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Hydrodynamic interaction of trapped active Janus particles in two dimensions
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The dynamics of a pair of identical artificial microswimmers bound inside two harmonic traps, in a thin
sheared fluid film, is numerically investigated. In a two-dimensional Oseen approximation, the hydrodynamic
pair coupling is long-ranged and proportional to the particle radius to film thickness ratio. On increasing such
ratio above a certain threshold, a transition occurs between a free regime, where each swimmer orbits in its own
trap with random phase, and a strong synchronization regime, where the two swimmers strongly repel each other
to an average distance larger than both the trap distance and their free orbit diameter. Moreover, the swimmers
tend to synchronize their positions opposite the center of the system.
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I. INTRODUCTION

The motion of artificial microswimmers is generally
associated with backflows in the suspension fluid, the
properties of which greatly vary with their self-propulsion
mechanism [1–4]. This immediately raises the issue of how
hydrodynamics influences the diffusion of active particles at
the geometric boundaries [5,6], in sheared flows [7,8], and,
even more, when clustering [9,10].

We investigated the hydrodynamic interactions between
two microswimmers moving in a free-standing film at low
Reynolds numbers [11–13] subject to a Couette shear.
The problem is important in the context of the emerging
technology of synthetic active matter [14]. For instance,
thinking of biomedical and environmental applications, active
particles can be designed to operate inside the surface layers
of organic tissues [15] or natural water surfaces. This situation
should not be mistaken with the quasi-two-dimensional (2D)
setups frequently reported in the literature, for instance,
by spatially confining active colloids between two parallel
boundaries [12,15] or letting them sediment, under the action
of gravity, at the bottom of a container [16]. In all these setups,
momentum flow of the suspension fluid is not restricted
on a plane, so that calculating the relevant hydrodynamic
effects remains an intrinsically 3D task (though with more
complicated boundary conditions [5,6]).

The stochastic motion of a free particle following the
streamlines of a viscous sheared fluid and the motion of the
same particle trapped in a harmonic well swept through by
the same shear flow, can be conveniently related [17,18]. Of
course, trapped particles (e.g., in an optical tweezer) allow an
easier experimental observation of sheared Brownian motion
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[19]. We propose to generalize this approach to investigate the
hydrodynamic pair interaction of self-propelling swimmers in
2D. To this purpose we numerically simulated two identical ac-
tive spheres diffusing in distinct harmonic planar traps, placed
away from any other obstacle [Fig. 1(a)] to neglect unwanted
hydrodynamic interactions with the flow bound-aries [20].

Hydrodynamic interactions in 2D are characterized by long-
range tails of the fluid flow propagator [11]. To explicitly
account for the far-field properties of the system we adopted a
refined version of the 2D Oseen tensor [21] recently proposed
and experimentally validated by Di Leonardo et al. [13]
for passive colloidal particles. As the 2D Oseen tensor is
proportional to the particle radius to film thickness ratio, so
is the pair hydrodynamic coupling. Increasing the particles’
radius at constant film thickness bears remarkable effects on the
pair dynamics [see sketch in Fig. 1(b)]. Small radius particles
tend to perform elliptical orbits inside the traps, subjected to
the shear torque. The size of their orbits depends on their self-
propulsion speed and the trap strength, whereas their phases
vary randomly with time due to angular noise associated with
the self-propulsion mechanism. For particle radii larger than a
certain value, which depends on the distance between traps,
hydrodynamics interactions make the average pair distance
jump to values that exceed and only weakly depend on the
trap distance. Simultaneously, the swimmers synchronize their
phases to move, in average, opposite one another with respect
to the midpoint between the traps.

This paper is organized as follows. In Sec. II we introduce
the Langevin equations that model two harmonically trapped
active JP’s suspended in a thin fluid film and coupled via
a 2D Oseen tensor. In Sec. III we numerically investigate
their hydrodynamic interactions, first in the no-shear regime.
As anticipated above, the two particles repel one another
with increasing the hydrodynamic coupling constant, while
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FIG. 1. Trapped active Janus particles in a thin sheared free-
standing film of thickness h and width yL: (a) Ideal experimental
setup. A pair of identical Janus particles of radius a diffusing in
a planar Couette cell are trapped by orthogonal optical tweezers
of equal strength k (orange cylinders). v0 and ±vs are the speeds
respectively of the self-propelling particles and the Couette cell walls.
(b) Illustration of the hydrodynamic effects on the pair dynamics:
small-radius particles orbit inside harmonic traps, placed a distance d0

apart, with average radius r0 = v0/k and random phases; large-radius
particles repel one another and synchronize their phases, keeping an
average distance, r∞, much larger than d0.

synchronizing their orbits. The additional effects of a planar
shear flow of the Couette’s type on the pair’s dynamics is
briefly discussed in Sec. IV. Finally, in Sec. V we draw some
concluding remarks.

II. MODEL

The overdamped dynamics of the active pair was modeled
by a set of coupled Langevin equations

Ṙi = Fi + G(Ri − Rj )Fj (Rj ) + ui + v0,i , (1)

where, in Einstein summation convention, the subscripts i

and j refer to the pair components 1 and 2, respectively,
Ri = (xi,yi) denote their positions in the plane (x,y), v0,i

their self-propulsion velocity, and ui is the shear flow acting
upon them. For simplicity, we assumed a planar Couette flow
[21,22] oriented along the x axis, ui = −2�yi x̂. The vector
Fi is the restoring drive the ith (ideally non-truncated [23])
harmonic trap of strength k and center di exerts on the particle
of coordinates Ri , that is,

Fi(Ri) = −k(Ri − di). (2)

In the overdamped regime of Eq. (1) the vectors Fi have
the dimensions of a force divided by a viscous constant
(the same for both particles). In our simulations we always
placed the traps symmetrically with respect to the origin, so
that d1 = −d2 = d0. If, contrary to our assumption, the two
non-truncated harmonic traps were taken to act on both active
JP’s, the total restoring force on the ith particle would add up

to Fi = −2kRi . The ensuing hydrodynamic pair interaction
would then be still described by the present model, but with
d0 = 0 and doubled trap strength.

For a structureless swimmer [24,25], like the active Janus
particles (JP) considered here, the self-propulsion velocities,
v0,i = v0(cos φi, sin φi), on the right-hand side (r.h.s.) of
Eq. (1) have the same constant modulus, v0, while their orienta-
tions, φi , relative to the flow direction, vary with time subjected
to the orthogonal shear torques [26,27], �i = −(1/2)∇ × ui ,
and the stationary Gaussian noises ξi(t) with 〈ξi(t)〉 = 0 and
〈ξi(t)ξj (0)〉 = 2δijDφδ(t), that is, φ̇i = � + ξi(t).

The dynamics of JP 1 and 2 is coupled via the 2D Oseen
tensor [13,22],

Gαβ(r) = a

h

[
δαβ

(
ln

L

r
− 1

)
+ rαrβ

r2

]
, (3)

where α and β denote the Cartesian projections x and y of the
particles’ separation vector, r = Rj − Ri with i �= j . Here,
a and h are the particle radius and the film thickness shown
in Fig. 1(a), where 2a < h. The cut-off length L ensures
that for r � L three main assumptions hold: (1) infinite size
of the film; (2) negligible inertia; (3) negligible viscous drag
at the interfaces. The last assumption, in particular, requires
that the viscosity of the bounding fluid is much smaller than
the viscosity of the film itself. In the present study, consistently
with many practical realizations [13],Lwas taken considerably
larger than the film thickness, h, to ensure the validity of the
2D model also in the limit a/h → 0.

In the absence of a trapping force, both active JP’s would
move force-free despite the fact that each establishes a velocity,
v0,i , which, in the overdamped regime, one may model as a
self-propulsion “force” [28]. However, these are not real forces
and, therefore, a free self-propelling swimmer couples hydro-
dynamically to other particles only through higher derivatives
of the Green tensor (a higher order effect we neglect). On the
contrary, the trapping forces, Fi , do induce Stokeslets and are
therefore coupled via the Oseen tensor in Eq. (1).

To single out the system’s free parameters we rescaled space
and time, rα → r ′

α = rα/(v0/k) and t → t ′ = kt . The remain-
ing tunable parameters are the hydrodynamic pair coupling,
a/h, the trap half-distance, d ′

0 = d0/(v0/k), and the active JP
angular dynamics parameters, �′ = �/k and D′

φ = Dφ/k. In
our simulations [29] we implicitly used dimensionless units by
setting k = v0 = 1 and dropping the prime signs altogether.

III. NO-SHEAR REGIME, � = 0

Contour plots for the 2D probability density functions
(p.d.f.), Pi(x,y), of a pair of trapped active JP’s moving in a
unsheared film of constant thickness, h, are displayed in Fig. 2
for two different trap distances and increasing particle radii. In
the panels of the top row d0 = 0, that is the two swimmers move
effectively inside the same trap (their collisions are ignored).
In the panels of the bottom row, the traps of JP 1 and 2 were
shifted vertically by ±y0 from the origin, d0 = (0,y0). A few
interesting properties are apparent: (i) At low hydrodynamic
coupling, the Pi(x,y) contour plots exhibit a thin annular
structure with radius v0/k and centers at (0,±y0) [panels (a),
(e)]; (ii) On increasing a, for y0 = 0, the annular structures
spread out radially [panel (b)], whereas, for y0 > 0, the two
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FIG. 2. Contour plots of Pi(x,y) for the harmonically trapped active JP 1 (upper panels) and JP 2 (lower panels) at zero shear, � = 0. The
JPs’ radius, a, and the centers of the JP 1 and 2 traps, (0,±y0), are reported in the legends; for y0 = 0, (a)–(c), the contours of Pi(x,y) coincide,
for y0 > 0, (e)–(g), are center-symmetric. Other simulation parameters are: L = 50, h = 1, v0 = 1, k = 1, and Dφ = 0.05. The simulation
parameters in (d) and (h) are the same as, respectively, in (c) and (g), except for Dφ = 0.5.

p.d.f.’s develop symmetric elliptic sub-structures [panel (f)].
The thickening of the p.d.f. ring-like sub-structure grows
prominent with raising Dφ , as shown in panels (d) and (h); (iii)
Most remarkably, on further increasing a above a certain criti-
cal value, ac (which depends on y0), the contours expand fast.
For y0 = 0, the Pi(x,y) retain their ring-like structure, but their
diameter, r∞(a), increases exponentially with the hydrody-
namical coupling [panel (c)], not much sensitive to Dφ [panel
(d)]. For y0 > 0, they peak a distance apart comparable to
r∞(a), with maxima centered on the y axis [panels (f) and (h)].

These properties are a consequence of the hydrodynamic
pair coupling encoded in Eq. (1). More quantitatively, in
Fig. 3(a) we plotted the average pair distance, 〈r〉, as a function
of a for different trap distances and angular noise strengths. All
curves develop a fast raising branch weakly dependent on y0,
for large a, whereas, in the opposite limit, the pair distance is
much less sensitive to a, while growing linearly with y0. For
trap distances larger than the orbit diameter of the uncoupled
JP’s, y0 > v0/k, the transition between the regimes of weak
interaction and mutual repulsion is quite abrupt, which defines
a crossover coupling, ac at constant film thickness, as a function
of the trap distance. Increasing the intensity of the angular
noise has the effect of lowering the active pair distance in both
regimes.

On inspecting the contour plots of Figs. 2(c) and 2(g) one
arrives at the conclusion that 〈r〉 at large a is comparable
to the diameter, r∞(a), of the Pi(x,y) ring-like structure in
panel (c) and the distance between their peaks in panel (g).
This property signals a phase synchronization of the trapped
particles. This hypothesis is corroborated in Fig. 3(b) by the
a-dependence the ratio Rθ = −〈sin θ1 sin θ2〉/〈sin2 θ2〉, where
θi are the particles’ polar angles measured with respect to d0.
For a/h → 0, the two active JP’s, which diffuse in circularly

symmetric traps, are statistically uncorrelated and, therefore,
the numerator of Rθ is identically zero. For a > ac, due to
the hydrodynamic repulsion, they tend to occupy positions
diametrically opposite to the origin, that is, θ1 = −θ2, hence
Rθ → 1. Moreover, the cross-over between the two opposite
hydrodynamic interaction regimes in panels (a) and (b) of Fig. 3
are related, which confirms that the fast growth of 〈r〉 with a

and the strong pair phase synchronization are manifestations
of the same mechanism.

The dynamical transition occurring around a ∼ ac is well
illustrated by the equations for r = R1 − R2, one easily derives
from Eq. (1). By making use of the relevant polar coordinates
r and θ , one obtains

r
dr

dt
= r · [λr

−
F + 
u + 
v0],

r2 dθ

dt
= r × [λθ

−
F + 
u + 
v0], (4)

where 
F = F1 − F2, 
u = u1 − u2, 
v0 = v0,1 − v0,2, and
θ is oriented in the ẑ direction (i.e., orthogonally to the film like
in Fig. 1). The factors λr

− = 1 − (a/h) ln(L/r) and λθ
− = 1 −

(a/h)[ln(L/r) − 1] are the eigenvalues of the mobility tensor,
1δαβ + Gαβ , introduced in Eq. (1); they represent opposite
particle displacements of coordinate r and θ , respectively [13].

The average pair distance as a function of a, 〈r(a)〉, is
obtained by setting the time average of the r.h.s. of the
first Eq. (4) to zero, that is, in the absence of shear, 〈r ·
(λr

−
F + 
v0)〉 = 0. This returns two solutions. The first
holds for weak hydrodynamic couplings, a/h → 0, when
λr

− = λθ
− 
 1. As the orientations, φi , of the self-propulsion

velocities, v0,i , freely fluctuate with time, in this regime both
Fi(Ri) + v0,i must vanish separately. The locus of Ri satisfying
such a condition is a circle of radius v0/k and center di
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FIG. 3. Active JP’s in harmonic traps with ±d0 = (0,±y0), zero
shear, � = 0, and different Dφ : (a) average pair distance 〈r〉 vs. a; (b)
angular synchronization factor Rθ vs. a (see text). Other simulation
parameters are: L = 50, h = 1, v0 = 1, and k = 1. The horizontal
dashed curves in (a) represent our predictions for 〈r〉 at low a, r0. Our
estimates of 〈r〉 for y0 = 0 and large a in the regime of high, r̄∞(a),
and low angular noise, r∞(a), are plotted, respectively, as dashed
and solid curves. For a given y0, r0 and r̄∞(a) cross at the critical
coupling, ac.

[Figs. 2(a), 2(b)]. Correspondingly, the average pair distance
for zero hydrodynamic coupling (no synchronization) and
vanishingly low noise (no fluctuations of the pair center
of mass) is r0 ≡ 〈r(0)〉 =

√
(2d0)2 + 2(v0/k)2. The effect

of the hydrodynamic coupling in leading order of a/h

follows a simple perturbation scheme, namely, r0 → r0 +
(2/r0)(a/h)(v0/k)2 ln(L/r0). As anticipated in the discussion
of Fig. 3(a), the first order correction in a/h is strongly
suppressed with increasing d0. Finally, we notice that the
angular noise tends to reduce the average radius of the particles’
orbits [31].

The second solution for 〈r〉 can be derived in the limit a →
h/2 under the additional condition that the angular velocity
dθ/dt in Eq. (4) vanishes. For short persistence times, that is
relatively large Dφ/k ratios, the time average 〈r · 
v0〉 can
be safely approximated to zero, so that the r.h.s. of the first
Eq. (4) vanishes in correspondence with the zero of λr

−(r) = 0,
whence 〈r〉 
 r̄∞(a) = Le−h/a . This is an asymptotic solution
that holds for large Dφ values, irrespective of the traps’
distance d0.

Under these conditions, for d0 = 0 the r.h.s. of the second
Eq. (4) vanishes when the two particles uniformly populate a
circle. However, on discussing Fig. 2(c) we remarked that the
average radius of such circle comes close to the average pair
distance; this is only possible if the JP pair is synchronized with
opposite phases, θ1 = −θ2 = θ (i.e., the fluctuations of the
pair’s center of mass are strongly suppressed). On the contrary,

for d0 > 0, the condition dθ/dt requires that in average r||d0:
therefore, the two JP’s are still trapped on the circle of radius
r∞ 
 r̄∞, but fluctuate around the opposite extremities of the
diameter parallel to d0, consistently with the numerical data
plotted in Figs. 2(c) and 2(g). We stress once again that in
suitably thin films both r0 and r̄∞ are much larger than a, so
that pair collisions can be safely ignored.

For long persistence times, Dφ/k → 0, each particle ap-
proaches a position of quasi-equilibrium inside its own trap,
which depends on the orientation of v0i and varies adiabatically
with time. When the active pair sits in the same trap, d0 = 0, the
ensuing stationary condition yields the transcendental equation

λr
−(〈r〉) = v0

k〈r〉 , (5)

whose numerical solution, 〈r〉 = r∞(a), is drawn in Fig. 3(a).
Here we made use of the pair’s centersymmetric configuration
to approximate 〈r · 
v0〉. An analytical estimate of the low-
noise dependence of 〈r〉 on d0 is a more complicated task and
will not be pursued here.

Our predictions for r0 and r∞ are illustrated in Fig. 3(a).
Note that r∞(a) is strictly larger than r̄∞(a), which implies the
stability of the first Eq. (4). The transition between the regimes
of weak and strong hydrodynamic coupling occurs around a
critical value, ac, which increases with d0. A simple geometric
estimate of ac is shown in Fig. 3(a) as the intersection of r̄∞(a)
with r0.

IV. COUETTE FLOW, � > 0

In the presence of a linear shear flow the dynamics of
the trapped pair undergoes two remarkable changes: (1) Both
particles are subjected to a shear torque, say, with � > 0.
As a consequence, they move counterclockwise along closed
elliptical orbits, which are only slightly perturbed by noise as
long as Dφ � � (chiral dynamics [30,31]); (2) The Couette
flow is characterized by a stream direction (here, parallel to
the x axis) and a shear gradient orthogonal to it. This causes
a dynamical symmetry breaking depending on whether the
trap separation is parallel to x̂ or ŷ. In Fig. 4 the contour
plots of the particles’ p.d.f.’s are displayed for d0 = 0 (same
trap, top row panels) and d0 = (±x0,0) (trap shifted in the x̂
direction, bottom row panels). The transition between a regime
of low hydrodynamic coupling, mostly governed by the chiral
dynamics of a single active JP in a sheared harmonic trap [31]
[panels (a), (e)], and a regime of strong coupling, dominated
by an effective hydrodynamic repulsion [panels (c), (g)], is
apparent. The overall top-left to bottom-right twisting of the
contours is mostly a shearing effect [31].

The axis lengths of the elliptical structures of the 2D Pi(x,y)
in panels (a) and (e) are of the order of v0/k, whereas the
distance between their maxima in panels (c) and (g) (i.e., at
large a) grows exponentially with a/h, like in Fig. 3(a). This
behavior persists even in the presence of stronger angular noise,
see panels (d) and (h). Quantitative measurements of the pair
distance 〈r〉 are reported in Fig. 5 for d0 parallel to either
x̂ or ŷ. At low a, 〈r〉 is the same as for � = 0 [Fig. 3(a)],
independent of the d0 orientation. On the contrary, for a � ac

and d0 > v0/k, the pair distance tends to grow larger (smaller)
when d0 is orthogonal (parallel) to the flow; this suggests a
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FIG. 4. Contour plots of Pi(x,y) for two identical harmonically trapped active particles, JP 1 (right) and JP 2 (left), in a Couette shear flow
with � = 0.1. The particles’ radius, a, and the traps’ centers, (±x0,0), vary as in the legends. Other simulation parameters are: L = 50, h = 1,
v0 = 1, k = 1, and Dφ = 0.05. The simulation parameters in (d) and (h) are the same as, respectively, in (c) and (g), except for Dφ = 0.5.

stronger (weaker) effective pair repulsion. Further numerical
data (not reported) show that the dependence of r∞(a) on the
shear torque, �, is relatively small.

More intriguing is the pair dynamics at the transition,a ∼ ac

[Figs. 4(b), 4(f)]. Inside the same trap, d0 = 0, the orbits of the
two active JP’s tend to disentangle due to repulsion, through a
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FIG. 5. Harmonically trapped active JP’s in a Couette shear with
� = 0.1: 〈r〉 (a) and Rθ (b) vs. a for d0||x̂ (filled symbols) and d0||ŷ
(empty symbols). Other simulation parameters are: L = 50, h = 1,
v0 = 1, k = 1, and Dφ = 0.01.

sort of spontaneous breaking of the pair symmetry. Of course,
the relevant p.d.f.’s are identical, but two distinct peaks emerge
as a result [panels (b), (c)]. In separated traps, d0 > 0, the
transition mechanism differs for d0 parallel to x̂ or ŷ. Such an
effect is apparent in Fig. 5(a) for trap distances of the order
of or larger than the orbit size, i.e., for d0 > v0/k. This is a
combined effect of shear torque and hydrodynamic coupling.
The fluid velocity field, us(y), tends to pull the JPs’ apart in the
x̂ direction, thus causing an additional increase of the effective
distance between the trapped particles. Accordingly, due to the
shear flow, in Fig. 5(b) the synchronization factor, Rθ , vanishes
for a/h → 0 when d0||x̂, but not when d0||ŷ.

Finally, another interesting property of the active JP pair
dynamics in the transition regime was observed in the noiseless
limit, Dφ ≡ 0, namely the appearance of chaotic trajectories
driven by the shear torque. Samples of the two JPs’ trajectories
for different model parameters are displayed in Fig. 6.

V. CONCLUSIONS

In conclusion, we have investigated how hydrodynamic
coupling affects the 2D dynamics of a pair of active mi-
croswimmers self-propelling in a thin viscous film. As one
drives them closer and closer by means of two harmonic
traps, say, two optical tweezers, they eventually repel one
another to the point that their final average distance is de-
termined by the hydrodynamic coupling rather than by the
traps’ separation. In this experimental scheme, encoded in our
model equations, each active JP is harmonically bound to its
own trap. This makes sense as long as the effective truncated
trap’s radius is larger than the radius of the particle’s orbit
in the trap, but smaller than the resulting average pair dis-
tance. Based on our numerical simulations, the predicted pair
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Dφ = 0, and subjected to a Couette shear with � = 0.1. The initial conditions are the same in all panels, x1(0) = 0, y1(0) = 0, φ1(0) = 0, and
x2(0) = 1, y2(0) = 0, φ2(0) = 0.045π . whereas a has been varied as reported in the legends. Other simulation parameters are: L = 50, v0 = 1,
and k = 1; the trajectories of JP1 and JP2 are drawn, respectively, in blue and black.

synchronization turns out to be more persistent than reported
for both passive [32] and active [33] colloidal particles in a 3D
trap.

Our analysis was carried out under two simplifying as-
sumptions: (1) The active JP pair was freely moving inside
a thin free-standing film [13], far away from any geometric
obstacle. Diffusion perpendicular to the film was then ne-
glected as the film thickness was taken small compared to
the JP orbit size for any value of the hydrodynamic coupling;
(2) The traps were modeled as isotropic and harmonic. In a
real optical tweezer the confining force is linear only close
to the center, while additional effects due to the radiation
pressure may arise in the outer regions. For relatively weak

particle activation, such nonlinear contributions can be safely
neglected [23].
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