Interplay of activation kinetics and the derivative conductance determines resonance properties of neurons

Rodrigo F. O. Pena,¹ Cesar C. Ceballos,^{1,2} Vinicius Lima,¹ and Antonio C. Roque^{1,*}

¹Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil ²Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil

(Received 9 December 2017; published 10 April 2018)

In a neuron with hyperpolarization activated current (I_h) , the correct input frequency leads to an enhancement of the output response. This behavior is known as resonance and is well described by the neuronal impedance. In a simple neuron model we derive equations for the neuron's resonance and we link its frequency and existence with the biophysical properties of I_h . For a small voltage change, the component of the ratio of current change to voltage change (dI/dV) due to the voltage-dependent conductance change (dg/dV) is known as derivative conductance (G_h^{Der}) . We show that both G_h^{Der} and the current activation kinetics (characterized by the activation time constant τ_h) are mainly responsible for controlling the frequency and existence of resonance. The increment of both factors $(G_h^{\text{Der}} \text{ and } \tau_h)$ greatly contributes to the appearance of resonance. We also demonstrate that resonance is voltage dependent due to the voltage dependence of G_h^{Der} . Our results have important implications and can be used to predict and explain resonance properties of neurons with the I_h current.

DOI: 10.1103/PhysRevE.97.042408

I. INTRODUCTION

When stimulated with oscillatory inputs, some neurons respond in preferential frequencies. This resonance phenomenon is demonstrated by an enhancement of the output amplitude. The neuronal impedance is the measure normally used to identify resonance [1]. It shows how much of the input frequency is contained into the output. When resonance is present, a prominent peak is identified at the impedance profile.

Generally speaking, the electrical properties of passive membranes can be represented by an equivalent RC circuit [2]. Leak currents, which are ideally instantaneous and non voltage-dependent, are described by electrical resistances between intracellular and extracellular media, and capacitors describe the charge separation between the two sides of the bilipid membrane due to different ion concentrations on the two sides. This type of electrical circuit works as a low pass filter where an increase in the frequency of input leads to a decrease in the output voltage.

In addition to this simple circuit, most neurons also express voltage-dependent ion channels that carry voltage-dependent currents. The presence of voltage-dependent currents drastically changes the equivalent electrical circuit, and in some cases make it work as a bandpass filter where a resonance peak arises. It is well known that the impedance profile at subthreshold voltages is mainly determined by the hyperpolarization activated current (I_h) in several neuron types [3], e.g., the pyramidal cells of the hippocampus [4,5]. The I_h current has been called a "resonant current" elsewhere [6]. However, the biophysical mechanisms underlying the resonance generation by I_h in neurons remain unclear.

 I_h is a slowly noninactivating current with an activation time constant (τ_h) that spans a range from tens of milliseconds to several seconds [4,5,7–10]. I_h is a voltage-dependent current and neurons with I_h display an impedance magnitude that is also voltage-dependent [4]. Interestingly, the simple expression of I_h in a neuron's membrane is not sufficient to cause resonance. For instance, it has been observed that in the presence of I_h there is no resonance for membrane potentials too depolarized or too hyperpolarized, or when τ_h is too small [11–13]. Furthermore, the resonance frequency also varies in a voltage-dependent manner [4]. However, the source of this voltage dependency has not yet been identified.

The I_h current can be expressed as the product of a conductance by a driving force, $I_h = g(V,t)(V - E)$, where g(V,t) is the so-called chord conductance and E is the reversal potential [2,6]. Thus, for small voltage changes the variation of I_h with respect to V is $dI_h/dV = g + (dg/dV)(V - E)$, where the second term is the so-called derivative conductance (G_h^{Der}) [14]. While g reflects the passive changes of the current, G_h^{Der} reflects the changes in the current due to voltage-dependent conductance changes (dg/dV). Both conductances, g and G_h^{Der} , are voltage-dependent and contribute to the impedance magnitude and the generation of neuronal resonance [11]. However, it is still unknown the relative contribution of each conductance to the resonance mediated by I_h .

Experimentally, it is known that I_h attenuates slow neuronal voltage changes, acting as a high-pass filter. This attenuation reduces the impedance magnitude at low frequencies. The strength of the attenuation is directly proportional to both I_h conductances (chord and derivative) and inversely proportional to the I_h activation kinetics [11].

The main goal of this paper is to determine the mechanisms underlying the resonance induced by I_h in a simple neuron model containing only leak and I_h currents. In our simulations we used biophysical parameters to reproduce the impedance

^{*}antonior@usp.br

properties of CA1 pyramidal cells of the hippocampus. This neuron displays resonance due to the I_h current and its time constant is better fitted by the sum of two exponentials, namely the fast and the slow time constants [4,5]. Whereas the fast component has values close to tens of milliseconds, the slow component has values from hundreds of milliseconds to approximately 1 s [5,8–10].

We ask how the range of τ_h values contribute to the impedance profiles, the existence of resonance, and the values of the resonance frequency. We determine the voltage-dependent impedance profiles while changing the values of both leak and I_h conductances as well as of τ_h . Our results show that the derivative conductance and τ_h are the main factors in the generation of resonance in the simulated neuron.

II. METHODS

A. Neuron model

In our neuron model, we consider a single compartment where the membrane has its voltage described by

$$C\frac{dV}{dt} = -I_h - I_L + I(t), \tag{1}$$

where *C* is the membrane capacitance, I_L is a leak current, I_h is the hyperpolarization activated current, and I(t) is an external current. The I_h current is modeled using the Hodgkin-Huxley formalism obeying

$$I_h = \bar{g}_h A_h(V,t)(V - E_h), \qquad (2)$$

with maximum conductance \bar{g}_h in units of nS and reversal potential $E_h = -30$ mV.

The activation variable A_h is represented as

$$\frac{dA_h(V,t)}{dt} = \frac{A_h^{\infty}(V) - A_h(V,t)}{\tau_h},$$
(3)

where τ_h is the activation time constant in units of ms and A_h^∞ is the steady-state activation variable. A_h^∞ is voltage-dependent and obeys the Boltzmann function

$$A_{h}^{\infty} = \frac{1}{1 + \exp\left(\frac{V - V_{1/2}}{k}\right)},$$
(4)

where $V_{1/2} = -82$ mV and k = 9 mV. Observe that $V_{1/2}$ represents the voltage in which $A_h^{\infty} = 0.5$ and k is the slope of the A_h^{∞} . Both $V_{1/2}$ and k are fitted experimentally [15].

The leak current is modeled following $I_L = g_L(V - E_L)$ where g_L is the maximum conductance in units of nS and the reversal potential $E_L = -90$ mV. The model parameters are within the physiological range for a CA1 pyramidal cell in the hippocampus [16].

B. Slope, derivative, and chord conductance

The I_h slope conductance (G_h) , i.e., the slope of the steadystate IV plot, of our model is obtained by differentiating Eq. (2) with respect to V,

$$G_{h} = \frac{dI_{h}}{dV} = \underbrace{\bar{g}_{h}A_{h}^{\infty}}_{\text{chord}} + \underbrace{\bar{g}_{h}(V - E_{h})\frac{dA_{h}^{\infty}}{dV}}_{\text{derivative}}, \quad (5)$$

FIG. 1. Slope conductance of I_h and its properties. (a) Voltage dependence of I_h slope conductance (G_h) , chord conductance g_h and the derivative conductance G_h^{Der} . (b) Voltage dependence of the steady state activation variable A_h^{∞} . (c) Voltage dependence of dA_h^{∞}/dV .

where the first term is the chord conductance (g_h) and the second term is the derivative conductance (G_h^{Der}) [16]. More specifically, the derivative of $A_h^{\infty}(V)$ in Eq. (5) can be obtained differentiating Eq. (4) leading to $\frac{dA_h^{\infty}}{dV} = \frac{(A_h^{\infty} - 1)A_h^{\infty}}{k}$. In the end, we can write the derivative conductance as

$$G_h^{\text{Der}} = \bar{g}_h A_h^{\infty} \frac{\left(A_h^{\infty} - 1\right)}{k} (V - E_h).$$
(6)

For the case of I_h , both the chord conductance and the derivative conductance are positive.

Figure 1 shows a numerical example of G_h , g_h , G_h^{Der} , A_h^{∞} , and $\frac{dA_h^{\infty}}{dV}$ obtained from Eqs. (4), (5), and (6). The chord conductance is monotonically decreasing with the membrane potential, since it is directly proportional to the steady state activation variable A_h^{∞} . It approximates asymptotically to the maximum conductance at hyperpolarized voltages and vanishes at depolarized voltages.

Unlike the chord conductance, G_h^{Der} has a nonmonotonic behavior and vanishes in two situations: when $A_h^{\infty} \to 0$ and $A_h^{\infty} \to 1$. Since G_h^{Der} is directly proportional to $\frac{dA_h^{\infty}}{dV}$ and the driving force [see Eq. (6)], then G_h^{Der} can only have nonvanishing values within the region where the activation changes in a voltage-dependent manner and for membrane potentials far from the reversal potential. This means that G_h^{Der} would contribute significantly for A_h^{∞} values near to 0.5 ($V = V_{1/2} = -82 \text{ mV}$). In fact, G_h^{Der} has a peak with maximum value near -82 mV [Fig. 1(a)]. G_h reaches its asymptotic value for membrane potentials above -40 mV and below -130 mV.

 I_h has exclusively positive slope conductance for hyperpolarized membrane potentials [see Fig. 1(a) and Eqs. (5) and (6)].

C. Impedance

The complex impedance is expressed as [17]

$$Z = \frac{1}{g_L + i\omega C + g_h + \frac{G_h^{\text{Der}}}{1 + i\omega\tau_h}},$$
(7)

where $\omega = 2\pi f$ with f being the stimulation frequency in Hz. We write the impedance magnitude as

$$|Z| = (ZZ^*)^{1/2} = \left(A + \omega^2 C^2 + \frac{B - D\omega^2 \tau_h}{1 + \omega^2 \tau_h^2}\right)^{-1/2}, \quad (8)$$

where $A = (g_L + g_h)^2$, $B = 2G_h^{\text{Der}}(g_L + g_h) + (G_h^{\text{Der}})^2$ and $D = 2G_h^{\text{Der}}C$. Notice that *A*, *B*, and *D* are positive terms. *A* depends only on the chord conductance, *B* depends on both the chord and the derivative conductances, and *D* depends only on the derivative conductance.

D. Phase plane analysis

We used phase plane analysis with variables A_h and V to study how activation of I_h influences voltage responses using the stimulus as explained in Sec. IIE. This has been successfully done elsewhere [18,19]. We plotted $V - A_h$ trajectories that represent one cycle of response to a sinusoidal stimulus at a particular frequency and stimulus amplitude. The V nullcline and A_h nullcline are the curves along which dV/dt = 0 and $dA_h/dt = 0$, respectively. For the V nullcline we solved Eq. (1) and for the gating dynamics we obtained the A_h nullcline from Eq. (3).

E. Simulations

Simulations were done in NEURON using the Python interface. The simulation time step was 0.025 ms and the initial membrane potential was -70 mV. The cell specific capacitance is set at 1 μ F/cm². If not specified, we use $\bar{g}_h = g_L = 5 \text{ nS}$. The model has the geometry of a cylinder with 70 μ m of diameter and 70 μ m of length, which is chosen to condense the soma and the whole dendritic tree into a single compartment in a manner that preserves the average capacitance of a pyramidal cell ($C \approx 150 \text{ pF}$) [20]. Moreover, in NEURON all units for conductance are declared in specific units and internally transformed to nonspecific, i.e., [nS/cm²] to [nS]. Here we only state the nonspecific units but one can simply transform to specific ones by dividing all our units by the area of the cylinder.

Sinusoidal currents were injected using the impedance amplitude profile (ZAP) protocol, which consists of a sinusoidal current with increasing frequency [21]. Here we used a version of this protocol with linearly increasing frequency [22] so that we could evenly study both low and high frequencies,

$$I = A \sin[\pi (f(t) - F_{\text{start}})(t - t_{\text{start}})], \qquad (9)$$

where $f(t) = F_{\text{start}} + (F_{\text{stop}} - F_{\text{start}})(t - t_{\text{start}})/(t_{\text{stop}} - t_{\text{start}})$, F_{start} (F_{stop}) is the initial (final) frequency value of the ZAP current, and t_{start} (t_{stop}) is the initial (final) time boundary of the ZAP current.

To obtain data from the low stimulation frequencies, we applied a long protocol with duration of 600 s. The currents had constant amplitude of 10 pA and the frequency f increased

linearly in time from 0.001 to 20 Hz. To maintain the membrane potential at different values, constant currents were injected.

The resulting voltage response V(t) was measured and the frequency-dependent impedance profile $Z(\omega)$ was calculated as the difference of the absolute value of the amplitude of the voltage peaks and the fixed resting potential. Such measure was normalized by the amplitude of the injected sinusoidal current. The resonance frequency ω_{res} is defined as the frequency of injected current that maximized $Z(\omega)$. Similarly, we also measure the frequency-dependent activation variable profile ΔA_h as the difference between the actual activation variable and its initial value.

III. RESULTS

A. Existence of resonance and its voltage dependency

To determine analytically the existence properties of resonance, we will obtain a mathematical expression for the frequency at the maximum impedance magnitude. Since resonance occurs when there is a maximum in the impedance magnitude, then by making $\frac{d|Z|}{d\omega} = 0 = (-\frac{|Z|^3}{2})(2\omega C^2 - \frac{2\omega\tau_h(D+B\tau_h)}{(1+\omega^2\tau_h^2)^2})$ for some ω_{res} we obtain

$$\omega_{\rm res} = \frac{\sqrt{\frac{\sqrt{\tau_h (D + B\tau_h)}}{C} - 1}}{\tau_h}.$$
 (10)

Equation (10) shows that there is resonance only when ω_{res} is real, i.e., when $\tau_h(D + B\tau_h) > C^2$. Otherwise, there is no resonance. Thus, resonance is hampered when τ_h , *B*, or *D* are small.

The expression for the impedance magnitude, Eq. (8), implies that resonance is not present for all voltage values but is restricted to a certain range depending on τ_h . This suggests that both *V* and τ_h influence the occurrence of resonance.

Figures 2(a)–2(e) show examples of impedance profiles when varying τ_h and V. For $\tau_h = 10$ ms there is no resonance for all membrane potentials considered. For $\tau_h = 100$ ms, there is clear resonance only at V = -80 and V = -100 mV. For $\tau_h = 1000$ ms resonance is present for all membrane potential, except for V = -140 mV.

Figure 2(g) shows the parameter regions with resonance in the (τ_h, V) diagram when \overline{g}_h is varied. The (i) region in blue corresponds to absence of resonance for all values of \overline{g}_h . Notice that below $\tau_h \approx 5$ ms there is no resonance for all membrane potentials. The (ii) region in green and above has resonance when $\overline{g}_h = 10$ nS; the (ii) region in light red and above has resonance when $\overline{g}_h = 5$ nS; and the (iv) region in dark red has resonance when $\overline{g}_h = 1$ nS. Above $\tau_h = 5$ ms it is possible to have resonance, and the bigger \overline{g}_h the larger the area where resonance can occur. Notice also that increasing τ_h increases the membrane potential range with resonance.

This voltage-dependent behavior might be related to the voltage dependence of the chord conductance or the derivative conductance that affects the terms B and D in Eq. (10). The chord conductance increases monotonically with hyperpolarization. However, the resonance behavior is nonmonotonic, suggesting that the chord conductance has little influence on it. The derivative conductance has a nonmonotonic behavior, as shown in Fig. 2(f), which matches the behavior of the

FIG. 2. Impedance dependence of V and τ_h . (a–e) Impedance profiles for the passive case (only leak, Z_L) and for the case of leak plus I_h (Z_{L+h}) for different τ_h values (10, 100, and 1000 ms) and for different membrane potentials from V = -60 to V = -140 mV, which is the full range of I_h activation. Notice that resonance peaks are not present for all potentials. (f) I_h derivative conductance (G_h^{Der}). The arrows indicate the membrane potential used in the impedance profiles in (a–e). (g) Regions where there is resonance. In blue (i) there is no resonance; in (ii) green and above there is resonance for $\overline{g}_h = 10$ nS; in light red (iii) and above, there is resonance for $\overline{g}_h = 5$ nS; and in dark red (iv) there is resonance for $\overline{g}_h = 1$ nS.

resonance. This suggests that the voltage-dependent behavior of the resonance is mainly due to the derivative conductance.

Below we list some evidence that the voltage dependence of the resonance is due mainly to the G_h^{Der} voltage dependence:

(1) To influence the impedance profile by means of τ_h , G_h^{Der} must be nonzero. This can be seen from Eq. (7): if $G_h^{\text{Der}} = 0$, the impedance is reduced to $Z = (g_L + i\omega C + g_h)^{-1}$, where τ_h disappears.

(2) Even if $G_h^{\text{Der}} = 0$, the impedance remains voltagedependent due to g_h . However, there is no resonance, since when $G_h^{\text{Der}} = 0$, $\omega_{\text{res}} = \frac{\sqrt{-1}}{\tau_h}$. Phenomenologically, a nonzero G_h^{Der} means that the activation variable A_h is able to vary, since G_h^{Der} is directly proportional to dA_h^{∞}/dV . Thus, the existence of resonance requires a variation of A_h in time.

(3) When $g_h = 0$, Eq. (7) still has a similar form, but with the leak conductance reduced, i.e., setting $g_h = 0$ is equivalent to $g'_L = g_L + g_h$. Then, the system is still able to present resonance. Also, when $g_h = 0$, the term B is reduced to $B = 2G_h^{\text{Der}}g_L + (G_h^{\text{Der}})^2$, but still has a nonzero value, which means that a resonance frequency ω_{res} can exist.

Concluding, in spite of the chord conductance g_h being able to influence resonance, the major responsible for the occurrence of resonance is the derivative conductance G_h^{Der} and not g_h .

We also observe that low values of τ_h or G_h^{Der} abolish resonance. This can be understood as follows: when τ_h is too small, i.e., when $\omega \tau_h \ll 1$, the impedance magnitude is approximately given by $(A + B + \omega^2 C^2)^{-1/2} = [(g_L + g_h + G_h^{\text{Der}})^2 + \omega^2 C^2]^{-1/2} = [(g_L + G_h)^2 + \omega^2 C^2]^{-1/2} = (g_L^{\prime 2} + \omega^2 C^2)^{-1/2}$. This is equivalent to the impedance of a

 $g'_L = g_L + G_h$.

In the case where G_h^{Der} is too small, $B \approx D \approx 0$ in Eq. (8) and the impedance magnitude may be approximated

by $(A + \omega^2 C^2)^{-1/2} = [(g_L + g_h)^2 + \omega^2 C^2]^{-1/2} = (g_L'^2 + \omega^2 C^2)^{-1/2}$. This is equivalent to the impedance of a neuron with only a leak current where the conductance value $g'_L = g_L + g_h$. And when τ_h or G_h^{Der} have low values, the impedance profile is equivalent to the one of an RC circuit, i.e., a low-pass filter without resonance.

B. Phase plane analysis

The phase plane analysis in the $A_h - V$ diagram is shown in Figs. 3 and 4. In the case of Fig. 3, we plot the trajectories fixing the membrane potential with an external constant current so that the steady voltage is V = -120, -80, and -40 mV(indicated by horizontal arrows in the figure). In Fig. 3(a) we plot $A_h(V)$, which stays in three different regions of the curve depending on the voltage. These regions correspond to the cases where I_h is fully activated, half-activated and almost deactivated. Only the case with V = -80 mV displays resonance. In addition, we plot the trajectories for three different frequencies: ($\omega = \omega_{res}$), a lower frequency ($\omega < \omega_{res}$), and a higher frequency ($\omega > \omega_{res}$). In Fig. 3 we fixed the value of $\tau_h = 50 \,\mathrm{ms.}$ For low frequencies, regardless of the voltage value, the trajectory follows the A_h -nullcine, which is depicted in green (light gray) in the plots of low-frequencies [Figs. 3(b), 3(e) and 3(h)]. This means that I_h is able to track the slow changes of the voltage, being fully activated and deactivated during the full cycle.

In contrast, for high frequencies, again regardless of the voltage value, the trajectory is mainly horizontal, which means that I_h is not able to track the fast changes of the voltage. Then the activation variable A_h changes slightly.

In regard to the voltage, when it is too depolarized or hyperpolarized (V = -40 mV and V = -120 mV, respectively), the trajectories are mainly horizontal, regardless of the

FIG. 3. Evolution of trajectories for different membrane voltages. (a) Voltage dependence of the steady-state activation variable. Horizontal arrows indicate which region is studied on the plots to the right. (b–j) phase plots of activation variable vs membrane potential of the trajectories for different membrane potentials: (b–d) V = -120 mV, (e–g) V = -80 mV, (h–j) V = -40 mV and for different stimulation frequencies (ω): (b, e, h) low frequency; (e, f, i) resonance frequency ω_{res} ; and (d, g, j) high frequency. The green (light gray) line represents the slope of $dA_h^\infty/dV \propto G_h^{\text{Der}}$. In all panels $\tau_h = 50$ ms

frequency value. In contrast, for V = -80 mV, G_h^{Der} is close to its maximum, the trajectory starts oblique and thin, but by increasing the frequency it gets more horizontal and round.

In Fig. 4 we fixed the voltage at -90mV and vary τ_h to 5 and 50 ms. Only for the case of $\tau_h = 50$ ms [Figs. 4(a)–4(c)] there is resonance. One can observe the same tendencies as in Fig. 3. Interestingly, for the case with $\tau_h = 5$ ms, the trajectory is kept oblique for the high frequency, which means that I_h is still able to track the fast changes of the voltage [Figs. 4(d)–4(f)].

Notice that for high τ_h , the trajectory starts oblique and thin, but increasing the frequency makes the trajectory more

horizontal and round, and this occurs more rapidly than in the case of low τ_h .

In summary, there are two different scenarios where the existence of resonance is hampered. First, when the trajectory starts horizontal for low ω and does not change regardless of the ω value, and, second, when the trajectory starts oblique for low ω and also does not change regardless of the evolution of ω . The former situation is caused by low G_h^{Der} values, i.e., low dA_h^{∞}/dV values. The latter situation is caused by low τ_h values that keep dA_h/dV invariant to changes in ω . This allows us to conclude that resonance emerges for trajectories that start

FIG. 4. Evolution of trajectories for different τ_h . Phase plots of activation variable versus membrane potential of the trajectories for different activation time constant: (a–c) $\tau_h = 50$, and (d–f) $\tau_h = 5 \text{ ms}$. There are different stimulation frequencies (ω): (a, d) low frequency, (b, e) resonance frequency ω_{res} , and (c, f) high frequency. The membrane potential was fixed at V = -90 mV. Green (light gray) line slope represents the $dA_h^\infty/dV \propto G_h^{\text{Der}}$.

FIG. 5. Resonance frequency dependence with τ_h and V. (a–c) Resonance frequency (ω_{res}) for different values of τ_h and V. (d–f) Resonance frequency (ω_{res}) for different values of τ_h and g_L . (a, d) $\bar{g}_h = 1$ nS, (b, e) $\bar{g}_h = 5$ nS, and (c, f) $\bar{g}_h = 10$ nS. In all cases V = -85 mV.

oblique (i.e., with high dA_h^{∞}/dV values) and thin but rapidly become horizontal and round (due to high τ_h values) with the variation of ω .

C. Resonance frequency and its voltage dependency

In the previous sections we determined the main biophysical parameters of I_h underlying the existence of resonance. In this section we will determine how the parameters \overline{g}_{h} , g_L , τ_h , and V affect the value of the resonance frequency (ω_{res}) using Eq. (10). Clearly, increasing B or D increases the value of $\omega_{\rm res}$, while increasing τ_h decreases the value of ω_{res} . Since B increases when G_h^{Der} , g_h or g_L increase, and since D increases when G_h^{Der} increases, we conclude that the increase of any type of conductance (i.e., leak, I_h chord or I_h derivative conductance) increases the value of the resonance frequency. However, the contribution of g_h or g_L to resonance is modulated by G_h^{Der} [see the first term in $B = 2G_h^{\text{Der}}(g_L + g_h) + (G_h^{\text{Der}})^2$]. This is reflected in the numerical values as shown in Figs. 5(a)-5(c). Figure 5 shows the resonance frequency for different values of τ_h and V, when \overline{g}_h is varied. Notice that the resonance frequency has a voltage dependency with a maximum value near -90mV and low values for depolarized and hyperpolarized membrane potentials, resembling the voltage-dependent behavior of G_h^{Der} . This trend strongly suggests that G_h^{Der} is the main factor determining the voltage dependency of $\omega_{\rm res}$.

In Figs. 5(d)-5(f) we show the value of the resonance frequency when the membrane potential is fixed at V = -85 mV, which is a membrane potential close to the highest resonance frequency [see Figs. 5(a)-5(c)]. Notice that changing the leak conductance from 1 to 10 nS increases the resonance frequency (≈ 10 Hz), but the change is smaller than that observed when the I_h conductance is changed in the same proportion.

But what is the mechanism by which I_h determines the resonance frequency? Based on the results presented above,

we propose that it is the magnitude of the change of the activation variable in time dA_h/dt that determines the resonance frequency. This would explain why increasing G_h^{Der} increases the resonance frequency while increasing τ_h decreases the frequency resonance, as suggested by Eq. (10).

To verify this hypothesis, we analyzed the impedance profiles obtained from computational simulations where ZAP currents where injected into a single compartment neuron model with a leak current and I_h . Figure 6(c) shows the variation of the activation variable for different membrane potentials, sweeping the I_h activation range. Note that the maximum variation of A_h is observed for V = -80 mV [see Fig. 6(a)], i.e., the membrane potential for the maximum G_h^{Der} . Moreover, ΔA_h decreases monotonically with ω . Figure 6(d) shows the variation of the activation variable for different τ_h values. Notice that the initial ΔA_h is the same for all τ_h values but each curve evolves differently, where the curve with the lower τ_h (5 ms) has a slower decay with the frequency.

It is well known that the resonance frequency is related to the frequency-dependent attenuation due to I_h activation. I_h acts as a high pass filter, attenuating strongly slow voltage changes but not affecting fast voltage changes. Our results suggest that G_h^{Der} and τ_h are the main factors that influence this attenuation. Our hypothesis is that G_h^{Der} and τ_h determine the variation of the activation variable in time (dA_h/dt) , and such variation determines the magnitude of the attenuation due to I_h . If this is true, then the increase of dA_h/dt should increase the attenuation of the voltage changes by I_h and, consequently, increase the resonance frequency.

But how τ_h determines the resonance frequency? The change of A_h in time is not instantaneous but obeys some dynamics which is determined by τ_h [Fig. 7(a)]. The slower the τ_h the smaller the change of A_h in time; i.e., dA_h/dt is smaller for bigger τ_h . Increasing τ_h implies a decrease in dA_h/dt . Such decrease leads to a decrease of the I_h attenuation, thus decreasing the resonance frequency. In agreement with this,

FIG. 6. Impedance profiles and their dependency with V and τ_h . (a) Impedance profiles for different membrane potentials, and (b) for different τ_h . (c, d) Variation of A_h . In (a, c) $\tau_h = 50$ ms. In (b, d) we fixed V = -90mV and varied τ_h (5, 50, and 100 ms).

notice that decreasing τ_h decreases the impedance magnitude [Fig. 6(b)]; i.e., decreasing τ_h enhances the I_h attenuation.

Figure 6(d) shows that A_h with slower τ_h decays faster than A_h with faster τ_h , and this tendency is reflected by ω_{res} , where A_h with faster decay has an impedance profile with lower ω_{res} .

But how G_h^{Der} determines the resonance frequency? G_h^{Der} is directly proportional to dA_h^{∞}/dV , i.e. the maximum variation of the activation variable for a change of the voltage. Since the magnitude of dA_h/dt is directly proportional to dA_h^{∞}/dV , then increasing G_h^{Der} implies an increase in dA_h/dt due to an increase in dA_h^{∞}/dV [Fig. 7(b)]. This increase in dA_h/dt leads to an increase of the I_h attenuation, thus increasing the resonance frequency. Accordingly, this tendency can be observed in Fig. 6(a) at $\omega = 0$. Notice that the impedance profiles with higher attenuation correspond to higher ΔA_h values.

More specifically, when $\omega \to 0$, the impedance defined in Eq. (8) becomes $|Z| = (A + B)^{-1/2}$. By rearranging the terms we have that $\lim_{\omega \to 0} |Z| = (g_L + G_h)^{-1}$. This result demonstrates that the impedance magnitude when $\omega \to 0$ is independent of τ_h , but voltage-dependent following the I_h slope conductance (G_h) . In the same equation, one also see that the increase of g_L or \bar{g}_h decreases the impedance magnitude when $\omega \to 0$.

Consistent with our hypotheses, variations of τ_h change the variation of A_h for high frequencies [see Fig. 6(d)] in a manner in which increasing τ_h decreases the variation of A_h .

Summarizing, we conclude that the main factors that determine the resonance frequency are G_h^{Der} and τ_h acting on the change of the activation variable in time (dA_h/dt) .

 $\Delta A \left(\mathrm{d} A_h^{\infty} / \mathrm{d} V \text{ bigger} \right) > \Delta A \left(\mathrm{d} A_h^{\infty} / \mathrm{d} V \text{ smaller} \right)$ for the same frequency ω

FIG. 7. Schematic diagram explaining the mechanism by which the interaction between frequency and activation variable time evolution determines the amount of the change of the activation variable ΔA_h . The maximum amplitude of the change of the activation variable is determined by dA_h^{∞}/dV , while the time evolution is determined by τ_h . (a) For the same value of dA_h^{∞}/dV , ΔA_h is bigger for the faster τ_h values. (b) For the same τ_h , ΔA_h is bigger for the bigger dA_h^{∞}/dV values.

D. Impedance attenuation by I_h at low frequencies

It is well known that I_h behaves as a high pass filter, attenuating slow changes of the voltage. Figures 2(a)-2(e)and 6 show that the variation of the impedance profile with I_h displays a band-pass behavior due to an attenuation of the impedance magnitude at low frequencies, and this attenuation is also influenced by τ_h . This is clearly observed in Figs. 2(a)– 2(e) when comparing the impedance magnitude of a neuron model with only leak (Z_L) current with a neuron model with leak plus I_h (Z_{L+h}) current. Accordingly, one can observe in all Z_{L+h} curves the same attenuation at low frequencies. At first, this attenuation seems to cover the whole range of frequencies. However, when we zoom in we observe that depending on the τ_h value some impedance curves for the Z_{L+h} case are unexpectedly amplified at high frequencies, when compared with the Z_L case. Thus, to determine the behavior of the I_h attenuation on the impedance magnitude [see Eq. (8)] for different stimulation frequencies, we will compare the impedance profiles of the passive case (i.e., only leak current) and the case with I_h . Our interest is to determine the regions where I_h attenuates the impedance magnitude and the regions where I_h amplifies it. Thus, by making $|Z_L| = |Z_{L+h}|$ we will be able to study the existence of crossing frequencies (ω_c), and describe the regions with attenuation by comparing the curves.

In this regard, we obtain

$$(g_L^2 + \omega^2 C^2)^{-1/2} = \left(A + \omega^2 C^2 + \frac{B - D\omega^2 \tau_h}{1 + \omega^2 \tau_h^2}\right)^{-1/2},$$
(11)

and with a simple rearrangement of terms we isolate the crossing frequency ω_c :

$$\omega_c = \sqrt{\frac{B+E}{D\tau_h - E\tau_h^2}},\tag{12}$$

where $E = 2g_Lg_h + g_h^2$. Note that the solution in Eq. (12) has some constraints due to a subtraction in the denominator as well as the existence of a square root. If the solution is real (i.e., when $D > E\tau_h$), then the curves cross once at some frequency (ω_c); otherwise, the curves do not cross. Examples of both cases are shown in Fig. 9. As a general trend, one observes that the profiles $|Z_L|$ and $|Z_{L+h}|$ can cross or not, but two profiles $|Z_{L+h}|$ with different τ_h always cross each other (see below).

Since there cannot be more than one crossing point, one curve will be above the other on one side of ω_c and the curves switch position on the other side of ω_c . Then, if one evaluates any values of the curves on one side of ω_c and checks their relative positions, one can infer all the other relative positions with respect to ω_c .

Using this approach, we will demonstrate that I_h always attenuates the impedance magnitude at low frequencies but not always for high frequencies. We know that for $\omega < \sqrt{\frac{B}{D\tau_h}}$, both the left-hand and the right-hand sides of Eq. (11) are positive and the sum of the terms inside the square root is higher on the right-hand side than on the left-hand side. As a consequence of this, the impedance magnitude of the right-hand side (i.e., with leak current plus I_h) is lower than the impedance magnitude of the left-hand side (i.e., with only leak current) for low frequencies (Fig. 9). The same conclusion could be achieved if one studied the limit $\omega \rightarrow 0$ as one can see in Fig. 8.

The addition of an I_h current decreases the impedance magnitude for low frequencies when compared with the case with only leak current. This implies that for $\omega > \omega_c$, I_h increases the impedance magnitude (Fig. 9). Moreover, if there is no crossing frequency, then adding I_h decreases the impedance magnitude for all frequencies.

Figures 2 and 9 show that two profiles $|Z_{L+h}|$ with different τ_h always cross each other. Thus, one can determine the influence of τ_h on the I_h attenuation of the impedance magnitude [Eq. (8)]. To do this, one can compare two impedance profiles having different τ_h values: $\tau_{h,1}$ and $\tau_{h,2}$, for example. Following the same reasoning as above for Eq. (11), we take

FIG. 8. Impedance at vanishing frequency is voltage-dependent. Impedance magnitude when $\omega = 0$ Hz.

FIG. 9. Impedance profiles. Impedance magnitude for V = -80 mV. The blue (solid) curve is the case with only a leak current. Orange (dotted and dashed), green (dashed), and red (solid with stars) curves correspond to the cases with leak current plus I_h with $\tau_h = 10,100$, and 1000 ms, respectively. The green (dashed) and red (solid with stars) curves cross at ≈ 25 Hz, the orange (dotted and dashed) and blue (solid) curves cross at ≈ 85 Hz, and the red (solid with stars) and blue (solid) curves never cross.

Eq. (8) and look for crossing points, i.e., points that obey $|Z(\tau_{h,1})| = |Z(\tau_{h,2})|$. This gives

$$\frac{B - D\omega^2 \tau_{h,1}}{1 + \omega^2 \tau_{h,1}^2} = \frac{B - D\omega^2 \tau_{h,2}}{1 + \omega^2 \tau_{h,2}^2},$$
(13)

and the crossing frequency (ω_c) can be determined as

$$\omega_c = \sqrt{\frac{B(\tau_{h,1} + \tau_{h,2}) + D}{D\tau_{h,1}\tau_{h,2}}}.$$
 (14)

The term inside the square root in Eq. (14) is always positive, implying the solution is always real and there is always a crossing point (only one) when two impedance profiles with different values of τ_h are compared.

Additionally, we can check which curve is on top of each other before and after ω_c is crossed, as before. If $\tau_{h,1} > \tau_{h,2}$ and $\omega < \sqrt{\frac{B}{D\tau_{h,1}}}$, both the left- and the right-hand sides of Eq. (13) are positive and the numerator of the term on the left-hand side is lower than the numerator of the term on the right-hand side. Also, the denominator of the term on the right-hand side. Thus, the value on the left-hand side is smaller than the value on the left-hand side is smaller than the value on the right-hand side. Thus, the value on the left-hand side is smaller than the value on the right-hand side. (13) into Eq. (8), the impedance magnitude of the left-hand side (i.e., with $\tau_{h,1}$) is higher than the impedance magnitude of the right-hand side (i.e., with $\tau_{h,2}$) for low frequencies (Fig. 9).

Therefore, we conclude that decreasing τ_h decreases the impedance magnitude for low frequencies. However, this implies that for $\omega > \omega_c$ (at high frequencies) the impedance behavior is inverted implying that a decrease in τ_h will increase the impedance magnitude. These observations are shown in the examples of Fig. 9.

E. Effect of instantaneous currents on resonance properties

The model used with leakage and I_h currents is useful to understand the resonance properties of the neuron. However, real neurons have other voltage-dependent subthreshold

currents besides the resonator currents. A special case that has been well characterized is the one when these currents have almost instantaneous activation [1,12,13]. The persistent sodium current (I_{NaP}) and the inwardly rectifying potassium current (I_{KIR}) are two types of currents with these features that are expressed in cortical and other types of neurons [12,13,16].

When $\tau = 0$, the impedance can be written as $Z = [g_L + G_i + i\omega C + g_h + G_h^{\text{Der}}/(1 + i\omega\tau_h)]^{-1}$, where G_i is the slope conductance of the instantaneous current. Then, if we rewrite this equation using $g'_L = g_L + G_i$ we notice that the main effect of an instantaneous current on the impedance is an increase or decrease of the leak conductance depending on the sign of G_i . For instance, in the subthreshold range G_{NaP} is negative [16] while G_{KIR} can be positive or negative. If G_i is positive g'_L will increase, and if G_i is negative g'_L will decrease. The predictions on changes on leak conductances is shown in Fig. 5.

IV. DISCUSSION

The objective of this paper was to determine the role of the derivative conductance and the current kinetics on the resonance properties of neurons with leakage and I_h currents. Our main finding is that the interplay between the derivative conductance and the current kinetics, represented by dA_h/dt , determines the existence of the resonance and the resonance frequency.

We found that increasing G_h^{Der} or τ_h increases the likelihood of occurrence of resonance. Resonance can arise even at a low value of each one of these parameters if the value of the other is high. For instance, neurons from the auditory brainstem display resonance created by a fast activated potassium current ($\tau_K < 1 \text{ ms}$) with a high conductance value ($\overline{g}_K = 190 \text{ nS}$) [18]. In contrast, CA1 pyramidal cells display resonance created by the slow I_h ($\tau_h > 10 \text{ ms}$ up to 1 s) with a low conductance value ($\overline{g}_h = 5 \text{ nS}$).

According to Hutcheon and Yarom [1], resonance emerges when a current with a positive slope conductance has an activation time constant bigger than the neuron's passive time constant. In this work we showed that the interplay between G_h^{Der} and τ_h expands the possibilities of existence of resonance beyond the restriction imposed by Hutcheon and Yarom. Since resonance can exist when $\tau_h \to 0$ if simultaneously $G_h^{\text{Der}} \to \infty$, then in principle resonance can exist even when $\tau_h < \tau_m$.

Our phase plane analysis in the A_h -V plane allowed us to conclude that resonance emerges when the initial variation of A_h is big but rapidly decreases when ω increases. This behavior is controlled by the interplay of two factors: G_h^{Der} , which is directly proportional to dA_h^{∞}/dV and determines the initial amplitude of ΔA_h , and τ_h , which determines the speed with which ΔA_h decreases when ω increases.

We also found that increasing G_h^{Der} increases the resonance frequency while increasing τ_h decreases the resonance frequency. This is in agreement with experimental studies: whereas neurons from the auditory brainstem with high G_K^{Der} and low τ_K display resonance with high-frequency values $(f_{\text{res}} = 260 \text{ Hz})$, CA1 pyramidal cells with low G_h^{Der} and high

 τ_h (i.e., $G_h^{\text{Der}} < G_K^{\text{Der}}$ and $\tau_h > \tau_K$) display resonance with low-frequency values ($f_{\text{res}} = 2-7 \text{ Hz}$) [18,23].

The resonance frequency is influenced by changes in g_L . Our results show that increasing g_L tenfold increases ω_{res} . Our results suggest that in CA1 pyramidal cells ω_{res} reflect mainly the biophysical properties of the I_h current, namely G_h^{Der} and τ_h , as reported elsewhere [5]. In addition, our results about the effect of G_h^{Der} , τ_h and g_L are in agreement with previous experimental, computational, and theoretical studies [11–13].

When we studied the case of addition of an instantaneous current to the neuron model with leakage and I_h currents, we observed an increase or decrease of the leak conductance for positive or negative values of the slope conductance (G_i), respectively. Clearly, this leads to an increase or decrease of the impedance magnitude and, finally, to a resonance amplification or attenuation [12–14,16]. However, this also leads to a novel effect since any change in the leak conductance is able to slightly change the probability of existence of resonance frequency. Thus, we predict that I_{NaP} and I_{KIR} are able to slightly modulate the probability of existence of resonance and change the resonance frequency in neurons with I_h , e.g., CA1 pyramidal cells [5,11–13].

In addition, given that the I_h current is spread along the dendritic tree and soma with different kinetics, our results can be generalized for resonance properties in dendritic compartments at different positions of a neuron's dendritic tree. It has been shown that resonance properties in the different locations are related to intrinsic properties [24,25]. Moreover, different resonant currents also can be expressed at varying locations along the dendritic arbor with distinct dynamics. Since the dynamics for some other resonant currents can be defined using the same mathematical representation as the one adopted here for the I_h [2], our results can be adapted to study the resonance properties caused by these other currents. However, a study of the combined effect of many resonant currents distributed along a neuron's dendritic tree can only be done via computer simulations.

Our results have important implications for experimental research. For instance, we observed that for low τ_h values the resonance mainly exists for membrane potentials close to the maximum value of G_h^{Der} . This means that if there is no resonance for the membrane potential value where G_h^{Der} is maximum, then we expect that there is no resonance for any other value of the membrane potential. In addition, the resonance frequency is highest for the membrane potential where G_h^{Der} is maximum. Since it is experimentally challenging to measure resonance peaks for low frequencies, we predict that the best membrane potential candidate for the detection of a resonance by I_h is the membrane potential where G_h^{Der} is maximal.

Furthermore, subthreshold resonance properties of neurons might be related to their information processing capabilities as they can influence the spiking characteristics of a neuron. For instance, the neuron's spiking response can follow the same frequency filtering selectivity of its subthreshold resonance [26,27], and this may influence network behavior [28]. Our results suggest a possible link between a measurable intrinsic neuronal property, namely its derivative conductance, and

the spike times, which are usually considered as a basis for estimating the neuron's information processing capacity [29,30].

Consistent with previous studies [12,13], our results show that the main effect of I_h is to attenuate the impedance at low frequencies and that decreasing τ_h enhances this attenuation. Unexpectedly, we also found that I_h amplifies the impedance at high frequencies.

Previous studies have used a theoretical approach to elucidate the mechanisms by which I_h generates resonance in neurons [11,27]. It has been challenging to relate these studies with experimental results. To fill this gap, we used a biophysical approach to study the mechanisms by which I_h generates resonance in neurons. Our approach is testable by means of the derivative conductance G_h^{Der} and the activation time constant τ_h , which have been experimentally recorded as reported in Refs. [5,16]. Therefore, we propose a verifiable hypothesis that the interplay between the derivative conductance and the PHYSICAL REVIEW E 97, 042408 (2018)

activation time constant is the main biophysical mechanism underlying resonance in neurons.

ACKNOWLEDGMENTS

R.F.O.P. and C.C.C. contributed equally to this work. This paper was developed within the scope of the IRTG 1740/TRP 2015/50122-0, funded by DFG/FAPESP. This work was partially supported by the Research, Innovation and Dissemination Center for Neuromathematics (FAPESP Grant No. 2013/07699-0). R.F.O.P. is supported by a FAPESP Ph.D. scholarship (Grant No. 2013/25667-8), C.C.C. is supported by a CAPES Ph.D. scholarship, V.L. is supported by a FAPESP MSc scholarship (Grant No. 2017/05874-0), and A.C.R. is partially supported by a CNPq fellowship (Grant No. 306251/2014-0). Fruitful discussions with O. Kinouchi are greatly acknowledged.

- [1] B. Hutcheon and Y. Yarom, Trends Neurosci. 23, 216 (2000).
- [2] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge University Press, Cambridge, UK, 2014).
- [3] L. Ge and X. D. Liu, Acta Pharm. Sinic. 37, 67 (2016).
- [4] R. Zemankovics, S. Káli, O. Paulsen, T. F. Freund, and N. Hájos, J. Physiol. 588, 2109 (2010).
- [5] K. A. Dougherty, D. A. Nicholson, L. Diaz, E. W. Buss, K. M. Neuman, D. M. Chetkovich, and D. Johnston, J. Neurophys. 109, 1940 (2013).
- [6] E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, Cambridge, MA, 2007).
- [7] C. C. Ceballos, S. Li, A. C. Roque, T. Tzounopoulos, and R. M. Leão, Front. Cell. Neurosci. 10, 249 (2016).
- [8] N. P. Poolos, J. B. Bullis, and M. K. Roth, J. Neurosci. 26, 7995 (2006).
- [9] I. van Welie, J. A. van Hooft and W. J. Wadman, Proc. Natl. Acad. Sci. U.S.A. 101, 5123 (2004).
- [10] R. Surges, T. M. Freiman, and T. J. Feuerstein, Epilepsia 44, 150 (2003).
- [11] H. G. Rotstein and F. Nadim, J. Comput. Neurosci. 37, 9 (2014).
- [12] B. Hutcheon, R. M. Miura, and E. Puil, J. Neurophysiol. 76, 698 (1996a).
- [13] B. Hutcheon, R. M. Miura, and E. Puil, J. Neurophysiol. 76, 683 (1996b).
- [14] C. C. Ceballos, A. C. Roque, and R. M. Leão, Biophys. Rev. 9, 827 (2017).
- [15] J. C. Magee, J. Neurosci. 18, 7613 (1998).

- [16] C. C. Ceballos, A. C. Roque, and R. M. Leao, Biophys. J. 113, 2207 (2017).
- [17] S. Káli and R. Zemankovics, J. Comp. Neurosci. 33, 257 (2012).
- [18] J. Mikiel-Hunter, V. Kotak, and J. Rinzel, PLoS Comput. Biol. 12, e1005166 (2016).
- [19] H. G. Rotstein, J. Math. Neurosci. 4, 11 (2014).
- [20] F. Tamagnini, J. Novelia, T. L. Kerrigan, J. T. Brown, K. Tsaneva-Atanasova, and A. D. Randall, Front. Cell. Neurosci. 9, 372 (2015).
- [21] E. Puil, B. Gimbarzevsky, and R. M. Miura, J. Neurophysiol. 55, 995 (1986).
- [22] C. Calì, T. K. Berger, M. Pignatelli, A. Carleton, H. Markram, and M. Giugliano, J. Comput. Neurosci. 24, 330 (2008).
- [23] H. Hu, K. Vervaeke, and J. F. Storm, J. Physiol. 545, 783 (2002).
- [24] E. Zhuchkova, M. W. Remme, and S. Schreiber, PloS One 8, e78908 (2013).
- [25] J. Laudanski, B. Torben-Nielsen, I. Segev, and S. Shamma, PLoS Comput. Biol. 10, e1003775 (2014).
- [26] S. Blankenburg, W. Wu, B. Lindner, and S. Schreiber, J. Comput. Neurosci. 39, 349 (2015).
- [27] M. J. E. Richardson, N. Brunel, and V. Hakim, J. Neurophysiol. 89, 2538 (2003).
- [28] Y. Chen, X. Li, H. G. Rotstein, and F. Nadim, J. Neurophysiol. 116, 1554 (2016).
- [29] S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek, Phys. Rev. Lett. 80, 197 (1998).
- [30] F. Rieke, *Spikes: Exploring the Neural Code* (MIT Press, Cambridge, MA, 1999).