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A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological
networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene
regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability
depending on the intensity of the stimulus in some particular networks. It is less understood how the transition
between the two dynamic modes is modulated by the positive and negative feedback loops. We developed
an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the
transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or
suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with
low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When
the positive feedback is activated much later than the negative one in response to a strong stimulus, the system
exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using
quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a
steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role
in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some
specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist
in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in
determining cellular outcome.
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I. INTRODUCTION

Positive and negative feedback loops act as key regulatory
elements in gene regulatory networks. A negative feedback
loop (NFL) alone can induce oscillations or cellular home-
ostasis [1], while a positive feedback loop (PFL) can evoke
bistability, which may underlie cell fate decision [2]. Nev-
ertheless, feedback loops are usually interlinked rather than
working separately to perform various functions [3]. It is still
a challenge to uncover the emergent functions resulting from
interlinked feedback loops.

Design principles underlying coupled feedback loops have
attracted extensive attention in computational systems biology.
It has been revealed that linking fast and slow PFLs produces
a sensitive switch with strong robustness in cell signaling
[3–5]. Recently, more efforts have been made to explore the
performance advantages of interlinked positive and negative
feedback loops (IPNFLs) from different aspects [6–9].
Pomerening et al. reported that the PFL and NFL cooperate
to create a relaxation oscillator in which the PFL is essential
for sustained oscillations [6]. Tsai et al. further proposed that
IPNFLs allow for tunable and robust oscillations with widely

*zhangxp@nju.edu.cn
†fliu@nju.edu.cn

tunable frequency and nearly constant amplitude [7]. From a
distinct perspective, we found that IPNFLs exhibit bistability,
excitability, or oscillation when the strength of feedback
loops is changed [9]. These studies mostly focused on the
steady-state properties rather than the transient dynamics of
IPNFLs. It is worthwhile to explore the transient dynamics and
their functional implications in the cellular stress response.

IPNFLs can produce rich dynamics depending on the
network topology, relative strength of feedback, and inten-
sity of stimuli. We aim at some particular gene regulatory
networks in which IPNFLs can induce either oscillation or
switchlike behavior in the same cellular response. In the DNA
damage response, for example, p53-induced Mdm2 and PTEN
feedback to inhibit and activate p53, respectively, enclosing
an NFL and a PFL [10] [Fig. 1(a)]. It was reported that p53
shows bimodal dynamics depending on the strength of DNA
damage, i.e., the p53 level undergoes periodic pulses upon mild
damage or rises monotonically after extremely severe damage
[11]. It was recently observed that p53 oscillates in the early
phase and switches to a high level in the late phase in response
to severe damage [12], referred to as two-phase dynamics
in our modeling work [13]. In response to hypoxia, HIF-1
induces PHD2, which promotes its degradation to enclose an
NFL [14]. HIF-1 also induces microRNAs like miR-182 to
inhibit PHD2 production, forming a PFL [15,16] [Fig. 1(b)].
Consequently, HIF-1 shows oscillations alone or sustained
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FIG. 1. Examples of biological systems with interlinked posi-
tive and negative feedback loops. (a) p53-centered feedback loops
involved in the DNA damage response. (b) The HIF-1 system in
response to hypoxia. (c) Positive and negative feedback loops in the
Notch1-Hes1 crosstalk network. (d) Feedback loops modulating the
competition between sporulation and competence in Bacillus subtilis.
The transactivation and transrepression of genes are represented by
arrow- and bar-headed dashed lines, respectively. The activation
and inhibition of the proteins are separately denoted by arrow- and
bar-headed solid lines.

high levels following oscillations [17]. Responsible for cell
development, Notch1 and its downstream transcription factors
Hes1 and RBP-Jκ constitute an intricate network of PFL and
NFL [18,19] [Fig. 1(c)]. It has been reported that Hes1 exhibits
oscillations or sustained activation, leading to different cellular
outcomes in stem cell differentiation [20,21]. In the compe-
tence or sporulation decision process in Bacillus subtilis, the
Spo0A-AbrB-Spo0E NFL and Spo0A-KinA PFL interlink to
control the initiation of sporulation. The NFL first induces
pulses of Spo0A, while the delayed PFL progressively ratchets
up the amplitude of Spo0A pulsing until the amplitude exceeds
some threshold to initiate sporulation [22–24] [Fig. 1(d)]. In the
above examples, IPNFLs produce switchlike dynamics after
transient oscillations in response to a certain type of stimulus.
It is intriguing to explore the common mechanism underlying
the transition between different dynamic modes in these gene
regulatory networks.

To be specific, we focused on the core p53 regulatory net-
work and developed an abstract model of IPNFLs to illuminate
the mechanism of the transition between different dynamic
modes. We found that the PFL may play a dual role in the
induction of oscillations. Under some conditions, the system
can show bistability, and two Hopf bifurcation points confine
an oscillation regime in the off state. For a strong stimulus
above the threshold, transient oscillations last for a long
period before the system switches to the on state. Quasistatic
approximation was exploited to analyze this phenomenon. We

proposed that the gradual transformation in the predomination
of different feedback loops leads to the conversion from
oscillation to bistability. The timescale of the PFL influences
both the oscillation regime and the early-switching threshold
for the stimulus. It is noteworthy that the above conclusions are
applicable only to the example networks in Fig. 1. Our paper is
organized as follows. The abstract model of combined positive
and negative feedback loops is introduced in Sec. II. Interesting
dynamic transitions of the system and an explanation for the
underlying mechanisms are presented in Sec. III. A discussion
and conclusion are presented in Sec. IV.

II. MODEL

All the gene regulatory networks in Fig. 1 include inter-
linked PFL and NFL. Their topology features are summarized
in Table I. After some simplification, all the example networks
comprise the NFL and PFL with similar architecture [except
the PFL is somewhat different in Fig. 1(d)]. Furthermore,
these networks share the same dynamic properties: the NFL
alone is sufficient to produce oscillations, while the PFL can
induce switchlike behaviors. Thus, it is plausible to elucidate
the dynamics of these networks using an abstract model with
the same topology.

The specific form of the model is largely derived from
two models describing p53 dynamics where the interlinked
p53-centered NFL and PFL can produce both oscillation
and bistability [13,25], in agreement with desired dynamic
properties. In the NFL, p53 induces mdm2 mRNA to produce
inactive Mdm2 protein, which can convert to the active form
to promote p53 degradation; in the PFL, p53 transactivates
pten expression to synthesize PTEN protein, which activates
p53 by deactivating Mdm2 indirectly. If p53 is denoted by A,
the three Mdm2-related forms by B1, B2, and B3, and the two
PTEN-related forms by C1 and C2, we obtained the abstract
model as shown in Fig. 2. In the model, A transactivates B1 and
C1, which are translated to B2 and C2. B2 can convert to B3,
which promotes the degradation of A, enclosing a long NFL.
On the other hand, C2 promotes the conversion from B3 to
B2, thereby enclosing a PFL. The level of A is regarded as the
output of the system. The dynamics of the system are governed
by the following ordinary differential equations [Eqs. (1)–(6)]:

d[A]

dt
= ksa0 + ksa

S

S + jS

− kda[B3]
[A]

[A] + jda

− kda0[A],

(1)

d[B1]

dt
= ksb10 + ksb1

[A]n1

[A]n1 + j
n1
sb1

− kdb1[B1], (2)

TABLE I. Common properties of the example networks in Fig. 1. (a)–(d) Simplification of the example IPNFLs into similar topology; (e)
the abstract model. → and � represent activation and inhibition, respectively.

PFL NFL

(a) p53 → PTEN � Mdm2 � p53 p53 → Mdm2 � p53
(b) HIF-1 → miR-182 � PHD2 � HIF-1 HIF-1 → PHD2 � HIF-1
(c) Notch1 → RBP-Jκ � Hes1 � Notch1 Notch1 → Hes1 � Notch1
(d) Spo0A → KinA → Spo0A Spo0A → Spo0E � Spo0A
(e) A → C � B � A A → B � A
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FIG. 2. Schematic diagram of the model of coupled positive and
negative feedback loops. There are two main loops: the red (gray)
one represents the positive feedback loop (PFL), the green (light
gray) one represents the negative feedback loop (NFL), and the blue
(dark gray) line represents their overlapping part. The induction of
genes is represented by arrow-headed dashed lines. State transition
of the proteins is denoted by arrow-headed solid lines. The activation
and inhibition of the state transition are separately denoted by circle-
headed and bar-headed solid lines.

d[B2]

dt
= ksb2[B1] − kacb2

[B2]

[B2] + jacb2

+kdeb3
[C2][B3]

[B3] + jdeb3
− kdb2[B2], (3)

d[B3]

dt
= kacb2

[B2]

[B2] + jacb2
− kdeb3

[C2][B3]

[B3] + jdeb3

−
(

kdb30 + kdb3
S

S + jS

)
[B3], (4)

d[C1]

dt
= τ

(
ksc10 + ksc1

[A]n2

[A]n2 + j
n2
sc1

− kdc1[C1]

)
, (5)

d[C2]

dt
= τ (ksc2[C1] − kdc2[C2]). (6)

Here [·] represents the concentration of proteins or mRNAs.
S is the strength of the stimulus, which promotes the production
of A and degradation of B3; their maximal rates are ksa and
kdb3, respectively. The transcriptional activation of B1 and C1

is described by Hill functions. The conversion between B2

and B3 is characterized by Michaelis-Menten kinetics since
it is considered an enzymatic reaction. Each species, except
B3, degrades at a constant rate. Similar to the model by
Brandman et al. [3], τ is considered as the timescale of C1

and C2 dynamics and is used to control the implicit time
delay between the PFL and NFL. ksb1 and ksc1 are two key
parameters modulating the strength of negative and positive
feedback, respectively. The standard parameter settings are
listed in Table II.

The units of parameters were determined such that the
concentration of proteins is dimensionless. The above ordinary
differential equations were numerically solved using Oscill8
(http://oscill8.sourceforge.net), and the bifurcation diagrams
were also plotted using Oscill8. The time step of integration
was 0.01. Unless otherwise specified, all initial values of the
variables were their steady-state values at S = 0.

TABLE II. Standard parameter values in the model.

Parameter Value Parameter Value Parameter Value

jS 1 ksa0 0.01 ksa 0.3
kda0 0.2 kda 0.3 jda 0.01
jsb1 0.3 ksb10 0.009 kdb1 0.1
n1 4 ksb2 0.2 kdb2 0.1
kacb2 10 jacb2 0.6 kdeb3 30
jdeb3 0.3 kdb30 0.1 kdb3 0.3
jsc1 0.6 ksc10 0.001 kdc1 0.1
n2 4 ksc2 0.2 kdc2 0.2

III. RESULTS

The system of IPNFLs can exhibit different dynamics such
as bistability and oscillation, depending on the strength of
feedback loops [9]. We will modulate the strength of feedback
loops and the timescale of the PFL to investigate the system
dynamics. We explore both the steady-state properties and
transient dynamics during transitions from oscillation to the
steady state. Moreover, we probe the potential link between the
dynamics and biological function of IPNFL in some biological
networks.

A. Dual role of the PFL in producing oscillations

It is known that an NFL is required but insufficient for
oscillation [26]. Here the four-component NFL alone can
produce persistent oscillations when its strength is strong
enough [Fig. 3(a), top panel]. If the negative feedback is
weaker, the system shows only damped oscillations and finally

FIG. 3. Negative feedback is necessary but insufficient for oscil-
lations. (a) Temporal evolution of [A] in the single NFL at S = 3
with ksc1 = 0. [A] exhibits persistent oscillations at ksb1 = 0.5 or
damped oscillation before settling to a steady state at ksb1 = 0.4.
(b) Bifurcation diagrams of [A] versus S for ksb1 = 0.5 and 0.4. Solid
and dashed lines denote stable and unstable steady states, respectively.
Circles denote the maxima and minima of limit-cycle oscillations.
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FIG. 4. Roles for positive feedback in oscillation. (a) Adding a
PFL can tune the system into oscillation at S = 3 with ksb1 = 0.4 and
ksc1 = 0.5. (b) Bifurcation diagram of [A] versus S with ksc1 = 0.7,
ksb1 = 0.4, and τ = 0.02. The oscillation regime is marked by HB1

and HB2, and the red circles represent the minima and maxima of
oscillations. The inset shows different diagrams for ksc1 = 2.0, 1.5,
1.0, 0.7, 0.0 (from left to right). The oscillation regimes for S are
marked by red (gray) dashed lines. (c) Oscillation regimes in the
S-ksc1 phase diagram with ksb1 = 0.5 (light gray) or 0.4 (black).

settles to a steady state for the same stimulus [Fig. 3(a), bottom
panel]. Indeed, an oscillation region occurs in the bifurcation
diagram of [A] versus S with a stronger NFL [Fig. 3(b)].
Notably, a series of intermediates in the NFL contributes to the
time delay required for oscillations [26]. A similar mechanism
has been exploited in the core model of circadian rhythm
including nuclear and cytoplasmic mRNAs and proteins [27].

We further investigated the role of PFL in producing oscil-
lations under different conditions. When the negative feedback
is too weak to induce oscillations, adding a PFL may result in
persistent oscillations [Fig. 4(a)]. This result is consistent with
the previous findings that the PFL may facilitate the induction
of oscillation by providing additional time delay for the NFL
[9,26].

The strength of the PFL is significantly modulated by the
induced production rate of C1, ksc1. The bifurcation diagram of
[A] versus S depends heavily on ksc1. When the NFL is weak
and the PFL is strong enough, there exist two saddle-node
bifurcations (SN1 and SN2) and two Hopf bifurcations (HB1

and HB2) on the lowest branch [Fig. 4(b)]. The thresholds of S

at SN1 and SN2 are denoted by S1 and S2, respectively, while

those at HB1 and HB2 are separately represented by H1 and H2

(hereinafter the same). Beginning with the off state at S = 0,
the system shows low-amplitude oscillations for a moderate S

or switches to the on state when S exceeds S1. This feature was
also reported in a modeling work on p53 dynamics [25]. The
strength of positive feedback modulates the locations of HB1

and HB2 [Fig. 4(b), inset]. When ksc1 is very small, the system
always stays in the off state; oscillations may occur over a wide
range of intermediate ksc1 values. When ksc1 is large enough,
the range of S for oscillation shortens to zero. Therefore, the
PFL plays a dual role in modulating oscillations when the NFL
alone is too weak to induce oscillations.

Furthermore, a two-parameter bifurcation diagram reveals
the effects of the PFL on oscillation induction [Fig. 4(c)]. When
the NFL is stronger, the range over S allowing for oscillation
is rather wide for small ksc1, but it shrinks quickly with
increasing ksc1 (light gray curve). If negative feedback becomes
weaker, the PFL with proper strength promotes oscillation,
but the strong PFL suppresses oscillation (black curve). This
dual role of the PFL can be understood as follows. Both the
NFL and a proper time delay are required for oscillations.
With the weak NFL, the PFL with proper strength facilitates
oscillations by lengthening the time delay [26]. The very
strong PFL cuts off the NFL by disrupting its negative arm,
thereby repressing oscillations. Collectively, the role of PFL
in inducing oscillation depends on the strength of feedback
loops.

B. Spontaneous transition between dynamic modes due to
alternation in the predomination of feedback loops

We have shown that the strength of positive feedback can
modulate the range of S-admitting oscillation. When the PFL is
very strong and is activated very slowly, no oscillation regime
occurs in the bifurcation diagram [Fig. 5(a)]. Nevertheless, [A]
undergoes a series of oscillations before switching to the on
state [Fig. 5(b)]. If S is slightly larger than S1, [A] oscillates for
a long period and then switches to the on state [Fig. 5(b), top
panel]. If S is much larger than S1, the duration of oscillations
is much shorter and the on state is reached more quickly
[Fig. 5(b), bottom panel]. The transient pulses indeed appear
in the dynamics of p53, HIF-1, Hes1, and Spo0A before a
final decision-making for cellular outcome [12,17,21,24]. Our
results show that transient behavior of the system cannot be
revealed directly by bifurcation analysis. Other approaches are
required to clarify the mechanism underlying the spontaneous
transition between dynamic modes.

To this end, we focus on the dynamics around the off
state in Fig. 5(b). Notably, the amplitude of oscillations varies
dynamically [Fig. 6(a), the red upper and green lower lines].
The transient dynamics can be roughly divided into three
stages: (1) early stage in which the amplitude drops gradually,
(2) intermediate stage in which the amplitude slowly rises
and then drops until the oscillation stops,and (3) late stage
in which the concentration gradually climbs to the on state.
Here we take a very small τ so that the kinetics become very
slow and a quasistatic approximation can be applied to analyze
the dynamics. Although such a small τ may be less meaningful
for real biological networks, this quasistatic analysis should be
effective to qualitatively explain the transient dynamics with
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FIG. 5. Spontaneous transition between dynamic modes. (a) Bi-
furcation diagram of [A] versus S with ksb1 = 0.4, ksc1 = 2.0, and
τ = 0.02. (b) Temporal evolution of [A] for S = 1.5 and 3.0.

larger timescales. In this case, [C2] rises so slowly that in a
short time interval, [C2] can be approximately considered a
constant that regulates the dynamics of [A]. Thus, we built a
reduced model by removing the equations of [C1] and [C2]
[i.e., Eqs. (5)–(6)] and replacing [C2] in Eqs. (3)–(4) with a
parameter [C∗

2 ], which can be changed independently.
In the full model, the PFL is not activated at all at the

early stage since [C2] is close to its basal level [Fig. 6(a)].
Indeed, when [C∗

2 ] is set to the basal level, [A] shows damping
oscillations in the reduced model [Fig. 6(b), blue (dark gray)
curve], coinciding perfectly with the early dynamics of [A]
in the full model [Fig. 6(b), red (light gray) curve]. This
means that the NFL dominates at the early stage and induces
damped oscillations, similar to the results in Fig. 3(a). At the
intermediate stage, the PFL is enhanced gradually since [C2]
rises almost linearly before reaching a higher level in the full
model [Fig. 6(c)]. As shown in the bifurcation diagram of
[A] versus [C∗

2 ] [Fig. 6(d)], the oscillation amplitude rises
gradually and then drops quickly, because enhancing the
positive feedback first promotes and then represses oscillation
[Fig. 6(d), inset]. At the late stage, [C2] rises rapidly and thus
[A] switches to the on state [Figs. 6(c) and 6(d)]. Collectively,
the multiphase dynamics of A reflect the dynamic competition
between feedback loops: the NFL first predominates, and the
PFL gradually strengthens until it prevails over the NFL. This
result agrees well with the two-phase dynamics of p53 [13].
Together, if the NFL and PFL predominate sequentially in the
early and late phases of system dynamics, a transition between
distinct dynamics modes may appear.

To probe whether the multiphase dynamics hold true for
different parameter values, we analyze the robustness of the
transient dynamics. In this system, for example, fluctuating ksa

FIG. 6. Analysis on the transient dynamics. (a) Stages of the
transient dynamics. The transient dynamics of [A] in the upper
panel of Fig. 5(b) can be roughly divided into three stages: early,
intermediate, and late stage. (b) At the early stage, the dynamics of
[A] in the full model (red or light gray curve) are consistent with
those in the reduced model with [C∗

2 ] = 0.01 (blue or dark gray
curve). (c) Dynamics of [C2] with the same parameter setting as in (a).
(d) Bifurcation diagram of [A] versus [C∗

2 ] in the reduced model. Red
circles denote the maxima and minima of oscillations, which can be
used to explain the variation in the amplitude of [A] in the full model
(the inset). (e) Transient dynamics vary with ksa = 0.24, 0.30, 0.36
(from left to right). Here we set ksb1 = 0.4, ksc1 = 2.0 and τ = 0.02,
and all the other parameters are the same as those in Table I.

by 20% will influence the transient oscillation and the on state
levels [Fig. 6(e)]. Moreover, the system can undergo at least
two pulses and still switch to the on state with 20% changes in
other parameters except n1 and n2. Therefore, the multiphase
dynamics are robust to parameter variation and independent of
parameter setting to a great extent.

C. Effects of the timescale of the PFL on oscillations
and early switching

In general, the stimulus strength must exceed the upper
threshold S1 to turn on the switch if the system evolves from the
off state [see Figs. 4 and 5]. Intriguingly, when the timescale of
the positive feedback becomes rather large, the system switches
to the on state even when S is much less than S1. The resulting
threshold, S∗, is called the early switching threshold [Fig. 7(a)].
Such an early switching was also reported in the model on
p53 dynamics, and it may advance apoptosis induction by p53
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FIG. 7. Early switching to the on state. (a) Bifurcation diagram
of [A] versus S with ksb1 = 0.4, ksc1 = 0.5, and τ = 0.5. The system
switches to the on state when S is greater than S∗ ≈ 2.42475 (vertical
dashed line). (b) Critical slowdown in the dynamics of [A] with S

slightly greater (light gray curve) or smaller (black curve) than S∗.
(c) The time course of [A] around the early switching threshold. The
curve of [A] dynamics at S∗ can be considered as a critical curve (black
curve). The inset is an enlarged view of the first pulse for different
stimuli. (d) The curve of S∗ position versus τ . The relative difference
of S∗ to S2 is measured by (S∗ − S2)/(S1 − S2), and the horizonal
coordinate is logarithmic. (e) Time courses of S and [A] for different
increasing rate of S. The stimulus gradually rises at different rates to
the same final value, Sfinal. Here Sfinal = 5 < S1, and all parameters
are the same as those in (a). (f) The curve of the relative difference of
S∗ to S2 versus the initial stimulus strength S0.

[25]. In the following, we will explore the potential mechanism
behind early switching of the bistable system.

There exist three states for [A] at S∗: a stable off state,
unstable saddle, and stable on state [Fig. 7(a)]. Among them,
the saddle is usually inaccessible in temporal evolution. In
Fig. 7(b), [A] exhibits critical slowdown when S is near S∗, like
normal bistability around the saddle-node bifurcation point.
Initially, there exists a transient high-amplitude pulse whose
maximum remarkably exceeds [A] at the saddle point. Then
[A] drops to its value around the saddle point and remains
there for a long period. Finally [A] converges to the on or
off state depending on whether S exceeds S∗. Theoretically,
the transient can last infinitely if |S − S∗| is infinitely close to
zero. For S close to S∗, there exists only subtle difference in the
first pulse of [A], while [A] converges to distinct final states

depending on S values [Fig. 7(c)]. Recent theoretical work has
revealed that the potential landscape changes with the temporal
variation in control parameters, and the separatrix of both
basins of attraction in the bistable system moves dynamically
[28]. Similarly, the switching to the on state will take place
when the separatrix of two attractors is crossed. For fixed initial
conditions, the fast kinetics in the PFL facilitate the phase
trajectory to transverse the separatrix when S is larger than
S∗. Therefore, quick activation of the PFL contributes to the
early switching of the system.

We have shown that the system exhibits early switching to
the on state when the timescale of the positive feedback is rather
large. Obviously, changes in the timescale τ of C1 and C2 do
not alter the steady states of the system. The curve of relative
difference between S∗ and S2, (S∗ − S2)/(S1 − S2), versus τ

is plotted to show the effect of τ on the early switching of the
system [Fig. 7(d)]. S∗ drops monotonically with increasing τ .
When τ is very small, S∗ almost equals S1, indicating that
no early switching appears. The early switching threshold
S∗ moves left with increasing τ . When τ is large enough,
S∗ almost equals S2. Together, the timescale of the positive
feedback significantly modulates the threshold of stimuli for
switching to the on state.

In the above cases, the stimulus strength always instanta-
neously jumps from 0 to Sfinal. It is necessary to assess whether
the increasing rate of S affects the final state of the system. For
simplicity, we assume that S increases linearly obeying the
following equation:

dS

dt
= Sfinal

tac

H (Sfinal − S). (7)

Here tac controls the increasing rate of S, and H (Sfinal − S) is
the Heaviside function. In Fig. 7(e), S increases at different
rates to the same final value that is less than S1. The system
still switches to the on state in advance for tac = 15 (solid
line), whereas the system converges to the off state for tac =
20 (dashed line). Thus, the increasing rate of S significantly
influences the occurrence of early switching.

The stimulus strength at the initial state is denoted by S0,
which is fixed at 0 above. We found that S0 affects the threshold
of S for switching on the system [Fig. 7(f)]. With increasing
S0, S∗ moves toward S1. For S less than S1, the system is more
easily driven to the corresponding off state when S0 gets closer
toS1. Taken together, the threshold for switching on the bistable
switch is modulated by several factors including timescale of
the kinetics, initial conditions, and the increasing rate of the
stimuli.

Intriguingly, the value of τ also affects the position of Hopf
bifurcation points in the diagram [Fig. 8(a)]. For smaller τ , the
right Hopf bifurcation point HB2 is located on the saddle-point
branch (red triangle dot). The system can oscillate when S

falls in the range between HB1 and HB2, and all the off states
become unstable with S > H1. For larger τ , HB2 moves to
the lowest branch (blue circle dot), and the actual oscillation
regime narrows remarkably. Therefore, the timescale of the
PFL affects the competition between the PFL and NFL. For
rather large τ , fast kinetics of the PFL repress the NFL-induced
oscillation.

For different τ , the system exhibits distinct behaviors in the
off state. With a larger τ and a moderate S, [A] may undergo
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FIG. 8. Effects of timescale of the PFL on the system dynamics.
(a) Bifurcation diagram of [A] versus S with ksb1 = 1.0 and ksc1 =
2.0. The two pairs of Hopf bifurcation points correspond to the case of
τ = 0.1 (red triangles) and 0.5 (blue circles). (b) Dynamics of [A] and
[C2] with τ = 0.5 and S = 1.0 (top panel), with τ = 0.1 and S = 3.1
(bottom panel). The inset is the dynamics of [A] for a long duration.
(c) Bifurcation diagram of [A] versus [C∗

2 ] in the reduced model with
ksb1 = 1.0 and ksc1 = 2.0.

uniform oscillations with almost fixed amplitude since [C2]
almost drops to its basal level after transient rising and the
oscillations are mainly induced by the NFL [Fig. 8(b), top
panel]. With a smaller τ and a specific S, [A] oscillates while
the amplitude changes periodically [Fig. 8(b), bottom panel,
gray curve]. This is analogous to amplitude modulation in
radio broadcasting, and it is interesting to explore whether
such dynamics exist in any biological systems. In the bifur-
cation diagram of [A] versus [C∗

2 ] for the reduced model, the
amplitude of [A] varies with [C∗

2 ] [Fig. 8(c), pink (gray) area].
When [C2] is high enough, the PFL represses the oscillations
of [A] by disrupting the NFL. Then [C2] decreases due to the
reduction in its transactivation rate. Therefore, [C2] exhibits a
slow oscillation that modulates the fast oscillation of [A].

IV. DISCUSSION

We developed an abstract model based on the p53 network
model to illustrate the potential performance advantage of

IPNFLs over single feedback loops. We found that the PFL
plays a dual role in the regulation of oscillations. We paid
more attention to transient dynamics during the transition
between oscillation and bistability in some specific networks
including the p53 network. With constant strong stimuli, the
system can exhibit transient oscillations followed by grad-
ual switching to the on state. The alternative predomination
of feedback loops may govern the transition between the
two dynamic modes. Moreover, early switching to the on
state depends on the parameters and initial conditions when
the positive feedback is activated quickly. It would be in-
triguing to validate early switching in biological networks.
Taken together, our work may provide new insights into
the performance advantages of IPNFLs over single feedback
loops.

It is worthy to note that our conclusions are not applicable
to all gene regulatory networks including IPNFLs, since tran-
sition between oscillation and bistability appears only in some
particular networks. In other networks comprising IPNFLs,
only oscillation or bistability alone may be observed. Underly-
ing the cell cycle of Xenopus embryos, for example, combined
NFL and PFL function only as a relaxation oscillator in which
the NFL flips the PFL-induced bistable switch between on
and off states repeatedly [6]. In the circadian rhythm systems,
the PFL cooperates only with the NFL to produce oscillations
[29]. Here our model mainly aims at the systems in which
oscillation can be induced by the NFL, and the fully activated
PFL can terminate the oscillations and push the system to
high levels. All the examples in Fig. 1 can satisfy the above
requirements to a great extent. Oscillation and bistability are
two typical dynamic modes in gene regulatory networks, and
it is interesting to identify more examples in which the system
can transit between the two behaviors. Moreover, sufficient
time delay in the NFL is required for oscillations [26]. In
our model, the implicit time delay results from intermediate
components in the NFL and hysteresis due to the PFL. Our
results could be applicable to the case with explicit time delay
in feedback.

In our model, the intensity of stimuli can regulate the
level of the transcription factor and selective expression of
its target genes, thereby modulating the competition between
feedback loops. Our results may provide a plausible explana-
tion for the bimodal and two-phase dynamics of p53 [11–13].
The NFL alone produces p53 oscillation for mild stimuli.
The PFL is gradually activated to drive p53 level to the
on state following transient oscillations for strong stim-
uli. The p53 level exhibits monotonic increasing due to
direct activation of the PFL for extremely strong stimuli
[13]. Moreover, the dynamic evolution in the domina-
tion of the NFL and PFL may contribute to the tran-
sition of dynamic modes in the Notch1-Hes1 system
[18,19,30].

In conclusion, this work reveals that the system of IPNFLs
may act as a flexible motif to produce multiple dynamic
modes including oscillation and bistability under some specific
conditions. It has been demonstrated that p53 dynamics control
cell fates, so that alternation in the dynamic modes of p53
leads to different cellular outcome in response to DNA damage
[11–13,31]. Our work suggests that IPNFLs may be exploited
by cells to make a decision between different fates based on
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different dynamic modes. We expect that our results on the
transition between oscillation and bistability by modulating the
stimulus strength could be validated and exploited in synthetic
biology.
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