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Foam rheology at large deformation
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Large deformations are prone to cause irreversible changes in materials structure, generally leading to either
material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles.
We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude.
We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and
tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely
remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a
simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural
interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for
minute deformation.
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I. INTRODUCTION

While the elastic mechanical response of materials under-
lies on the relevant structures capable of sustaining reversible
deformations, the plastic response is strongly determined by
the concentration of defectlike structures, and of their distri-
bution, proliferation, and mobility. In the nonlinear regime,
besides the motion of defects, high deformations may produce
irreversible structural changes, such as the proliferation of
shear transformation zones (STZ) in amorphous materials [1],
the progressive elimination of weaker contacts between grains
in granular matter [2], or the reorganization of bundles in the
actin network [3]. Prior material rupture and characteristic
material softening or hardening upon cyclic deformation are
frequently found independently of the material nature [4]. The
best known example of material softening upon periodic stress
was observed for filled rubbers by Mullins early in 1940 [5,6].
Since then, different soft and hard materials displayed signifi-
cant softening and a striking capacity to print the history of the
applied stress within their internal structure [4]. Moreover, it
was recently suggested that Mullins-like softening, in materials
ranging from single biopolymers over cells to model tissues,
is a consequence of the presence of diverse mechanisms of
energy dissipation, such as protein unfolding or sacrificial
bonds [7]. While less frequent in soft materials, hardening
has been recently observed in long-chain branched polymer
solutions under shear [8], in granular matter [9], in foams [10],
and in reconstituted networks of crosslinked, bundled, actin
filaments [3] under periodic shear.

Despite fundamental differences at the microstructure level,
evidence indicates that hardening and weakening are clear
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manifestations of microstructure remodeling driven by the ap-
plied stress. However, the common features of the remodeling
processes occurring in structural networks of different nature
and scale are still elusive, although valuable insight is available
for polymers and biopolymers [7,11,12]. Foam has served as
a model system for the study of plasticity of soft amorphous
materials [13] and of its consequences such as stress relaxation
[14], shear banding [15–17], and jamming [18]. However,
most rheological studies of foam are currently performed at
small deformation, while attention is rather focused on the
viscoelastic properties at increasing shear rates [19].

Here we present experiments on foam layers subjected to
quasistatic shear cycles, aiming at elucidating the response in
the highly nonlinear regime. We observe that, upon increasing
strain, the stress follows a universal curve and tends almost
exponentially to an asymptotic value, that can be interpreted
as the critical stress at which the foam structure is completely
remodeled—the yield stress. As the strain direction is reversed,
a similar behavior is observed; the shear stress tends to the same
yield stress value but with opposite sign. All trends of cycling
can be mathematically reproduced by a simple law that relates
the ratio of the plastic deformation to the total deformation
and the ratio of the external stress to the yield stress. This law
can be deduced by assuming simple conservation rules for the
distribution of active defects responsible for foam plasticity,
and the complete refreshing of the foam structure for shear
inversion. Thus, high amplitude rheological tests provide a
useful tool to simply assess the main rheological properties
of foams at very large strain, thus in a regime relevant to
applications [20,21].

II. EXPERIMENTAL SETUP AND PROTOCOL

The experimental setup is a plane rheometer consisting of
two parallel plates subjecting the sample in the gap between
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FIG. 1. (a) Sketch of the experimental setup: A thin layer of foam
is deposited onto the horizontal bottom plate of the rheometer. The
upper plate of the rheometer is periodically displaced along the x

axis by means of a motorized translation stage. Strain gauge provides
the shear force. Layer thickness is fixed to 8 mm. (b) Typical shear
stress σ vs shear strain u for cycles of maximum strain, um = 0.375.
Loading starts at point A. Upon cycling, the stress tends to a limiting
cycle between points B and C where the shear direction is reversed.
Arrows show the cycling direction (velocity of the upper plate: grey,
0.3 mm/s; black, 0.5 mm/s).

them to a periodic simple shear [Fig. 1(a)]. The lower plate
is kept fixed whereas a controlled micropositioning system
(MTS25-Z8, Thorlab, Newton NJ) imposes a periodic linear
motion to the upper plate (PMMA, 40 mm wide, 60 mm long,
and 5 mm thick). A force cell (Futek, LSB200 FSH02534,
Irvine, CA, USA) is used to measure the shear force as function
of deformation with a sensitivity of 10 μN. Parallel groves on
both shearing surfaces, of about 0.5 mm depth and 1.5 mm
apart, oriented perpendicularly to the shear direction, avoid
sliding at the walls.

In our experiments, foam consists of Gillette shaving cream
(Gillette®, Foamy®, Regular), selected for our study because
it has been used in many rheological previous works reported
in the literature [19] and its properties have been relatively
well characterized. The samples are prepared to fit exactly in
the gap preventing lateral excess. To do so, foam is poured in
a rectangular mold machined in a 8-mm-thick acrylic plate
(PMMA) leaning on the bottom surface. Once the mold is
removed, a rectangular sample of foam (40 × 60 mm2), having
a well-defined thickness, is obtained. Image analysis of the free
surface reveals a typical bubble size of about (60 ± 20) μm.
We know from the literature that the gas volume fraction is
about 92%. The shearing upper plate is then gently deposited on
top using a three axis micropositioning system (DT12XYZ/M
Thorlab, Newton, NJ). During upper plate positioning some
compression occurs such that the sample thickness is decreased
by a few tenths of mm. Note, however, that the material of
the layer does not significantly flow during the preparation.
The whole setup is maintained at constant relative humidity,

RH = (42 ± 2)%, and temperature T = (23 ± 1) ◦C, in order
to ensure well-defined experimental conditions and to control
the aging of the material. Prior to any test, the sample is
maintained at constant external conditions for 5 min. Repro-
ducibility of our experimental results proves that, under these
conditions, the phenomenon we report on is not significantly
altered, neither by the variability of the protocol used to prepare
the layer nor by the natural aging of the material.

III. SHEAR STRESS MEASUREMENTS

Starting from a freshly prepared sample, we impose periodic
shear, one cycle consisting of moving the upper plate back and
forth at constant velocity. We denote by um the maximum of
the imposed shear deformation. After having checked that the
results were not significantly altered by changes of the velocity
at least up to 0.7 mm/s (Fig. 1), we report results obtained at
0.1 mm/s. Upon cycling, the typical behavior of the stress σ

as a function of the strain u is as follows [Fig. 1(b)]. During the
first half cycle (from A to B), the stress exhibits a first loading
curve. When the direction of the deformation is reversed (in
B), the stress decreases following a curve of inverted curvature
toward point C in which the imposed deformation is again
zero. During the next half cycle (from C to B), the stress
again increases, following a curve whose curvature is again
inverted. After a limited number of imposed cycles, σ vs u

tends to a limit cycle. As revealed by the interpolation [thick
gray line in Fig. 2(a)] of the first half cycle (from A to B),
the stress σ depends almost exponentially on the strain u. A
similar stress-strain curve (for the first loading) accounting for
foam plasticity is observed in two-dimensional (2D) numerical
simulations in relatively large systems [22]. Early description
of the mechanisms of stress relaxation in foams, developed
by Weaire and Kermode [23,24], also concerned numerically
foam under periodic deformations. However, to our knowledge
the complete response to shear cycling has not been fully
addressed.

In order to provide a framework for our data analysis, we
develop a simple, heuristic model, based on the a simple consti-
tutive law. We first assume that any, imposed, total deformation
u of the material can be decomposed in an elastic ε and a plastic
v deformation, such that u = ε + v. Such an assumption is not
obvious but, as we shall see, our experimental results are well
accounted for using the simplest linear decomposition, which
suggests that the role of the nonlinearities is not important
at this level of description. By definition, we have σ = ε/G

where G is the elastic shear modulus. Second, we assume that
the material responds with gradual plastic deformation to the
applied stress and that there exists a well-defined maximum
stress σ∞ that the material can sustain. Thus, for σ = σ∞,
any further increase of the total deformation du induces a
plastic deformation dv = du. In contrast, we can guess that
any plastic deformation requires that the system is minimally
under stress, such that dv = 0 in the limit σ = 0. Assuming
that this holds true regardless of the sign of the stress, we
write dv = f ( σ

σ∞
) du where f is an even function satisfying

the conditions f (0) = 0 and f (±1) = 1. However, inspection
of experimental data indicates that a good candidate for this
function is simply f ( σ

σ∞
) = | σ

σ∞
|. Indeed, given that the total

042601-2



FOAM RHEOLOGY AT LARGE DEFORMATION PHYSICAL REVIEW E 97, 042601 (2018)

10

8

6

4

2

0

-σ
C
 (

P
a)

151050
n

40

30

20

10

0

-σ
C
 (

P
a)

0.50.0
um

σc = (39±3) Pa
G  = (225±50) Pa
 

-40

-20

0

20

40

σ 
(P

a)

0.60.50.40.30.20.10.0
u

σc = (37±2)  Pa
G  = (310±30) Pa

(a)

(b) (c)

FIG. 2. (a) Shear cycles for increasing amplitude um. Starting at
σ = 0 and u = 0, loading curves (A to B in Fig. 1) follow a universal
nearly exponential law, underlined by the thick, light gray line. This
line is the fit to the data using Eq. (1) with σ∞ = 37 Pa and G =
310 Pa, the line thickness indicating fit errors (black: um = 0.0625;
dark gray: um = 0.375; gray: um = 0.625). (b) Evolution of shear
stress at point C (Fig. 1) for the limit cycle as function of um. The
solid line is the interpolation to Eq. (3) with σ∞ = 39 Pa and G =
225 Pa. (c) Evolution of the stress at point C with number of cycles for
um = 0.0625. The dashed line represents the exponential dependence
as predicted by Eq. (2) without adjustable parameter. The values σ∞ =
39 Pa and G = 225 Pa are taken from the previous fit.

deformation writes du = σ
G

+ dv, such a function f leads to

σ = ±σ∞

[
1 − A± exp

(
∓ G

σ∞
u

)]
(1)

upon increasing (du > 0, + sign) or decreasing (du < 0, −
sign) total deformation. The (positive) constants A± account
for the initial stress at the points where the direction of the
shear deformation is reversed.

Using the experimental initial conditions, i.e., σ = 0 (A+ =
1) at u = 0 for du > 0 at point A, the interpolation of the exper-
imental data from A to B to Eq. (1) leads to σ∞ = (37 ± 2) Pa
and a first estimate of the shear modulus, G = (310 ± 30) Pa.
Notice that this value is consistent with the previous value of
the storage shear modulus measured by shearing periodically
the same material at small amplitude and frequency [19].

We can further characterize the strain-stress cycles by
investigating the evolution of stress σC at point C [see Fig. 1(b)]
as a function of the maximum imposed deformation um, or of
the number of cycles n. To do so, the evolution of the constants
A± can be determined throughout the cycles with the initial
condition that A0

+ = 1 in A. Simple algebra leads to, in C for

the end of the nth cycle,

σn
C = σ∞

C

[
1 − exp

(
−2

Gum

σ∞
n

)]
, (2)

which tends to the asymptotic value

σ∞
C = −σ∞ tanh

(
Gum

2σ∞

)
(3)

for the limit cycle. In Fig. 2(b), the experimental values of
σ∞

C are reported as a function of the maximum shear um and
fitted to Eq. (3), using G and σ∞ as adjustable parameters. A
good agreement is obtained, which provides second estimates
of σ∞ = (39 ± 3) Pa and G = (225 ± 50) Pa.

As a final test of consistency, we follow the convergence of
the minimum stress σC toward σ∞

C through the cycles. For a
given amplitude um, Eq. (2) predicts an exponential evolution
of σC with the number of cycles, n. We report in Fig. 2(c) the
experimental and theoretical [Eq. (2)] values of σn

C as function
of n using the values of σ∞ and G obtained above. In spite
of large experimental errors, the observed agreement, which is
fairly good agreement without further adjustment, corroborates
the proposed rheological rule.

IV. MODELING AT THE MICROSCALE

In the following we attempt to explain the rheological be-
havior of the material at the microscopic level. The microrheol-
ogy of dry soap foams subjected to quasistatic simple shearing
has been analyzed numerically by Reinelt and Kraynik [25].
Due to the relatively reduced system size, discontinuities are
observed in the stress strain response, which corresponds to
large changes in foam geometry and topology both resulting
from unstable configurations that violate Plateau’s laws. As
suggested by these authors, an individual stress relaxation
process would be a T 1 cascade, which produces different cell
neighbors, reduces the surface energy of the foam, and provides
mechanism for its plastic yield behavior [25]. More recently,
Evans and co-workers [26] corroborated numerically that, in
a 3d foam, the first T 1 event is responsible for the elastic
limit whereas “frequent T 1 avalanches sustain the yield-stress
plateau at large scale.”

Adopting a probabilistic point of view, we assume that the
susceptibility of the material to the plastic deformation can
be accounted for by the probability density Q(σ ) such that
Q(σ ) dσ is the probability for any configuration of bubbles
in the bulk of the material to be subjected to an irreversible
change in response to an increment dσ of the imposed shear
stress. Although Q(σ ) can be any function of the stress σ ,
Q(σ ) is more likely to be widely distributed in the range σ to
σ∞ where, we remind, σ is the imposed shear stress.

From now on, we assume that any rearrangement of a local
configuration of bubbles leads to a local displacement α σ

G
d,

proportional to the applied stress σ and to the grain diameter
d, which is associated with a release of a fraction α of the local
elastic stress. Once regarded in comparison with the thickness
h of the sample, this displacement corresponds to a plastic
deformation dv = α σ

G
d
h

. We thus get, taking into account the
number of bubbles h/d in the thickness h of the sample, that an
increment dσ of the shear stress leads to an increment dv =
α σ

G
Q(σ )dσ in the plastic strain due to the effects of all the
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rearrangements that occur in the thickness. In consequence, the
associated increment in the total shear strain, du ≡ dε + dv,
satisfies

du = 1

G
[1 + ασQ(σ )] dσ. (4)

In order to obtain an expression of Q(σ ) compatible with the
experimental results, let us consider Eq. (1) and note that, by
differentiation, dσ = G σ∞−σ

σ∞
du. Using Eq. (4), we get

Q(σ ) = 1

α

1

σ∞ − σ
. (5)

We thus get that Q(σ ) is indeed broad and that the probability
of the rearrangements only depends on the distance to the
yield.

The function Q(σ ) is intimately related to the stability
of the local configurations of the bubbles in the bulk of the
material. Let us denote Pσ (σ ′) (σ ′ ∈ [σ,σ∞[), the probability
distribution of the stress σ ′ that the local configurations can
sustain in the bulk of the sample subjected to the external stress
σ . With this definition, we have Q(σ ) = Pσ (σ ). Considering
the evolution of Pσ (σ ′) upon increase of the applied stress σ ,
we can write ∂

∂σ
Pσ (σ ′) = p(σ → σ ′)Q(σ ) where p(σ → σ ′)

stands for the probability for a local configuration that loses sta-
bility at σ stabilizes in a new configuration that can sustain σ ′.
By integration from 0 to σ , we get the condition that Q(σ ′) =
Pσ ′(σ ′) = P0(σ ′) + ∫ σ ′

0 p(σ → σ ′)Q(σ )dσ . The simple solu-
tion for p(σ → σ ′) is

p(σ → σ ′) = 1

(σ∞ − σ )
, (6)

which, interestingly, does not depend on the final state
σ ′, but only on the external applied stress σ . In this pic-
ture, when a local rearrangement occurs, the bubbles lo-
cally find a stable state with equal probability in the whole
accessible range ]σ,σ∞[. Thus, as expected, the distribu-
tion Pσ (σ ′), initially broad in a disordered system, re-
mains as broad as possible, but narrows as deformation
progresses [27].

V. DISCUSSION AND CONCLUSION

It is first particularly interesting to comment on the critical
strain uc, or equivalently critical stress σc ≡ Guc, that leads
to the first irreversible rearrangement in the thickness of the
sample. Considering the probability for one rearrangement to
occur in the whole thickness of the sample when the external
stress is increased from 0 to σ , we have

∫ σc

0
h
d
Q(σ ′)dσ ′ = 1.

From Eq. (5), we have σc ∼ α d
h
σ∞ or, equivalently uc = d

h
σ∞
G

.
Thus, this plasticity threshold depends on the size of the system
but uc remains small for large systems ( d

h

 1). Typically,

for a sample 1 mm thick and bubbles typically 50 μm in
diameter, the critical strain is of the order uc ∼ 5 × 10−4.
This value of the shear strain is very small, which indicates
that the system is never in the pure elastic regime and that
plasticity is always at play in practice. We notice that the critical
strain is experimentally unrealizable, given the reduced size
of the system required, however, it seems totally accessible
in numerical simulation. Indeed, 3d numerical simulations in
foams up to 83 cells indicate that relative fluctuations in the
shear stress during deformation scale as d/h in agreement with
our estimate [see Fig. 3(a) in Ref. [26]].

In conclusion, we have tested the response of foam to large
amplitude shear deformations in the quasistatic regime. A
simple elastoplastic model suggests that, in such disordered
systems, plasticity is always at play and that the progressive
hardening upon periodic shear is compatible with a very broad
distribution of the stress that the internal configurations of the
bubbles can sustain.
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