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Gene regulatory and signaling networks exhibit distinct topological distributions of motifs
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The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways
and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating
network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks
and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.
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I. INTRODUCTION

In mathematics, cellular biological processes can be repre-
sented through concepts of graph theory [1–4]. In these models,
proteins and genes are depicted as nodes, and the chemical
reactions or regulatory interactions between them as edges.
Such representations of molecular systems, called networks,
highlight the extensive crosstalk between a cell’s components
and the complex ways in which it regulates itself. To function,
cells recruit or silence specific subsets of nodes and edges that
have to be both spatially and temporally coordinated [5].

This organization inside the cell serves the purpose of
integrating and propagating hundreds of distinct signals and
stimuli. This complex process, known as signal transduction,
involves two different types of networks [Fig. 1(a)]: signaling
networks (SNs) in the cytosol and gene regulatory networks
(GRNs) in the nucleus. The former consists of a series of
biochemical reactions that activate or inactivate proteins,
channels, and transcription factors, generally starting with the
binding of a ligand molecule to a receptor protein. In an SN,
nodes are biochemical species that undergo the aforementioned
reactions, and an edge from species X to Y indicates that X

triggers or ends the activity of Y .
The GRN is a network composed of transcription factors

(proteins) that enhance or inhibit the translation of other genes,
including themselves. Signal propagation in a GRN usually
initiates with the translocation of an activated transcription
factor to the nucleus, where it activates the transcription of
specific targets [see Fig. 1(a)]. Both kinds of networks show
a common feature: Signal propagation starts from a specific
origin, which we dub a receptor, input, or upstream node.

The different combinations of activated SNs and GRNs
will determine the cell’s response to one or more stimuli
[see Fig. 1(b)]. In fact, different activation patterns for the
same receptor can also induce distinct cellular responses [6,7],
making for an extremely diverse signal processing system. For
instance, ligands such as EGF and TGF-β induce cell prolif-
eration [8], whereas IFN-γ and IL-4 induce B lymphocytes to
secrete antibodies [9].
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Thus, understanding the networks’ topology, or structure,
is crucial to grasping the pathway’s qualitative responses.
For instance, a cell’s ability to endure deleterious mutations
in transcription factors has been shown to evolve gradually
with changes in its GRN’s topology [10]. Its resilience to
total collapse (here meaning a sudden irreversible transition
to a state where all cellular activity ceases) is also known
to be defined by a delicate interplay between its biochemical
parameters and GRN structure [11].

Of particular interest, then, are certain ubiquitous interac-
tion patterns (or subgraphs) termed motifs [2,12]. The switch,
the feedforward motif, and the feedback loop, shown in
Fig. 2, are examples of this class, and all of them have been
shown to possess special dynamical properties regarding signal
transduction and transmission [13–16].

Previous works based on this premise have been successful
in identifying signaling motifs that participate in signal trans-
duction and cellular decision-making [17]. Furthermore, it was
shown [18] that motifs tend to organize themselves in clear
regions around cell receptors, suggesting both a role in signal
processing and the importance of their precise topological
placement in SNs. In this paper we compare the distribution
of motifs in both the GRNs and SNs to assess their roles in
signal propagation during cell differentiation. We use publicly
available data from online databases to construct the networks
and analyze them using local concepts from network theory,
emphasizing the characterization of motifs along topological
neighborhoods [18–20]. The results indicate two main types of
organization. The motifs in SNs tend to organize in symmetric,
concentric layers around the receptor. On the other hand, in the
case of GRNs, the motifs spread out in an asymmetric fashion
along the hierarchical layers.

II. METHODS

A. Network construction

The two types of networks analyzed here, SNs and GRNs,
have been made available in public databases. For the GRNs,
the RegNetwork [21] database is a knowledge-based collec-
tion of regulatory interactions between transcription factors,
microRNAs, and target genes. It combines and synthesizes
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FIG. 1. Signal transduction in eukaryotic cells. The signaling
cascade initiated by (a) a ligand-receptor binding drives (b) cellular
decision-making depending on the activated receptor.

information from curated databases such as GenBank,
BioGrid, and Ensembl.

The signaling pathways were taken from Reactome [22]
and processed with the rBiopaxParser package [23]. This
processing entails extracting the network structure from a
Biopax annotation file, used in such public databases, and
converting it to an edge list suited to our needs. Reactome is a
database of curated interactions maintained by a collaboration
among several research institutes and also integrates orthology-
based information from Ensembl.

For each signal transduction pathway considered here, a
GRN subnetwork consisting of the genes involved in the
associated biological process was extracted. This serves the
double purpose of reducing the computational load of our
analyses and focusing our attention on the biological entities
that are actually relevant to the process.

More specifically, for each pathway, an RNA sequencing
(RNA-seq) study concerning an associated differentiation
process was used to identify differentially expressed genes
(DEGs). The preprocessed expression profiles were taken from
the sequence read archive [24] (SRA), and DEGs were selected
in a two-stage process, variance control and subsequent filter-
ing of highly variant genes, as described below.

(a)

(b)

(c)

FIG. 2. Examples of motifs found in cellular systems: (a) the
switch, (b) the feedforward loop, and (c) the feedback loop.

In an RNA-seq expression profiling, gene expression (under
a null hypothesis of no change between samples) is modeled
as a negative binomial distribution [25]. This distribution
is characterized by a strong dependence between mean and
variance, which affects subsequent variance-based analyses.
Thus, the expression profiling is transformed according to
the variance stabilizing transformation for negative binomial
data, derived by Guan [26]. More specifically, Guan proves
that if X is a negative-binomial-distributed random variable
with parameters r and p, then the transformed variable
Y = √

r sinh−1 √
X/r has no dependence between mean and

variance.
After removing the mean-variance dependence, the vari-

ance between different sample phenotypes (obtained from
the SRA) was used as a criterion for DEG selection. We
performed an analysis of variance [27], which assesses the
statistical significance of the within-class variance to total
variance ratio, and attributed a p value to each gene. Then we
controlled the rate of false-positive discoveries with Benjamini
and Hochberg’s false -iscovery rate (FDR) [28] method. The
FDR orders the p values increasingly, so that p1 � p2 � · · · �
pn, and selects those satisfying pk � αk/m, where α is the
desired p-value threshold for an individual test. It is known
(see, for instance, [29]) that this procedure has an expected
false-discovery rate upper bounded by α.

After extracting the DEGs, the subnetworks related to
each signaling pathway were taken as the subgraphs of the
RegNetwork GRN generated by the DEGs.

B. Network analysis

A concept central to our analyses is that of a node’s
neighborhood [19]. Given a network, represented as a graph
G, and a node v in G, the dth neighborhood of v, denoted by
Rd (v), is the set of all nodes accessible in at mostd steps from v.
In a cellular network, successive neighborhoods act as a proxy
for the dynamics of signal propagation in the cell; since edges
represent direct regulatory interactions, the chemical reactions
associated with signal transduction occur along paths in the
cellular network.

Associated with a node’s neighborhoods are several differ-
ent measures. Of interest to us are the concepts of concen-
tric symmetry and the motif cumulative distribution function
(mCDF). The former is defined as the entropy associated with
transition probabilities of a walk h steps long starting from
v [20]. In other words, it quantifies how similar the possible
walks of a certain length around a node can be: The higher its
value, the more similar they are and thus the more symmetric
the node’s neighborhood. Concentric symmetry is preferred
here over the automorphism-related symmetry metrics [30,31]
due to the latter’s computational intractability (in general)
and poor normalization (automorphism groups have a loose
upper bound on their order at around N ! for a graph on N

nodes, as discussed by Silva et al. [20]). The motif cumulative
distribution addresses how a certain motif is arranged in the
neighborhoods of a node. Given a motif structure, a node v,
and a graph G, it is defined as the number of occurrences of
the motif along successive neighborhoods Rd (v), subsequently
normalized to approach unity.
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The mCDF is tied to the motif location index (MLI) metric
used by Ma’ayan et al. [18]. For a particular instance of a
motif in a network, the MLI represents where the instance lies
between a membrane receptor and a given cellular machinery.
More specifically, both assess the placement of motifs relative
to an origin (the receptor) in a cellular network. However, our
work does not focus on specific cellular machines or processes,
looking instead at generic signaling pathways. Thus, our metric
lacks the distance to cellular machinery component of the
Ma’ayan et al. MLI and thus reflects the positioning of motifs
without regard to a particular cellular task (for our purposes,
a cellular machinery is a subset of a GRN or SN containing
nodes related to a particular cellular function, e.g., translation
or cell division). This relation will be crucial when comparing
our results to those of Ma’ayan et al. in Sec. III.

Another issue is determining whether the observed distri-
butions are relevant when compared to randomly generated
networks with the same degree distribution [32,33]. We ad-
dress this question by random sampling of networks through
the edge-switching Monte Carlo algorithm described by
Gkantsidis et al. [34]. Different motif distributions were
compared using the supremum distance for function spaces:
If f and g are two real-valued functions defined on X, the
distance between them is d(f,g) := supx∈X|f (x) − g(x)|.

Based on this distance, the distributions f1,f2, . . . ,fn ob-
tained through the sampling procedure, and given the observed
distribution fobs, we define a z score Zobs = d(fobs,f̄ )/sf ,
where f̄ := (1/n)(

∑n
i=1 fi) and sf is the sample’s standard

deviation (in terms of the supremum distance). We also used a
bootstrap p value based on the distance to the mean; basically,
p is the proportion of times when d(fi,f̄ ) > d(fobs,f̄ ).

Another metric we incorporate from Ma’ayan et al. is the
density of information processing (DIP). It is defined as the
increase in the number of motifs divided by the increase in
edges between consecutive neighborhoods. In the work of
Ma’ayan et al., this ratio is multiplied by the grid coefficient
[18,35], a generalization of the clustering coefficient taking
into account the formation of rectangles. However, since our
considered motifs are of size smaller than 4, we opted to
forego this normalization by grid coefficient. In keeping with
the idea that motifs are a network’s processing units, this
measure indicates the proportion of signal processing activity
as information propagates through the network’s paths.

III. RESULTS AND DISCUSSION

We chose as representatives GRNs and SNs associated with
three major signal transduction pathways in a mouse (Mus
musculus) and human (Homo sapiens). For the former, we
studied the T-cell-receptor (TCR) signaling network, which
drives the differentiation of T lymphocytes [36], and the EGF
receptor (EGFR) pathway, involved in cell growth and survival
[37]. In humans, we studied the TGF-β pathway, which reg-
ulates cell growth, differentiation, and apoptosis [38,39]. The
data for each pathway were taken from the SRA as described
in Sec. II A. The RNA-seq profilings used were, respectively,
GSE48138 [40], GSE86467 [41], and GSE36552 [42].

The obtained networks were analyzed with respect to
their size (see Table I) and degree distributions. We note, as
expected, that signaling components are much smaller than

TABLE I. Number of nodes and edges for our representative
networks. Numbers are displayed as nodes, edges.

�����������Receptor
Network

SN GRN

TCR 148, 848 3835, 13 390
EGFR 253, 1153 8092, 36 266
TGF-β 67, 233 2261, 5384

their GRN counterparts. In keeping with the current literature
[3,21], degree distributions were seen to be power laws as
determined by fitting a linear model to the logarithmically
transformed degrees and degree probabilities; all linear models
had a coefficient of determination above 0.7.

The three distinct pathways, each with two different net-
works (a cytosolic signaling pathway component and a gene
regulatory component), were analyzed with respect to the
mCDF, concentric symmetry, and DIP metrics. For the motif
cumulative distribution, our results show that signaling net-
works employ their motifs in a much more distinct fashion
(lengthwise) than GRNs (see Fig. 3). That is to say, different
motifs may appear more strongly in different neighborhoods
(like in the TCR signaling network [Fig. 3(c)] or a certain
motif may not be present in the network (notice how the
double feedforward loop is missing from the TGF-β signaling

β

FIG. 3. The mCDFs for distinct motifs in the various networks:
(a), (c), and (e) motif distributions for signaling pathways and (b), (d),
and (e) mCDFs of gene regulatory networks. Each color represents a
motif: blue, feedforward loop; green, double feedforward loop; red,
switch; and cyan, feedback loop.
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β

FIG. 4. Bootstrap analysis for the feedforward loop. The blue line
shows the observed distribution. The gray line stands for the random
ensemble mean and the shaded area represents a standard deviation
above and below the mean.

network [Fig. 3(e)]). This variety of patterns in motif placement
may have emerged in two opposite ways: It might indicate
that the placement of motifs in signaling networks is not
under any evolutionary constraint or it might suggest tailored
distributions for each pathway.

We answer this question by comparing the networks’ motif
cumulative distribution to random networks with the same
degree distribution, generated as described in Sec. II B. Our
results for the feedforward loop are displayed in Fig. 4 and
Table II. It is evident that signaling networks are further
removed from the distribution generated by random networks
than their gene regulatory counterparts. Following the idea
that deviations from the random ensemble indicate natural
selection [3,13], our results suggest that motif distributions
have indeed been tailored to specific pathways, insofar as
signaling components are involved. As for the GRNs, there
is not enough evidence to indicate evolutionary pressure; a

TABLE II. Bootstrap statistics for the motif distributions. The
left number indicates the network’s z score and the right number its
p value (see Sec. II B).

�����������Receptor
Network

SN GRN

TCR 9.27, 0.006 0.57, 0.22
EGFR 3.42, 0.002 0.034, 0.35
TGF-β 7.14, 0.008 −0.14, 0.43

FIG. 5. Concentric symmetries for increasing neighborhoods of
the receptor nodes in each studied network: (a) EGFR, (b) TGF-β,
and (c) TCR. The legend defines the labels for all symmetry plots. The
transcription factors and receptors for each pathway are described in
the text (see Sec. III).

possible explanation is that heavy-duty signal processing is
performed in signaling pathways (see, for instance, Fig. 7 and
the associated discussion in this section) and GRNs are simply
responsible for carrying out the consequences of cellular signal
integration.

Additionally, the feedback loop is given a special place in
all networks, being placed further from the upstream node than
other motifs. This tendency, already observed in signaling net-
works by Ma’ayan et al. [18], is reinforced here and extended
to gene regulatory circuitry. As with other principles of cell
network evolution, this has plausibly come to be due to distinct
dynamical properties for the feedback loop when compared to
other motifs. We cite here the roles of the feedforward and
feedback loops in amplifying signals and filtering out noise,
respectively, as an example [13,16].

With regard to symmetry, it is also observed that signal-
ing networks are considerably more symmetric around their
input nodes (Fig. 5). We see that the cytosolic components
consistently display higher-symmetry values in neighborhoods
closer to the receptor when compared to corresponding GRN
components. Again, this might reflect a different usage of the
motifs’ dynamical properties by the SNs when compared to

FIG. 6. The two types of motif placement found in this work.
To the left is the motif belt observed in SNs and to the right, the
asymmetric distribution present in GRNs.
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FIG. 7. Density of information processing for the TCR and EGFR
signaling pathways.

GRNs. In particular, the higher symmetries around the receptor
node of signaling networks suggest a uniforming constraint on
the paths originating at the upstream node and consequently
on the placement of motifs around it.

Next we compare our results to those of Ma’ayan et al. As
discussed in Sec. II B, the mCDF and MLI are both related
to how motifs are arranged relative to a receptor. However,
the MLI considers motif placement relative to an origin and
a destination (a cellular machinery) in the network, while the
mCDF considers only a starting point. In analyzing the MLI
distributions for different motifs and machineries (see Fig. 5 in
Ref. [18]), we may expand our conclusions by comparing with
a related measure. The analyses of Ma’ayan et al. place most
motifs roughly at a halfway point between receptor and target
machinery, regardless of motif or signaling pathway. When
compared to our results on the motif cumulative distribution
(Fig. 3), which suggest a vast heterogeneity of motif place-
ments depending on the network and motif in question, we are
drawn to the conclusion that different machineries are found
at differing distances from the input node. Thus, differences in
path length in a signaling network may be related to cellular
machinery activation and decision-making.

Finally, by combining both aspects of symmetry and cu-
mulative distribution of motifs, as well as previous results in
the area [18], we see the emergence of two distinct patterns
of motif placement (see Fig. 6): In signaling pathways, the
location of motifs is strictly constrained, leading to concentric
motif belts, which may be one or more, around the receptor.
For instance, the TCR signaling network shows two belts at
distances 1 and 3 from its receptor, while the EGFR pathway
shows only a single belt three steps away (see Fig. 7). Gene
regulatory networks, on the other hand, present a more relaxed
distribution when compared to random networks with the same

degree distribution and suggest a different use for the motifs’
dynamical properties.

These findings reassert the notion that cellular networks
evolved as modular, relatively independent solutions to distinct
selective pressures [43]. Each part of a cell’s machinery would
then exhibit different organizational features to address their
specific demands [44,45], and as a particular example we find
here the difference between motif organization of signaling
networks and gene regulatory networks. As sources of distinct
selective pressures, we could cite the different timescales of
network dynamics (proteins transition between their active and
inactive states much faster than the transcription of genes; see
Ref. [13]) and the need for SNs to cope with ever-changing
external environments [45–47].

IV. CONCLUSION

The idea of motifs as regular components and processing
units of biological networks is central in our understanding of
cellular systems. They have been shown to be ubiquitous in
situations as distinct as gene regulation, signal processing, and
metabolism. Additionally, advances in characterizing the rela-
tionship between network topology and dynamics point toward
special roles of particular motifs such as the feedforward and
feedback loops. Despite these advances in characterizing both
GRNs and SNs, studies combining both of them remain scarce.
Here we compared them with respect to their characteristics
pertaining signal transduction and propagation.

Our results add another layer of versatility to the functional
importance of motifs by suggesting that their topological
distribution differs from signaling to gene regulatory networks.
More specifically, signaling pathways show one or more sym-
metric layers of motifs around the receptor, differing strongly
from random networks with the same degree distribution. In
contrast, gene regulatory networks display asymmetric motifs
in a single layer around key transcription factors, on par with
random networks of the same degree distribution. We remark
that feedback loops are usually lagged behind other motifs, as
was already noted by Ma’ayan et al.

Thus, our work expands on the previous notion that bio-
logical networks in different locations of the cell, or perform-
ing different functions, exhibit distinct topological features.
Such diversity of topologies could conceivably have emerged
as separate evolutionary answers to the different selective
pressures acting on the cellular components. As such, efforts
to understand exactly what the demands of each cellular
subnetwork are, and how the cell addresses them, can offer
great insights into both the organization of cellular circuits
and the dynamics of network systems.
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