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Solvent coarsening around colloids driven by temperature gradients
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Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent
structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative
differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture
forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the
phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation
time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small
temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface
enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is
above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture
recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing
temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration
gradient.
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I. INTRODUCTION

Coarsening is a paradigmatic example for nonequilibrium
dynamics of systems approaching a steady state. Typically, this
process is induced by a temperature quench of an initially ho-
mogeneous two-phase system, such as a binary liquid mixture
or a polymer mixture, into the regime of immiscibility. The
dynamics of coarsening, which has been studied intensively
for bulk fluid [1,2], is changed substantially by the presence of
surfaces. In this latter context, a lot of attention has been paid
to binary fluids in contact with planar surfaces in semi-infinite
or film geometries. Strong efforts have been devoted to phase
separation guided by the surface, which occurs if – as is
generically the case – the surface prefers one species of the
binary fluid over the other. Under such conditions, upon a tem-
perature quench of an initially homogeneous system into the
miscibility gap, plane composition waves propagate from the
surface into the bulk and result in a transient layer structure [3].
There are numerous studies of this so-called surface-directed
phase-separation process [4,5]. Most of them assume that after
a quench the system – including its boundaries – thermalizes
instantaneously so that the coarsening proceeds at constant
temperature everywhere. Instead of quenching, one can apply
temperature gradients, e.g., by heating or cooling the boundary
of a system. There is much less theoretical work concerning
phase separation induced by temperature gradients, in spite of
such conditions being created in various experiments and for
practical applications, e.g., in polymer systems [6–10]. So far,
the focus has been on systems bounded by “planar” and “neu-
tral” surfaces (i.e., with no preference for either component of a
two-phase system), supplemented by boundary conditions that
maintain a stationary linear temperature gradient across a film
[8,9,11,12]. The effects associated with a temperature quench
of a boundary, whereupon the temperature gradient across the

system varies in time, has rarely [13,14] been considered, albeit
for a planar geometry. To the best of our knowledge, in this
context the effects due to spatiotemporal temperature gradients
in fluids bounded by non-neutral surfaces, i.e., in the generic
presence of surface fields, have not yet been explored.

Here we consider a spherical colloid suspended in a near-
critical binary solvent, kept in its mixed phase above Tc.
We study the dynamics of solvent coarsening following a
temperature quench of the surface of the suitably coated
colloid. Our interest in this problem has been triggered by
recent experiments with a partially gold-capped Janus colloid
suspended in a mixed phase of water-lutidine mixture below its
lower critical point [15,16], in which, upon laser illumination
with sufficient intensity, one observes phase separation of the
solvent around the particle. The early stage dynamics of this
complex process has not yet been investigated. A steady state
occurring at late times has been considered in the studies
of moving Janus colloids for quenches crossing the binodal
[17,18]. In these studies, the assumption has been made that
the order parameter starts to evolve only after the stationary
temperature profile has been reached. Here, we consider the
simultaneous time evolution of the coupled order parameter
and temperature fields. This is expected to have repercussions
for the motion of the Janus colloids.1 For homogeneous col-
loids, we observe a surprising pattern evolution, which cannot

1Allowing for the simultaneous evolution of coupled temperature
and OP fields revealed that the body force exerted on a colloid due
to the concentration flux is much stronger at the beginning of the
coarsening process than in the stationary state. This suggests that the
motion of the Janus particle may start before the stationary state is
achieved.
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be captured by the above assumption. For Janus particles we
show that, unexpectedly, also temperature quenches, which
do not cross the binodal, lead to structure formation. Our
work addresses coarsening phenomena in the presence of a
time-dependent temperature gradient and symmetry-breaking
surface field, which, to the best of our knowledge, have not yet
been studied, as was mentioned before.

II. MODEL AND METHOD

We employ a phenomenological model, which we treat
numerically and analytically. Specifically, we use the Cahn-
Hilliard-Cook (CHC) -type description, based on the Landau-
Ginzburg free-energy functional conjoined with the heat dif-
fusion equation [1,13]:

∂ψ(r,t)
∂t

= ∇2

(
T̃ (r,t)

|T̃1|
ψ(r,t) + ψ3(r,t) − ∇2ψ(r,t)

)

+ η(r,t), (1a)

∂T̃ (r,t)
∂t

= D∇2T̃ (r,t). (1b)

Here ψ(r,t) is the local order parameter (OP) and T̃ (r,t) is
proportional to the reduced temperature field (T (r,t) − Tc)/Tc.
T1 is the quench temperature of the colloid surface. Note
that the coupling between the temperature and OP fields is
captured by the first term on the right-hand side of Eq. (1a). The
Gaussian random noise obeys the relation 〈η(r,t)η(r′,t ′)〉 =
−2ν(r)∇2δ(r − r′)δ(t − t ′); ν(r) is the strength of noise. Equa-
tion (1) is valid for phase separation driven by diffusion, with
hydrodynamic effects being irrelevant (e.g., for small Péclet
numbers or at the early time of coarsening). D = Dth/(|T̃1|Dm)
involves the ratio of the thermal diffusivity Dth of the solvent
and the solvent interdiffusion constant Dm. Equation (1) has
to be complemented by boundary conditions (BCs) on the
surface S of the colloid. At a homogeneous surface, the
temperature field is constant, T̃ (r)|S = T̃1, and we assume
there is no heat flux through the colloid. The generic preference
of the colloid surface for one of the two components of the
binary mixture is accounted for by the so-called Robin BC
[n̂ · ∇ψ(r) + αψ(r)]|S = hs [19]. Here, α and hs are the
dimensionless surface enhancement parameter and symmetry-
breaking surface field, respectively. The second necessary BC
[20] is for no particle flux normal to the surface. Figure 1
explains various notations. The spherical colloid of radius R is
placed at the center of a cubic simulation box (SB) with side
lengthL and periodic boundary conditions [21] at the side walls
of the SB. (For details concerning the model and numerical
techniques, see Appendix A. Relationships to experimentally
relevant quantities are given in Appendix B.)

III. RESULTS

We first study demixing near a homogeneous colloid (hs =
const and T̃l = T̃r = −1) quenched from T̃i = 1 to −1, with
a spatially averaged off-critical solvent concentration ψ0 =
0.1. Figure 2(a) portrays a typical temperature profile in the
midplane z = L/2 of the simulation box at an early time t =
10. There is a strong temperature gradient, with T̃ (r) near the
side walls of the simulation box being close to the initial value
T̃i = 1. As demonstrated in Fig. 3, this temperature gradient

FIG. 1. Spherical Janus colloid of radius R with reduced temper-
atures T̃r and T̃l on its right and left hemisphere, respectively. The
azimuthal angle ϕ is measured from the x axis in the horizontal x̂ ŷ

midplane of the colloid, the polar angle θ is measured from the z axis,
and r is the radial distance from the center. The initial temperature in
the whole binary solvent is T̃i = T̃r .

reduces with time and the angularly averaged concentration
profile attains sinusoidal shape due to surface layer formation
(see Fig. 4). As noted before, the dynamics of coarsening was
studied extensively for instantaneous quenches [22], but never
for a time-dependent temperature gradient with symmetry-
breaking surface fields.

In Fig. 2(b), we show a cross-sectional (x̂ ŷ) view of the
evolution patterns at six times. As the solvent cools, a layered
structure, consisting of disconnected concentric circular shells,
forms near the colloid. Two neighboring layers contain oppo-
site phases, while the phase next to the colloid is ψ > ψ0. Away
from the colloid, spinodal-like patterns prevail (see t = 100).
Upon increasing time, the shell structure propagates into bulk
via the formation of new layers, and the maximal absolute value
of the angularly averaged concentration in each layer increases
(see the radial concentration profiles in Fig. 4, which evolved
from a randomly chosen initial configuration). At early times,
demixing at the surface is dominant, while in the bulk the order
parameter retains its initial value.

Since a reliable analytic expression for OP in the presence
of temperature gradients could not yet be obtained, numerical
results are indispensable. In Fig. 2(c), we present numerical
results (�) for ψ(r,t) after quenching a homogeneous colloid
(not the solvent) to below Tc, i.e., with temperature gradient.
The dashed line refers to our solution for a linearized
approximation of Eq. (1) without noise and temperature
gradient, with the approximate form (by including hs in the
calculations in [13,23])

ψ(ζ = r − R,t) ≈ ψ0 + [
(−αψ0 + hs)/

(
k3
f

√
πt

)]
× [R/(R + ζ )] exp

[
k4
f t − ζ 2/

(
16k2

f t
)]

× {
A cos kf ζ − [

ζ/
(
4k3

f t
)]

sin kf ζ
}
,(2)

where A = 1 + [5/(8k4
f t)][1 − ζ 2/(8k2

f t)], with k2
f =

(1 − 3ψ2
0 )/2 characterizing the fastest growing mode. In
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FIG. 2. Temperature-gradient induced demixing around a homogeneous colloid immersed in a binary solvent with off-critical concentration
ψ0 = 0.1 and undergoing slow cooling below Tc. The results in (a), (b), (d), and (e) correspond to L = 100, R = 10, α = 0.5, hs = 1, D = 50,
and ν = 10−4. (a) Temperature profile in the midplane z = L/2 at an early time t = 10, exhibiting a strong gradient. Initially, the solvent
is hot and the colloid is cold. (b) Coarsening patterns in the midplane of the colloid. Close to the colloid, disconnected concentric circular
structures form; away from the colloid, spinodal-like patterns prevail. As time progresses, the shells propagate into bulk via the formation of
new layers. As expected, in the long-time limit the system forms a planar interface trapping the colloid. (c) Comparison of the approximate
analytic prediction of the OP profile without any temperature gradient (•) and numerical data (�) with a temperature gradient, for R = 10,
T̃i = 1, α = 0.01, hs = 0.1, and ν = 10−4. (d) Nonmonotonic time dependence of the number of concentric shells Ns ; the decrease is much
slower than the increase. (e) Radial two-point equal-time correlation function C(ζ = r − R,t) vs reduced distance ζ/R for three values of t .
C(ζ,t) decays spatially fast at early times, while with increasing time it develops multiple minima corresponding to concentric shell-like layers
around the colloid. Data have been averaged over 10 independent initial configurations.

Fig. 2(c), we also present numerical data for the colloid
(homogeneous) and the solvent being quenched together to
T̃ = −1, i.e., in the absence of temperature gradients. The
slight discrepancy between the numerical data for this case and
the corresponding analytic prediction is likely to be due to the
linear approximation used for the theory. Numerical data with a
temperature gradient (�) exhibit smaller peaks compared to the
overall quench. The reason is that in the case of a gradient, tem-
perature fronts propagate from the colloid into the bulk slowly,
and thus coarsening proceeds slowly. Thereby, at t = 10, while
the OP profile for an instantaneous overall quench has already
developed two prominent minima, for cooling it has acquired
only one minimum, the absolute value of which is also smaller.

FIG. 3. Angularly averaged temperature profile T̃ (ζ ) around a
homogeneous colloid. The temperature gradient decreases with time.
The results correspond to the same parameters as used in Fig. 4.

Figure 3 depicts the temperature profiles at t = 10 and 200.
In the course of time, the temperature gradient decreases due to
cooling, the temperature front moves away from the surface,
and the fluid ahead generates new layers. Once the layered
patterns have spread throughout the finite-sized system, a new
phenomenon occurs: the layers start to break up due to bulk
spinodal decomposition, and the number of shells decreases
[see the case t = 1400 in Fig. 2(b)].

Exemplary results concerning the nonmonotonic behavior
of the number of concentric shells Ns(t) in Fig. 2(d) indicate
a novel coarsening mechanism, likely due to an interplay of

FIG. 4. Angularly averaged order-parameter profiles ψ(ζ ) around
a homogeneous colloid at two times t . At the very early time t = 2,
surface demixing prevails while in the bulk ψ(ζ ) attains its initial
value ψ0 = 0.1. Over the course of time, new layers form and the
maximum value of ψ(ζ ) increases. The lines interpolate the data
points. The parameter values are those used in Fig. 3.
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FIG. 5. (a) Snapshots of a cooling binary solvent (ψ0 = 0.1) around an adsorption-neutral, homogeneous colloid. At early times, the phase
ψ > ψ0 is formed near the colloid surface until at t � 600 the phase near the surface is replaced by the one with ψ < ψ0. Results correspond
to L = 100, R = 10, T̃1 = −1 = T̃l = T̃r , α = 0, hs = 0, and ν = 10−4. (b) Plot of the crossover time τ0 vs system size L for R = 5. The solid
line drawn through the rightmost data points refers to the finite-size critical relaxation time ∝ Lz; z = 4 (see the main text).

surface and bulk demixing. The growth and the decay of Ns(t)
are not symmetric about the time tm at which Ns peaks; the
breakup is much slower.

In order to investigate the surface patterns around the
colloid, we compute the radial two-point equal-time correla-
tion function in the midplane defined as C(ζ = r − R,t) =
〈ψ(R,t)ψ(R + ζ,t)〉 − 〈ψ(R,t)〉〈ψ(R + ζ,t)〉. The symbol
〈·〉 denotes the average over initial configurations of the
angularly averaged C(ζ,t). For self-similar domains in bulk,
C(r,t) exhibits scaling [22]: Cbulk(r,t) = C (r/
(t)), where C
is for bulk and static equilibrium. 
(t) is the mean domain
size. In Fig. 2(e), C(ζ,t) is plotted versus distance ζ/R for
three t . While at early times C(ζ,t) decays spatially faster,
upon increasing time the spatial decay becomes less steep
and C(ζ,t) develops multiple peaks corresponding to various
surface layers. However, we could not find any data collapse
for C(r,t) onto a function of a single variable. This indicates
non-self-similarity of coarsening patterns due to symmetry-
breaking surface fields.

We have explored also the coarsening process around an
adsorption-neutral colloid (α = 0,hs = 0). For an off-critical
solvent, the qualitative feature of the coarsening patterns for
a neutral colloid [Fig. 5(a)] is similar to that with surface
adsorption preferences [Fig. 2(b)]. However, there is an im-
portant difference concerning the phase formed at the colloid
surface. While for hs > 0 the phase with ψ > ψ0 remains at the
surface at all times, for the neutral colloid a crossover occurs:
at very early times the phase ψ > ψ0 is dominant near the
surface until the layered structures have spread throughout the
system. Thereafter, beyond a certain crossover time τ0 [see
the panel for t = 600 in Fig. 5(a)] the phase ψ < ψ0 = 0.1
is formed near the surface. We anticipate this first crossover
time τ0 to be proportional to the OP relaxation time τ [24]
of the solvent. For a near-critical system τ ∝ ξz, where ξ

is the equilibrium bulk correlation length. Thus for a finite
system at Tc,bulk it scales as τ ∝ Lz [25]; z � 4 is the dynamic
critical exponent for model B [25] with diffusive dynamics
for the conserved order parameter [Eq. (1a)]. In Fig. 5(b),
data for τ0 are plotted for various system sizes. Agreement

with the aforementioned power-law behavior (solid line) on
a double-logarithmic scale supports the expectation τ0 ∼ τ .
Such a crossover is observed only for adsorption-neutral
colloids, off-critical concentrations, and the simultaneous time
evolution of coupled OP and temperature fields. For the time
evolution of the OP with stationary temperature profiles or
for a critical concentration, both phases always form near
the surface, and the OP morphology is not shell-like but
wormlike.

Next, we turn to coarsening of the solvent around a Janus
colloid with two hemispheres at different temperatures; both
hemispheres prefer the same component of the solvent but with
different strengths. Figure 6(a) shows OP distributions. We
start with a homogeneous configuration of the binary solvent
at T̃ = 1 and keep both hemispheres of the Janus colloid at
T̃ = 1 (above Tc) at t = 0. Subsequently, we let the system
evolve (t = 1 − 400) such that there is no temperature gradient.
Accordingly, the surface enrichment phenomenon is the only
mechanism for structure formation. The snapshot at t = 400
corresponds to the equilibrium surface adsorption OP profile.
The Janus character of the colloid causes only weak deviations
from a spherically symmetric adsorption profile. Next, at
t = 401 we quench the left hemisphere of the Janus colloid
to T̃ = 0.7 such that the subsequent evolution will occur in
the presence of a temperature gradient. The corresponding
stationary configuration is shown at t = 1400. A comparison
of the snapshots at t = 400 and 1400 clearly demonstrates
the difference between the equilibrium surface pattern formed
due to surface enrichment only and the steady-state pattern
emerging in the presence of a temperature gradient. Clearly,
a temperature gradient leads to a more pronounced bubble
formation on the cold side of the Janus colloid. Coarsening
in fluid regions with T > Tc was observed experimentally [6]
in polymer solutions due to the Soret effect and numerically
[14] in fluid mixtures due to convective flows. Here, for purely
diffusive dynamics, i.e., without involving any hydrodynamic
flow, we observe the condensation of a droplet around the
colloid above Tc, which is a novel phenomenon due to the
combination of Soret and surface effects. Although this is
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FIG. 6. Coarsening of a binary solvent with ψ0 = 0.1 around a Janus colloid. Results correspond to L = 100, R = 10, α = 0.5, hs,l = 1,
hs,r = 0.5, and ν = 10−5. (a) Evolution patterns in its midplane (θ = π/2). The left and right hemispheres are gray and yellow, respectively.
Initially, both the solvent and colloid are at T̃ = 1. From t = 1 to 400, the system evolves at constant temperature everywhere. At t = 401, the
temperature of the left hemisphere is quenched to T̃l = 0.7. The corresponding stationary configuration is shown at t = 1400. Although both
hemispheres are maintained above Tc, structure formation is observed. (b) Temperature distribution T̃ (r,ϕ) > 0 of the solvent in the midplane
around a Janus colloid. Dependence (b) on the azimuthal angle ϕ for two radial distances r from the colloid center and (c) on r for two opposite
angles ϕ corresponding to the right and to the left hemisphere, respectively. The shaded region in (c) corresponds to the space occupied by the
colloid. Inset of (c): as in the main figure, but for the homogeneous colloid discussed in Fig. 2 for which there is no dependence on ϕ.

reminiscent of so-called surface enrichment, the mechanism,
as explained above, is very different.

To relate the anisotropy of surface patterns with temperature
gradients, within the midplane we have computed the radial and
angular dependence of T̃ on r and ϕ, respectively. Figure 6(b)
depicts the dependence of T̃ on ϕ for two fixed values of r with
temperature in a stationary state. The symbols correspond to
our numerical data; the solid lines refer to analytical predictions
[26]: T̃ (r,ϕ) = A0 + ∑∞

n=0 BnPn(cos ϕ)(R/r)n+1, where Bn

are constants and {Pn} are Legendre polynomials. In Fig. 6(c)

we plot the radial dependence of T̃ for two opposite angles.
Our numerical results agree with the theoretical predictions.
The very slow (algebraic) decay of the stationary temperature
profile facilitates coarsening in extended regions of the system;
in our simulation box, it takes place everywhere. Due to its
finite size, away from the colloid T̃ is lower than its initial
value. Note that T̃ (r,ϕ) is anisotropic, i.e., different for the
two angles considered. This should be compared with the
homogeneous colloid for which T̃ (r) is radially symmetric
[see the inset of Fig. 6(c)] and coarsening patterns are also
symmetric [Fig. 2(b)]. This confirms that the anisotropy of the
temperature distribution is the dominant source of anisotropy
in the OP distribution around a Janus colloid. Upon increasing
the radius of the colloid, the radial extent of a stationary bubble
of the phase preferred by the colloid and the amplitude of the
OP profile increase moderately. The value of the OP at the

left hemisphere surface is slightly larger than at a planar wall
(R → ∞). At the right hemisphere it is reduced to about half
the value for a planar wall.

IV. SUMMARY

In summary, we have studied the nonequilibrium phenom-
ena of a temperature-gradient-induced coarsening and the
formation of the concentration distribution around a heated
colloid suspended in a binary solvent. Coarsening patterns
depend on the adsorption preferences of the colloid surface and
on the bulk concentration of the solvent. For deep quenches
(corresponding to D ≈ 100), the timescale of patterns for a
molecular solvent varies between 10−1 and 10−2 s, depending
on the size of the colloid and the simulation box (see the
Appendix B). There is an anisotropic structure formation
around a Janus colloid even if the colloid and the solvent are
at temperatures corresponding to its one-phase region, which
is different from surface enrichment [4,27,28]. Even if T̃ (r,t)
exhibits a fast dynamics, the results of our study are relevant
for controlling pattern formation, e.g., in polymers, using hot
homogeneous or Janus particles [29]. It is expected that the
patterns due to the temperature gradient will be different from
those seen for spatially homogeneous quenches. Expressing
the dimensionless parameters used in our study in terms of
dimensional quantities (see Appendix B) suggests that the
behavior described above is experimentally accessible, e.g.,
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for colloids of size �20 μm within 3–4 min. Our study
contributes to the understanding of the propulsion mechanism
via diffusive dynamics for one of the commonly used represen-
tatives of synthetic active matter [15,16] [see (1)]. The other
presently available theoretical approaches [17,18] are based
instead on hydrodynamics and are complementary to our study.
Generally, dipping a particle into its binary solvent causes
transportation of the preferred phase toward its surface. From
our study, we conclude that this transport is strongly enhanced
if supported by a time-dependent temperature gradient.

ACKNOWLEDGMENTS

The work by A.M. has been supported by the
Polish National Science Center (Harmonia Grant
No. 2015/18/M/ST3/00403). We also thank Subir K. Das
for useful comments.

APPENDIX A: MODEL

Our starting point is a dynamical equation for the conserved
OP that has the form of a continuity equation,

∂ψ(r,t)
∂t

= −∇ · j (r,t), (A1)

where the OP flux j̊ is proportional to the gradient of the local
chemical potential:

= −∇ · [−M∇μ(r,t)] = M∇2 δF [ψ]

δψ(r,t)
; (A2)

M is the mobility of the order parameter. Using for F̊ the
form of the Landau-Ginzburg free-energy functional F

kBTc
=∫

(dd r̊/v)[ 1
2aψ(r)2 + 1

4uψ(r)4 + 1
2C(∇ψ(r))2], with a ∝

(T − Tc)/Tc, one obtains the Cahn-Hilliard-Cook (CHC)
equation

∂ψ̊(r̊,t̊)

∂t̊
= (M/v)kBTc∇̊2

×[aψ̊(r̊,t̊) + uψ̊3(r̊,t̊) − C∇̊2ψ̊(r̊,t̊)], (A3)

where v is a microscopic volume unit, such as the volume
of a unit cell of a lattice or a molecular volume of the
species forming a binary liquid mixture. For a spatially varying
temperature field T̃ (r̊) = A (T (r̊) − Tc)/Tc, we replace the
constant parameter a by T̃ (r,t) and consider the following
stochastic equation:

∂ψ̊(r̊,t̊)

∂t̊
= (M/v)kBTc∇̊2[T̃ (r̊,t̊)ψ̊(r̊,t̊)

+uψ̊3(r̊,t̊) − C∇̊2ψ̊(r̊,t̊)] + η̊(r̊,t̊). (A4)

The Gaussian white noise η with zero mean value represents
thermal fluctuations and satisfies the relation

〈η̊(r̊,t̊)η̊(r̊ ′,t̊ ′)〉 = −2(M/v)kBT (r̊)∇̊2δ(r̊ − r̊ ′)δ(t̊ − t̊ ′).

(A5)

Here we have assumed local equilibrium so that the noise obeys
the fluctuation-dissipation theorem. We take the temperature
field T̃ (r̊,t̊) to be a solution of the heat diffusion (HD) equation

∂T̃ (r̊,t̊)

∂t̊
= Dth∇̊2T̃ (r̊,t̊), (A6)

where Dth is the thermal diffusivity of the solvent with the
boundary conditions

T̃ (r̊,t̊ = 0) = T̃i(r̊) and (A7a)

T̃ (r̊,t̊)|S = T̃1(t̊), (A7b)

where S is the surface of the colloid (or a part of it) and
T1 is the temperature quench. In the following, we take
T̃1 to be time-independent. Equations (A4)–(A6) are turned
into dimensionless ones by using the substitutions r̊ = rr0,
t̊ = t t0, ψ̊(r̊,t̊) = ψ(r,t)ψ0, and η̊(r̊,t̊) = η(r,t)η0, where the
quantities without ◦ are dimensionless and those with index 0
are the rescaling factors. This leads to the dimensionless CHC
equation for an inhomogeneous temperature field, which is a
solution of the HD equation:

∂ψ(r,t)
∂t

= ∇2

(
T̃ (r,t)

T̃1
ψ(r,t) + ψ3(r,t) − ∇2ψ(r,t)

)

+ η(r,t) (A8)

with

∂T̃ (r,t)
∂t

= D∇2T̃ (r,t). (A9)

D|T̃1| is the so-called Lewis number [30], which is the ratio
of the thermal diffusivity Dth and the interdiffusivity Dm

of the solvent; we neglect the dependence of Dth and M

on ψ . Although the bulk ordering field hb does not enter
Eq. (A9) explicitly, the dynamics depends on it implicitly via
the conservation of the integral over the order parameter as a
function of time. Upon rescaling, the Gaussian random noise
obeys the relation 〈η(r,t)η(r ′,t ′)〉 = −2ν(r)∇2δ(r − r ′)δ(t −
t ′). The amplitude ν(r) = [T (r)u/(TcT̃

2
1 )](|T̃1|/C)d/2 is the

strength of the dimensionless noise η(r,t), which we take at
T (r) = T1. The rescaling factors are given by

r0 =
√

C/|T̃1| =
√

2ξ−(T1), (A10a)

t0 = Cυ/
(
MkBTcT̃

2
1

) = 2ξ 2
−(T1)/[Dm(Tc)|T̃1|], (A10b)

ψ0 =
√

|T̃1|/u, (A10c)

η0 =
√

|T̃1|/u/
[
Cυ/

(
MkBTcT̃

2
1

)]
, (A10d)

and

D = Dth/(|T̃1|Dm). (A10e)

This amounts to expressing time in units of
(2ξ 2

−)/[Dm(Tc)|T̃1|], where Dm = M(kBTc/υ) is the
interdiffusion constant of the solvent at Tc and the OP in
terms of |ψb|, which is the absolute value of the mean-field
bulk OP at T = T1; υ = ad

0 , where a0 is a microscopic length
scale, e.g., the molecular size of the solvent molecules. Note
that Eq. (A7) depends explicitly on T̃1. This is so because we
have chosen to express the physical quantities in dimensional
units, which are taken at the temperature T1. For example, the
position vector r is expressed in units of the mean-field bulk
correlation length

√
2ξ− at T1 < Tc and the OP in terms of

|ψb|, which is the absolute value of the mean-field bulk OP at
T = T1. This choice of units is arbitrary, i.e., one could use
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instead another temperature T0. This would lead to an explicit
dependence of the evolution equation for ψ [Eq. (A9)] on T0.
But the solution would not depend on it; after changing the
units back into dimensional ones, the dependence on T0 would
drop out. This is not the case for the quench temperature T1.
The dependence on it is always present in the solution via
the boundary condition [Eq. (A7b)]. In the case of a spatially
homogeneous and time-independent temperature field, the
coefficient multiplying the term ∝ ψ(r,t) in Eq. (A9) reduces
to 1. The solutions of Eq. (A9) are averaged over multiple
independent initial configurations, but they are not averaged
over the noise η(r,t).

Equation (A9) is complemented by the following boundary
conditions (b.c.) on the surface S of the colloid:

T̃ (r)|S = T̃1, (A11a)

n̂ · ∇T̃ (r)|S = 0. (A11b)

Here, n̂ denotes the unit vector perpendicular to S pointing
into the colloid. To take into account the generic preference
of the colloidal surface for one of the two components
of the binary mixture, we consider a surface energy con-
tribution 1

2 α̊
∫
S ψ̊2dS − h̊s

∫
S ψ̊ dS, which is added to F̊

[19]. Here, α̊ is a surface enhancement parameter and h̊s

is a symmetry-breaking surface field. Upon the substitutions
α̊ = (C/|T̃1|)−1/2α and h̊s = [(|T̃1|/u)1/2/(C/|T̃1|)−1/2]hs this
gives the dimensionless static, so-called Robin BC [n̂ ·
∇ψ(r) + αψ(r)]|S = hs [19] with n̂ pointing into the
colloid. The second necessary BC [20] corresponds to
the requirement that there is no particle flux normal to
the surface: j⊥ = [−M n̂ · ∇μ(r,t) + η(r,t)]|S = [−M n̂ ·
∇δF [ψ]/δψ(r,t) + η(r,t)]|S = 0 with the local chemical
potential μ(r,t). For a homogeneous colloid, the initial con-
figuration is prepared as follows: (i) Outside the colloid each
lattice point of the simple-cubic simulation grid carries an
OP value that is chosen randomly from a uniform random
number distribution within the interval [0,2ψ0], such that the
spatially averaged OP is ψ0. (ii) All grid points, i.e., those for
the binary liquid mixture outside the colloid as well as those
for the inside of the colloid, receive a reduced temperature
value T̃i = 1 (above an upper critical temperature Tc). At
t = 0, the values at the lattice points forming the surface of
the colloid are quenched to T̃1 < 0 (below an upper Tc). The
ensuing temperature and order parameter profiles as a function
of time are obtained by solving Eqs. (A9) and (A8) using
the finite-element (FE) method. To implement the BC on a
curved surface, a trilinear interpolation method [31] is used.
All numerical results presented here are obtained for D = 50
and for a numerical time stepdt = 0.001 within the FE scheme.

APPENDIX B: PARAMETERS

The dimensionless parameters used in our numerical cal-
culations can be expressed as ratios of certain dimensional
quantities, which can be inferred from observables of a physical

realization of the system under consideration. The size of the
simulation box and the radius of the colloid are L/r0 = 100
and R/r0 = 10, respectively, in the reduced units of the CHC
theory. According to Eq. (A10a), this corresponds to L =
141.4ξ− and R = 14.14ξ− in dimensional units; ξ− is the bulk
correlation length of the binary liquid mixture at the quench
temperature T1 below Tc of demixing. These values can be
related to the reduced temperature τ1 = (T1 − Tc)/Tc via the
relation T̃1 = Aτ1, where A = C/(ξ+

0 )2. Typically, for binary
liquid mixtures the bulk correlation length amplitude is ξ+

0 �
0.2 nm [32,33]. The coefficient C is proportional to λ2, where λ

is the range of the correlations in that solvent [34] far away from
the critical point, which we take to be about four times the size
a0 of the molecules. Typically, for water mixed with organic
molecules one has a0 � 3.4 Å so that C � 1.85 (nm)2 and
A � 46.3. We consider T̃1 = −1 for the homogeneous colloid,
which corresponds to τ1 � −0.02. Using the relation ξ+

0 /ξ−
0 �

2 [35] and the power law ξ− � ξ−
0 |τ1|−ν with the critical

exponent ν � 0.63 [35] of the three-dimensional Ising model,
we obtain ξ−(τ = −0.02) = 1.2 nm, which yields the size of
the simulation box and of the colloid as L � 170 nm and R �
17 nm, respectively. The time unit is t0 = 2ξ 2

−/[Dm(Tc)|T̃1|],
where Dm(T = Tc) is the interdiffusion constant of the solvent
at Tc. Note that this latter choice of temperature is by fiat
because in the free-energy functional we take the reference
free energy at Tc. Since we are not aware of any proper
experimental analysis of the enhancement at criticality of
and background contribution to the interdiffusion constant for
any suitable binary liquid mixture, we replace Dm(Tc) by the
value of Dm at a very small reduced temperature τ∗ = 10−6.
For a water-lutidine mixture [32] this gives Dm(τ∗ = 10−6) �
5 × 10−14 m2/s. Using the value of ξ− as mentioned above,
we obtain t0 � 6 × 10−5 s. Via the relation Dth = κ/(�CP )
the thermal diffusivity Dth can be expresses in terms of
the mass density �, the specific heat CP , and the thermal
conductivity κ of the fluid. For the 2,6-dimethylpyridine-water
mixture near Tc, the values of � and κ vary slightly with
temperature whereas the variation of CP is stronger [32,36,37].
Accordingly, we adopt the values of these quantities at 32 ◦C,
i.e., � � 990 kg/m3 and κ � 0.39 W/(m K). The heat capacity
CP and the interdiffusivity Dm at τ1 = 0.02 (or for deeper
quench τ1 = 0.1) as obtained from Ref. [32] are 7J/(gK)
(8J/(gK)) and 4 × 10−11 m2/s (≈ 10−10 m2/s), respectively,
which renders Dth(τ = 0.02) � 5.6 × 10−8 m2/s (Dth(τ =
0.1) � 5 × 10−8 m2/s) so that with |T̃1| = 1 (|T̃1| = 4.63) and
Eq. (10e), D (τ = 0.02) = Dth(τ = 0.02)/Dm(τ = 0.02) �
1.4 × 103 (D (τ = 0.1) = Dth(τ = 0.1)/Dm(τ = 0.1) � 102)
for τ = τ1. The amplitude of the noiseν taken in our calculation
is 10−4–10−5, which means that the strength of the dimension-
less noise field can be estimated as |η(r,t)| <

√
ν, i.e., it is one

order of magnitude weaker than the dimensionless averaged
order parameter ψ0 = 0.1 used in our study. It is difficult to
relate the surface parameters α and hs used in our approach
to physical observables. The small value of hs corresponds
to a weak preference for one component of the binary liquid
mixture over the other.
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