-
tially of different types: There is a mi(x,t)-independent source
term proportional to the derivative of the densities Pi(x,t),
diffusion of mi(x,t) as well as local transitions. Now, diffusion
is a slow process as compared to the exponential relaxation,
which is described by the local transitions. Particularly, the real
part of the eigenvalues λ

(±)
M of the matrix M, given by

λ
(±)
M = 1

2 [α + β ±
√

α2 − 6αβ + β2 ], (C3)
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are strictly larger than zero for all positive rates. Accordingly,
Eq. (C1b) describes relaxation toward a stationary state. As-
suming that this relaxation is a fast process, one may eliminate
the variables mi(x,t) adiabatically via ∂tmi ≈ 0. This yields
the constitutive equation

Mijmj ≈ −v0∂xPi + D0∂
2
xmi. (C4)

Since none of the eigenvalues of M equals zero, the matrix M
is invertible:

mi ≈ −v0{M−1}ij ∂xPj + D0{M−1}ij ∂2
xmj . (C5)

A closed expression for mi(x,t) in terms of Pi(x,t) can be
found by recursive reinsertion on the right-hand side. With
regard to the objective of this derivation, we turn now, however,
to the Pi(x,t) dynamics [Eq. (C1a)]. Notably, we want to obtain
a closed equation up to second order in spatial derivatives. The
Pi(x,t) dynamics is driven by first-order derivatives of mi (x,t),
which are, in turn, proportional to derivatives of Pi(x,t) to
lowest order. Hence, it is sufficient to truncate the recursion
[Eq. (C5)] at the lowest order in spatial derivatives:

mi ≈ −v0{M−1}ij ∂xPj . (C6)

Accordingly, we obtain the following expression for the dy-
namics of Pi(x,t) as an intermediate result:

∂tPi = ∂x

[(
v2

0{M−1}ij + D0δij

)
∂xPj

] − Qij [c]Pj . (C7)

The dynamics is a combination of position-dependent diffusion
as well as local transitions between the different internal states.

In contrast to the matrix M, the matrix Q possesses always
one eigenvalue which equals zero. It results from the fact that
the robot must be in one of its internal state. This conservation
law implies a zero-eigenmode corresponding the slow dynam-
ics of the total, conserved density P (x,t) = ∑

i Pi(x,t). Other
eigenvalues are positive, implying the existence of additional
fast modes [notice the minus sign in front of Qij in Eq. (C7)].
The two eigenvalues of the matrix Q read λ

(1)
Q = α + β and

λ
(2)
Q = 0 for NCS motif 1 for example, cf. Eq. (C2). To lowest

order in spatial gradients, the adiabatic elimination of the fast
mode reveals that Pi(x,t) must be an element of the kernel
of Q:

QijPj ≈ 0. (C8)

Physically, this reflects the assumption of local equilibrium,
implying that the local transitions are much faster compared
to the motion of robots such that the local distribution of
robots among the different internal states is equalized. This
is in line with the general scope of this work: The external
signal is weakly space dependent; i.e., the field c(x) varies on
scales which are much larger than the mean distance lb = v0τ ,
which a robot travels in between two reorientation events that
occur at an average rate τ−1; in short, only local measurements
of the external signal are feasible. Consequently, the Pi(x,t)
dynamics can relax locally faster than the overall density
distribution on scales larger than lb.

There is a nontrivial solution Pi(x,t) = P (x,t)Vi[c] to
Eq. (C8) since the matrix Q is not invertible.2 This solution is,
however, unique due to the normalization condition P (x,t) =∑

i Pi(x,t), which implies necessarily that the sum of the
components of the vector V[c] equals one. For the example
of NCS motif 1 considered above, we obtain

V[c] = 1

α[c] + β[c]

(
β[c]
α[c]

)
. (C9)

Inserting this closure into the reduced Pi(x,t) equation
[Eq. (C7)] and subsequent summation over all components
yields eventually the following closed equation for the total
density:

∂tP =
∑
i,j

∂x

{(
v2

0{M−1}ij + D0δij

)
∂x[P (x,t)Vj [c]]

}
.

(C10)

In order to read of the mean drift f (x) as well as the
position-dependent diffusion coefficient D(x), terms have to
be rearranged to meet the structure of a Fokker-Planck equation
in Ito form [34]:

∂tP (x,t) = −∂x

[
f (x)P (x,t)

] + ∂2
x [D(x)P (x,t)].

From this Fokker-Planck equation, which defines f (x) and
D(x) unambiguously, we read off

f (x) = v2
0

∑
i,j

(∂x{M−1}ij )Vj [c],

D(x) = D0 + v2
0

∑
i,j

{M−1}ijVj [c].

Inserting the inverse of M for NCS motif 1,

M−1 = 1

2

(
1/α[c] −1/α[c]
1/β[c] 1/β[c]

)
, (C11)

yields eventually the expressions which are given in the main
text [cf. Eqs. (12)].

APPENDIX D: DRIFT-DIFFUSION APPROXIMATION IN 2D

The extension of the drift-diffusion approximation to two
(or higher) spatial dimensions is straightforward on the basis of
the previously described derivation of effective Langevin equa-
tions in one dimension. The conceptual basis is unchanged: At
first, a closed expression for the probability densities Pi(r,t)
to find a robot at a certain position r at time t is derived
by adiabatic elimination of fast order parameters and, in a
second step, this set of equations is reduced to the total
density assuming local equilibrium. There are two technical
complications which need particular attention. In dimensions
larger than one, there are two vector spaces that need to be
distinguished: the physical space which robots move in as well
as the space of internal states. As before, we use Latin indices
to label internal states (Pi) and, from now on, vectorial notation

2The existence of a unique, nontrivial, stationary solution for this
type of master equation, which reflects the transition dynamics in
between the internal states, is ensured in general [35].
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is used to indicate contractions with respect to the vector space
of spatial coordinates (r). Further, it turns out to be crucial to
identify the correct generalizations of the central quantities
of interest in one dimension, namely densities Pi(x,t) and
differences mi(x,t), for the two-dimensional situation.

Starting point of the derivation is the master equation [cf.
Eq. (21)] for the probability densities Pi(r,ϕ,t) to find a robot
in state i at position r moving into the direction ϕ at time t . In
general, the dynamics is of the form

∂tPi(r,ϕ,t) = −v0ŝ[ϕ] · ∇Pi + Dr∂
2
ϕPi + D0�Pi

− γ̄i[c]Pi +
∑

j

nc∑
k=1

γ
(k)
ij [c]

×
∫ π

−π

dϕ′ g(k)
ij (ϕ − ϕ′)Pj (r,ϕ′,t). (D1)

The terms in the first line describe the motility of robots: active
motion along the director ŝ[ϕ(t)] = (cos ϕ, sin ϕ), rotational
diffusion due to spatial heterogeneities or fluctuations of the
active force [39–42] giving rise to a diffusion term with
respect to the polar angle ϕ, and isotropic diffusion. Stochastic
transitions from one internal state to another are accounted for
by the second line. The total rate at which the state i is left is
determined by the rate

γ̄i[c] =
∑

j

nc∑
k=1

γ
(k)
ji [c]. (D2)

The transition rates γ
(k)
ij denote the probability per unit time

for a transition from j to state i via the kth channel (number of
channels: nc). The γ matrices are the immediate mathematical
representation of the NCS motif under consideration. In the
case of NCS motif 1, that was used as an example before, there
is only one channel for each transition such that the γ matrix
reads

γ (1) =
(

0 β[c]
α[c] 0

)
. (D3)

For NCS motif 2, in contrast, two γ matrices have to be
introduced since there are two potential transitions from states
2 to 1, cf. Fig. 1, one of which is accompanied by a reorientation
whereas the other one is not:

γ (1) =
(

0 γ [c]
α[c] 0

)
, γ (2) =

(
0 β[c]
0 0

)
. (D4)

Reorientations in space upon transitions are accounted for by
the probability distributions g

(k)
ij (ϕ).

Now, drift and diffusion properties of MR in two dimensions
are derived along the line of arguments which was introduced
in the previous paragraph for the one-dimensional case.

By integration of Eq. (D1) over all angles ϕ, we obtain the
dynamics of the probability densities Pi(r,t) to find a robot at
position r at time t , independent of its direction of motion:

∂tPi(r,t) = −v0∇ · mi + D0�Pi − Qij [c]Pj . (D5)

This equation is structurally equivalent to Eq. (C1a) in one
dimension. The elements of the Q matrix read in general

Qij = −
nc∑

k=1

[
γ

(k)
ij − δij

∑
l

γ
(k)
lj

]
. (D6)

One may check easily that this definition of Q yields consis-
tently the known expression for NCS motif 1 [Eq. (C2)], for
example, if the corresponding γ matrix [Eq. (D3)] is inserted.
Naturally, those local terms in Eq. (D5) corresponding to
the internal robot dynamics remain unchanged since they are
independent of the spatial dimension. Consistently, only the
terms related to transport in space are altered in two dimensions
as compared to the 1D scenario.

Replacing the density differences mi between left- and
right-moving robots in state i, used to analyze the 1D scenario
and determining density transport, in two dimensions we make
use of the local order parameter

mi(r,t) =
∫

dϕ ŝ[ϕ]Pi(r,ϕ,t) =
∫

dϕ

(
cos ϕ

sin ϕ

)
Pi(r,ϕ,t) ,

(D7)

which appears in Eq. (D5) and that when multiplied by v0

provides the flux due to active self-propulsion. It is further
the first Fourier mode of the probability distribution function
Pi(r,ϕ,t). In general, the dynamics of the fields mi(r,t) is
coupled to higher order Fourier modes of the probability den-
sities Pi(r,ϕ,t) giving rise to an infinite hierarchy. However,
we can make use of the fact that the dynamics of higher order
Fourier modes is fast, i.e., their dynamics is slaved [59] to the
density in the long time limit, thus allowing for their adiabatic
elimination.3 Similar arguments as in the one-dimensional case
apply: Since we aim at a reduction of the dynamics to a drift-
diffusion equation, it is sufficient to calculate the dynamics
of the mean local orientations mi(r,t) to first order in density
gradients. Accordingly, we derive the following dynamics of
mi(r,t) by multiplication of the full master equation with ŝ[ϕ]
and subsequent integration over the polar angle ϕ:

∂tmi(r,t) � −v0

2
∇Pi + D0�mi − Mij [c]mj . (D8)

This is a straightforward generalization of Eq. (C1b). In two
dimensions, the matrix elements of the local dynamics read

Mij = Drδij −
nc∑

k=1

[
γ

(k)
ij 〈cos ϕ〉(k)

ij − δij

∑
l

γ
(k)
lj

]
. (D9)

In two dimensions, they depend on the mean cosine of the
reorientation distributions4

〈cos ϕ〉(k)
ij =

∫ π

−π

dϕ cos ϕ g
(k)
ij (ϕ). (D10)

In the case of reversal for NCS motif 1, g
(1)
12 (ϕ) = δ(ϕ − π )

is the only nontrivial element. It implies 〈cos ϕ〉(1)
12 = −1. In

3For a detailed account on mode reduction in several active motion
models, see Refs. [60–62].

4It was silently assumed that the reorientation distributions g
(k)
ij (ϕ)

are symmetric: g
(k)
ij (−ϕ) = g

(k)
ij (ϕ).
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combination with the corresponding γ matrix [Eq. (D3)],
the matrix M[c] reduces again exactly to the familiar one-
dimensional result; cf. Eq. (C2).

The reduction of Eqs. (D5) and (D8) onto the density follows
the procedure which was outlined in the previous paragraph for
one spatial dimension. Adiabatic elimination (∂tmi ≈ 0) of the
fields mi yields

mi ≈ −v0

2
{M−1}ij∇Pj (D11)

to lowest order in density gradients [cf. Eq. (C6)] and, thus, one
obtains the following reduced density dynamics via insertion
into Eq. (D5):

∂tPi(r,t) � ∇ ·
[(

v2
0

2
{M−1}ij + D0δij

)
∇Pj

]
− Qij [c]Pj .

(D12)

This is the 2D analog to Eq. (C7). In the diffusive limit, the
fields Pi have to lie in the kernel of the matrix Q[c], i.e.,
Qij [c]Pj = 0. We normalize such that Pi(x,t) = P (x,t)Vi[c],
implying

∑
i Vi[c] = 1 andQij [c]Vj = 0. Inserting this ansatz

into Eq. (D12) yields the preliminary Fokker-Planck equation

∂tP (r,t) �
∑
i,j

∇ ·
{(

v2
0

2
{M−1}ij + D0δij

)
∇[PVj [c]]

}
.

(D13)

We define the force f(r) and the position-dependent diffusion
D(r) analogous to the one-dimensional case [Eq. (C11)]:

∂tP (r,t) = −∇ · [f(r)P (r,t)] + �[D(r)P (r,t)]. (D14)

The comparison to Eq. (D13) eventually yields the final
expressions for the drift and local diffusion coefficient:

f(r) = v2
0

2

∑
i,j

(∇{M−1}ij )Vj [c], (D15a)

D(r) = D0 + v2
0

2

∑
i,j

{M−1}ijVj [c]. (D15b)

APPENDIX E: DRIFT-DIFFUSION APPROXIMATION IN 3D

In this section, we briefly summarize some technical partic-
ularities of the drift-diffusion approximation in three dimen-
sions. The general discussion follows closely the procedure
outlined in Appendix D. Starting point is the general master
equation

∂tPi(r,ŝ,t) = −v0 ŝ · ∇Pi + DrL[Pi] + D0�Pi

− γ̄i[c]Pi +
∑

j

nc∑
k=1

γ
(k)
ij [c]

×
∫

d3s ′ g(k)
ij (ŝ|ŝ′)Pj (r,ŝ′,t). (E1)

The transition rates γ
(k)
ij [c] denote, as before, the probability

per unit time for a transition from state j to state i via the kth
channel. Such transitions may be accompanied by a transition
from an orientation ŝ′ to ŝ which is accounted for by the tran-
sition probability density g

(k)
ij (ŝ|ŝ′). The continuous, stochastic

rotational dynamics of the director ŝ in three dimensions is
accounted for by the operator

L[Pi] = ∂sμ
[2sμPi] + ∂sμ

∂sν
[(δμν − sμsν)Pi], (E2)

where a sum over μ and ν is implicit. This Cartesian represen-
tation of the director dynamics is simpler to handle in terms
of analytical calculations as compared to a parametrization in
terms of spherical coordinates (cf. Eq. (30) and Refs. [43,56]).

We point out that there are two vector spaces which have
to be distinguished in the following: the physical space which
robots move in (three dimensional) and the space of internal
states. To avoid confusion, the components of the former are
denoted by Greek indices, whereas the latter are indicated by
Latin indices.

The derivation of the drift-diffusion approximation starts
from the temporal evolution of the densities

Pi(r,t) =
∫

d3s Pi(r,ŝ,t), (E3)

which is obtained from the master equation (E1) by integration
over all orientations of the director yielding

∂tPi(r,t) = −v0∇ · mi + D0�Pi − Qij [c]Pj . (E4)

Just as in two dimensions, the matrix elements of the matrix
Q are determined by

Qij = −
nc∑

k=1

[
γ

(k)
ij − δij

∑
l

γ
(k)
lj

]
. (E5)

We keep in mind that we will assume local equilibrium
throughout; i.e., the probability to find a robot in a certain
internal state is determined by Pi(r,t) = Vi[c]P (r,t) such that
QijVj = 0 and

∑
i Vi = 1.

In three dimensions, the flux is determined by the local order
parameter

mi(r,t) =
∫

d3s ŝPi(r,ŝ,t). (E6)

The dynamics of mi is, in turn, obtained by multiplication of
the master equation (E1) by ŝ and subsequent integration:

∂tmi(r,t) = −v0∇ · Ti + D0�mi − Mij [c]mj . (E7)

The matrix elements

Mij = 2Drδij −
nc∑

k=1

[
γ

(k)
ij 〈cos ψ〉(k)

ij − δij

∑
l

γ
(k)
lj

]
(E8)

differ from their two-dimensional counterpart [cf. Eq. (D9)]
by just a factor of two in front of the angular noise intensity.
The relevant parameter which accounts for the reorientation is
the mean cosine of the angle between the directors just right
before and after a reorientation, defined by

〈cos ψ〉(k)
ij =

∫
d3s ŝ · ŝ′g(k)

ij (ŝ|ŝ′). (E9)

Because of the Cartesian parametrization of the director dy-
namics, a new term involving the symmetric tensor

{Ti}μν =
∫

d3s sμsν Pi(r,ŝ,t) (E10)
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appears in Eq. (E7). In order to derive an effective transport
equation for the densityP (r,t) = ∑

i Pi(r,t), a closure relation
for the tensors Ti has to be found. Since we aim at reducing
the density dynamics to a Fokker-Planck equation valid in the
diffusive limit, it is possible to neglect spatial derivatives in the
dynamics of Ti to lowest order:

∂t {Ti}μν ≈ δμν�ijPj − �ij {Tj }μν . (E11)

This equation involves the matrices

�ij = 2Dr δij +
nc∑

k=1

γ
(k)
ij [c]

1 − 〈cos2 ψ〉(k)
ij

2
(E12)

and

�ij = (6Dr + γ̄i[c]) δij −
nc∑

k=1

[
γ

(k)
ij [c]

3 〈cos2 ψ〉(k)
ij − 1

2

]
.

(E13)

The tensor Ti may be expressed as a function of the densities
Pi(r,t) via adiabatic elimination, ∂t {Ti}μν ≈ 0. In the state of
local equilibrium, where Pi = ViP and QijVj = 0, the rather
complicated expressions above take a rather simple form, as

can be verified via direct calculation:

{Ti}μν = δμν

3
Vi[c]P. (E14)

Reinsertion of this solution into the dynamics of mi [Eq. (E7)]
yields the familiar equation

∂tmi(r,t) � −v0

3
∇Pi + D0�mi − Mij [c]mj , (E15)

which is structurally identical to Eqs. (C1b) and (D8). Only
the speed has been rescaled by the spatial dimensionality.

The remaining part of the calculation follows therefore ex-
actly the same steps as in two spatial dimensions. Accordingly,
the drift and diffusion for MR in three spatial dimensions are
determined by

f(r) = v2
0

3

∑
i,j

(∇{M−1}ij )Vj [c], (E16a)

D(r) = D0 + v2
0

3

∑
i,j

{M−1}ijVj [c]. (E16b)

Note, however, that the definition of the matrixM is slightly
different in two and three dimensions as the rotational noise
amplitude Dr is proportional to the factor d − 1, where d is
the actual spatial dimension.
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