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Interplay of activation kinetics and the derivative conductance determines
resonance properties of neurons
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In a neuron with hyperpolarization activated current (Ih), the correct input frequency leads to an enhancement
of the output response. This behavior is known as resonance and is well described by the neuronal impedance. In a
simple neuron model we derive equations for the neuron’s resonance and we link its frequency and existence with
the biophysical properties of Ih. For a small voltage change, the component of the ratio of current change to voltage
change (dI/dV ) due to the voltage-dependent conductance change (dg/dV ) is known as derivative conductance
(GDer

h ). We show that both GDer
h and the current activation kinetics (characterized by the activation time constant

τh) are mainly responsible for controlling the frequency and existence of resonance. The increment of both factors
(GDer

h and τh) greatly contributes to the appearance of resonance. We also demonstrate that resonance is voltage
dependent due to the voltage dependence of GDer

h . Our results have important implications and can be used to
predict and explain resonance properties of neurons with the Ih current.
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I. INTRODUCTION

When stimulated with oscillatory inputs, some neurons re-
spond in preferential frequencies. This resonance phenomenon
is demonstrated by an enhancement of the output amplitude.
The neuronal impedance is the measure normally used to
identify resonance [1]. It shows how much of the input
frequency is contained into the output. When resonance is
present, a prominent peak is identified at the impedance profile.

Generally speaking, the electrical properties of passive
membranes can be represented by an equivalent RC circuit
[2]. Leak currents, which are ideally instantaneous and non
voltage-dependent, are described by electrical resistances be-
tween intracellular and extracellular media, and capacitors
describe the charge separation between the two sides of the
bilipid membrane due to different ion concentrations on the
two sides. This type of electrical circuit works as a low pass
filter where an increase in the frequency of input leads to a
decrease in the output voltage.

In addition to this simple circuit, most neurons also express
voltage-dependent ion channels that carry voltage-dependent
currents. The presence of voltage-dependent currents drasti-
cally changes the equivalent electrical circuit, and in some
cases make it work as a bandpass filter where a resonance peak
arises. It is well known that the impedance profile at subthresh-
old voltages is mainly determined by the hyperpolarization
activated current (Ih) in several neuron types [3], e.g., the
pyramidal cells of the hippocampus [4,5]. The Ih current has
been called a “resonant current” elsewhere [6]. However, the
biophysical mechanisms underlying the resonance generation
by Ih in neurons remain unclear.
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Ih is a slowly noninactivating current with an activation
time constant (τh) that spans a range from tens of millisec-
onds to several seconds [4,5,7–10]. Ih is a voltage-dependent
current and neurons with Ih display an impedance magnitude
that is also voltage-dependent [4]. Interestingly, the simple
expression of Ih in a neuron’s membrane is not sufficient to
cause resonance. For instance, it has been observed that in the
presence of Ih there is no resonance for membrane potentials
too depolarized or too hyperpolarized, or when τh is too small
[11–13]. Furthermore, the resonance frequency also varies in
a voltage-dependent manner [4]. However, the source of this
voltage dependency has not yet been identified.

The Ih current can be expressed as the product of a conduc-
tance by a driving force, Ih = g(V,t)(V − E), where g(V,t) is
the so-called chord conductance and E is the reversal potential
[2,6]. Thus, for small voltage changes the variation of Ih with
respect to V is dIh/dV = g + (dg/dV )(V − E), where the
second term is the so-called derivative conductance (GDer

h )
[14]. While g reflects the passive changes of the current, GDer

h

reflects the changes in the current due to voltage-dependent
conductance changes (dg/dV ). Both conductances, g and
GDer

h , are voltage-dependent and contribute to the impedance
magnitude and the generation of neuronal resonance [11].
However, it is still unknown the relative contribution of each
conductance to the resonance mediated by Ih.

Experimentally, it is known that Ih attenuates slow neuronal
voltage changes, acting as a high-pass filter. This attenuation
reduces the impedance magnitude at low frequencies. The
strength of the attenuation is directly proportional to both Ih

conductances (chord and derivative) and inversely proportional
to the Ih activation kinetics [11].

The main goal of this paper is to determine the mechanisms
underlying the resonance induced by Ih in a simple neuron
model containing only leak and Ih currents. In our simulations
we used biophysical parameters to reproduce the impedance
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properties of CA1 pyramidal cells of the hippocampus. This
neuron displays resonance due to the Ih current and its time
constant is better fitted by the sum of two exponentials,
namely the fast and the slow time constants [4,5]. Whereas
the fast component has values close to tens of milliseconds,
the slow component has values from hundreds of milliseconds
to approximately 1 s [5,8–10].

We ask how the range of τh values contribute to the
impedance profiles, the existence of resonance, and the val-
ues of the resonance frequency. We determine the voltage-
dependent impedance profiles while changing the values of
both leak and Ih conductances as well as of τh. Our results show
that the derivative conductance and τh are the main factors in
the generation of resonance in the simulated neuron.

II. METHODS

A. Neuron model

In our neuron model, we consider a single compartment
where the membrane has its voltage described by

C
dV

dt
= −Ih − IL + I (t), (1)

where C is the membrane capacitance, IL is a leak current, Ih is
the hyperpolarization activated current, and I (t) is an external
current. The Ih current is modeled using the Hodgkin-Huxley
formalism obeying

Ih = ḡhAh(V,t)(V − Eh), (2)

with maximum conductance ḡh in units of nS and reversal
potential Eh = −30 mV.

The activation variable Ah is represented as

dAh(V,t)

dt
= A∞

h (V ) − Ah(V,t)

τh

, (3)

where τh is the activation time constant in units of ms and A∞
h

is the steady-state activation variable. A∞
h is voltage-dependent

and obeys the Boltzmann function

A∞
h = 1

1 + exp
(

V −V1/2

k

) , (4)

where V1/2 = −82 mV and k = 9 mV. Observe that V1/2

represents the voltage in which A∞
h = 0.5 and k is the slope of

the A∞
h . Both V1/2 and k are fitted experimentally [15].

The leak current is modeled following IL = gL(V − EL)
where gL is the maximum conductance in units of nS and the
reversal potential EL = −90 mV. The model parameters are
within the physiological range for a CA1 pyramidal cell in the
hippocampus [16].

B. Slope, derivative, and chord conductance

The Ih slope conductance (Gh), i.e., the slope of the steady-
state IV plot, of our model is obtained by differentiating Eq. (2)
with respect to V ,

Gh = dIh

dV
= ḡhA

∞
h︸ ︷︷ ︸

chord

+ ḡh(V − Eh)
dA∞

h

dV︸ ︷︷ ︸
derivative

, (5)

FIG. 1. Slope conductance of Ih and its properties. (a) Voltage
dependence of Ih slope conductance (Gh), chord conductance gh and
the derivative conductance GDer

h . (b) Voltage dependence of the steady
state activation variable A∞

h . (c) Voltage dependence of dA∞
h /dV .

where the first term is the chord conductance (gh) and the
second term is the derivative conductance (GDer

h ) [16]. More
specifically, the derivative of A∞

h (V ) in Eq. (5) can be obtained

differentiating Eq. (4) leading to dA∞
h

dV
= (A∞

h −1)A∞
h

k
. In the end,

we can write the derivative conductance as

GDer
h = ḡhA

∞
h

(
A∞

h − 1
)

k
(V − Eh). (6)

For the case of Ih, both the chord conductance and the
derivative conductance are positive.

Figure 1 shows a numerical example of Gh, gh, GDer
h , A∞

h ,

and dA∞
h

dV
obtained from Eqs. (4), (5), and (6). The chord

conductance is monotonically decreasing with the membrane
potential, since it is directly proportional to the steady state
activation variable A∞

h . It approximates asymptotically to
the maximum conductance at hyperpolarized voltages and
vanishes at depolarized voltages.

Unlike the chord conductance, GDer
h has a nonmonotonic

behavior and vanishes in two situations: when A∞
h → 0 and

A∞
h → 1. Since GDer

h is directly proportional to dA∞
h

dV
and

the driving force [see Eq. (6)], then GDer
h can only have

nonvanishing values within the region where the activation
changes in a voltage-dependent manner and for membrane
potentials far from the reversal potential. This means that
GDer

h would contribute significantly for A∞
h values near to 0.5

(V = V1/2 = −82 mV). In fact,GDer
h has a peak with maximum

value near −82 mV [Fig. 1(a)]. Gh reaches its asymptotic value
for membrane potentials above −40 mV and below −130 mV.

Ih has exclusively positive slope conductance for hyperpo-
larized membrane potentials [see Fig. 1(a) and Eqs. (5) and
(6)].
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C. Impedance

The complex impedance is expressed as [17]

Z = 1

gL + iωC + gh + GDer
h

1+iωτh

, (7)

where ω = 2πf with f being the stimulation frequency in Hz.
We write the impedance magnitude as

|Z| = (ZZ∗)1/2 =
(

A + ω2C2 + B − Dω2τh

1 + ω2τ 2
h

)−1/2

, (8)

where A = (gL + gh)2, B = 2GDer
h (gL + gh) + (GDer

h )2 and
D = 2GDer

h C. Notice that A, B, and D are positive terms. A

depends only on the chord conductance, B depends on both the
chord and the derivative conductances, and D depends only on
the derivative conductance.

D. Phase plane analysis

We used phase plane analysis with variables Ah and V

to study how activation of Ih influences voltage responses
using the stimulus as explained in Sec. II E. This has been
successfully done elsewhere [18,19]. We plotted V − Ah

trajectories that represent one cycle of response to a sinusoidal
stimulus at a particular frequency and stimulus amplitude.
The V nullcline and Ah nullcline are the curves along which
dV/dt = 0 and dAh/dt = 0, respectively. For the V nullcline
we solved Eq. (1) and for the gating dynamics we obtained the
Ah nullcline from Eq. (3).

E. Simulations

Simulations were done in NEURON using the Python
interface. The simulation time step was 0.025 ms and the initial
membrane potential was −70 mV. The cell specific capacitance
is set at 1 μF/cm2. If not specified, we use ḡh = gL = 5 nS.
The model has the geometry of a cylinder with 70 μm of
diameter and 70 μm of length, which is chosen to condense the
soma and the whole dendritic tree into a single compartment in
a manner that preserves the average capacitance of a pyramidal
cell (C ≈ 150 pF) [20]. Moreover, in NEURON all units
for conductance are declared in specific units and internally
transformed to nonspecific, i.e., [nS/cm2] to [nS]. Here we
only state the nonspecific units but one can simply transform
to specific ones by dividing all our units by the area of the
cylinder.

Sinusoidal currents were injected using the impedance am-
plitude profile (ZAP) protocol, which consists of a sinusoidal
current with increasing frequency [21]. Here we used a version
of this protocol with linearly increasing frequency [22] so that
we could evenly study both low and high frequencies,

I = A sin[π (f (t) − Fstart)(t − tstart)], (9)

where f (t) = Fstart + (Fstop − Fstart)(t − tstart)/(tstop − tstart),
Fstart (Fstop) is the initial (final) frequency value of the ZAP
current, and tstart (tstop) is the initial (final) time boundary of
the ZAP current.

To obtain data from the low stimulation frequencies, we
applied a long protocol with duration of 600 s. The currents
had constant amplitude of 10 pA and the frequency f increased

linearly in time from 0.001 to 20 Hz. To maintain the membrane
potential at different values, constant currents were injected.

The resulting voltage response V (t) was measured and the
frequency-dependent impedance profile Z(ω) was calculated
as the difference of the absolute value of the amplitude of the
voltage peaks and the fixed resting potential. Such measure was
normalized by the amplitude of the injected sinusoidal current.
The resonance frequency ωres is defined as the frequency
of injected current that maximized Z(ω). Similarly, we also
measure the frequency-dependent activation variable profile
�Ah as the difference between the actual activation variable
and its initial value.

III. RESULTS

A. Existence of resonance and its voltage dependency

To determine analytically the existence properties of
resonance, we will obtain a mathematical expression for
the frequency at the maximum impedance magnitude.
Since resonance occurs when there is a maximum in
the impedance magnitude, then by making d|Z|

dω
= 0 =

(−|Z|3
2 )(2ωC2 − 2ωτh(D+Bτh)

(1+ω2τ 2
h )2 ) for some ωres we obtain

ωres =
√√

τh(D+Bτh)
C

− 1

τh

. (10)

Equation (10) shows that there is resonance only when ωres

is real, i.e., when τh(D + Bτh) > C2. Otherwise, there is no
resonance. Thus, resonance is hampered when τh, B, or D are
small.

The expression for the impedance magnitude, Eq. (8),
implies that resonance is not present for all voltage values but
is restricted to a certain range depending on τh. This suggests
that both V and τh influence the occurrence of resonance.

Figures 2(a)–2(e) show examples of impedance profiles
when varying τh and V . For τh = 10 ms there is no resonance
for all membrane potentials considered. For τh = 100 ms, there
is clear resonance only at V = −80 and V = −100 mV. For
τh = 1000 ms resonance is present for all membrane potential,
except for V = −140 mV.

Figure 2(g) shows the parameter regions with resonance
in the (τh, V ) diagram when gh is varied. The (i) region in
blue corresponds to absence of resonance for all values of
gh. Notice that below τh ≈ 5 ms there is no resonance for all
membrane potentials. The (ii) region in green and above has
resonance when gh = 10 nS; the (ii) region in light red and
above has resonance when gh = 5 nS; and the (iv) region in
dark red has resonance when gh = 1 nS. Above τh = 5 ms it
is possible to have resonance, and the bigger gh the larger the
area where resonance can occur. Notice also that increasing τh

increases the membrane potential range with resonance.
This voltage-dependent behavior might be related to the

voltage dependence of the chord conductance or the derivative
conductance that affects the terms B and D in Eq. (10). The
chord conductance increases monotonically with hyperpolar-
ization. However, the resonance behavior is nonmonotonic,
suggesting that the chord conductance has little influence on
it. The derivative conductance has a nonmonotonic behavior,
as shown in Fig. 2(f), which matches the behavior of the
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FIG. 2. Impedance dependence of V and τh. (a–e) Impedance profiles for the passive case (only leak, ZL) and for the case of leak plus Ih

(ZL+h) for different τh values (10, 100, and 1000 ms) and for different membrane potentials from V = −60 to V = −140 mV, which is the full
range of Ih activation. Notice that resonance peaks are not present for all potentials. (f) Ih derivative conductance (GDer

h ). The arrows indicate
the membrane potential used in the impedance profiles in (a–e). (g) Regions where there is resonance. In blue (i) there is no resonance; in (ii)
green and above there is resonance for gh = 10 nS; in light red (iii) and above, there is resonance for gh = 5 nS; and in dark red (iv) there is
resonance for gh = 1 nS.

resonance. This suggests that the voltage-dependent behavior
of the resonance is mainly due to the derivative conductance.

Below we list some evidence that the voltage dependence of
the resonance is due mainly to the GDer

h voltage dependence:
(1) To influence the impedance profile by means of τh, GDer

h

must be nonzero. This can be seen from Eq. (7): if GDer
h = 0,

the impedance is reduced to Z = (gL + iωC + gh)−1, where
τh disappears.

(2) Even if GDer
h = 0, the impedance remains voltage-

dependent due to gh. However, there is no resonance, since
when GDer

h = 0, ωres =
√−1
τh

. Phenomenologically, a nonzero

GDer
h means that the activation variable Ah is able to vary, since

GDer
h is directly proportional to dA∞

h /dV . Thus, the existence
of resonance requires a variation of Ah in time.

(3) When gh = 0, Eq. (7) still has a similar form, but
with the leak conductance reduced, i.e., setting gh = 0 is
equivalent to g′

L = gL + gh. Then, the system is still able to
present resonance. Also, when gh = 0, the term B is reduced to
B = 2GDer

h gL + (GDer
h )2, but still has a nonzero value, which

means that a resonance frequency ωres can exist.
Concluding, in spite of the chord conductance gh being

able to influence resonance, the major responsible for the
occurrence of resonance is the derivative conductance GDer

h

and not gh.
We also observe that low values of τh or GDer

h abolish
resonance. This can be understood as follows: when τh is
too small, i.e., when ωτh � 1, the impedance magnitude
is approximately given by (A + B + ω2C2)−1/2 = [(gL +
gh + GDer

h )2 + ω2C2]−1/2 = [(gL + Gh)2 + ω2C2]−1/2 =
(g′2

L + ω2C2)−1/2. This is equivalent to the impedance of a
neuron with only a leak current with a conductance value
g′

L = gL + Gh.
In the case where GDer

h is too small, B ≈ D ≈ 0 in
Eq. (8) and the impedance magnitude may be approximated

by (A + ω2C2)−1/2 = [(gL + gh)2 + ω2C2]−1/2 = (g′2
L +

ω2C2)−1/2. This is equivalent to the impedance of a neuron
with only a leak current where the conductance value
g′

L = gL + gh. And when τh or GDer
h have low values, the

impedance profile is equivalent to the one of an RC circuit,
i.e., a low-pass filter without resonance.

B. Phase plane analysis

The phase plane analysis in the Ah − V diagram is shown
in Figs. 3 and 4. In the case of Fig. 3, we plot the trajectories
fixing the membrane potential with an external constant current
so that the steady voltage is V = −120, − 80, and −40 mV
(indicated by horizontal arrows in the figure). In Fig. 3(a) we
plot Ah(V ), which stays in three different regions of the curve
depending on the voltage. These regions correspond to the
cases where Ih is fully activated, half-activated and almost
deactivated. Only the case with V = −80 mV displays reso-
nance. In addition, we plot the trajectories for three different
frequencies: (ω = ωres), a lower frequency (ω < ωres), and a
higher frequency (ω > ωres). In Fig. 3 we fixed the value of
τh = 50 ms. For low frequencies, regardless of the voltage
value, the trajectory follows the Ah-nullcine, which is depicted
in green (light gray) in the plots of low-frequencies [Figs. 3(b),
3(e) and 3(h)]. This means that Ih is able to track the slow
changes of the voltage, being fully activated and deactivated
during the full cycle.

In contrast, for high frequencies, again regardless of the
voltage value, the trajectory is mainly horizontal, which means
that Ih is not able to track the fast changes of the voltage. Then
the activation variable Ah changes slightly.

In regard to the voltage, when it is too depolarized or
hyperpolarized (V = −40 mV and V = −120 mV, respec-
tively), the trajectories are mainly horizontal, regardless of the
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FIG. 3. Evolution of trajectories for different membrane voltages. (a) Voltage dependence of the steady-state activation variable. Horizontal
arrows indicate which region is studied on the plots to the right. (b–j) phase plots of activation variable vs membrane potential of the trajectories
for different membrane potentials: (b–d) V = −120 mV, (e–g) V = −80 mV, (h–j) V = −40 mV and for different stimulation frequencies
(ω): (b, e, h) low frequency; (e, f, i) resonance frequency ωres; and (d, g, j) high frequency. The green (light gray) line represents the slope of
dA∞

h /dV ∝ GDer
h . In all panels τh = 50 ms

frequency value. In contrast, for V = −80 mV, GDer
h is close

to its maximum, the trajectory starts oblique and thin, but by
increasing the frequency it gets more horizontal and round.

In Fig. 4 we fixed the voltage at −90mV and vary τh to 5 and
50 ms. Only for the case of τh = 50 ms [Figs. 4(a)–4(c)] there
is resonance. One can observe the same tendencies as in Fig. 3.
Interestingly, for the case with τh = 5 ms, the trajectory is kept
oblique for the high frequency, which means that Ih is still able
to track the fast changes of the voltage [Figs. 4(d)–4(f)].

Notice that for high τh, the trajectory starts oblique and
thin, but increasing the frequency makes the trajectory more

horizontal and round, and this occurs more rapidly than in the
case of low τh.

In summary, there are two different scenarios where the
existence of resonance is hampered. First, when the trajectory
starts horizontal for low ω and does not change regardless of
the ω value, and, second, when the trajectory starts oblique for
low ω and also does not change regardless of the evolution of
ω. The former situation is caused by low GDer

h values, i.e., low
dA∞

h /dV values. The latter situation is caused by low τh values
that keep dAh/dV invariant to changes in ω. This allows us
to conclude that resonance emerges for trajectories that start
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FIG. 4. Evolution of trajectories for different τh. Phase plots of activation variable versus membrane potential of the trajectories for
different activation time constant: (a–c) τh = 50, and (d–f) τh = 5 ms. There are different stimulation frequencies (ω): (a, d) low frequency,
(b, e) resonance frequency ωres, and (c, f) high frequency. The membrane potential was fixed at V = −90 mV. Green (light gray) line slope
represents the dA∞

h /dV ∝ GDer
h .
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FIG. 5. Resonance frequency dependence with τh and V . (a–c) Resonance frequency (ωres) for different values of τh and V . (d–f) Resonance
frequency (ωres) for different values of τh and gL. (a, d) ḡh = 1 nS, (b, e) ḡh = 5 nS, and (c, f) ḡh = 10 nS. In all cases V = −85 mV.

oblique (i.e., with high dA∞
h /dV values) and thin but rapidly

become horizontal and round (due to high τh values) with the
variation of ω.

C. Resonance frequency and its voltage dependency

In the previous sections we determined the main biophys-
ical parameters of Ih underlying the existence of resonance.
In this section we will determine how the parameters gh,
gL, τh, and V affect the value of the resonance frequency
(ωres) using Eq. (10). Clearly, increasing B or D increases
the value of ωres, while increasing τh decreases the value
of ωres. Since B increases when GDer

h , gh or gL increase,
and since D increases when GDer

h increases, we conclude
that the increase of any type of conductance (i.e., leak, Ih

chord or Ih derivative conductance) increases the value of
the resonance frequency. However, the contribution of gh or
gL to resonance is modulated by GDer

h [see the first term
in B = 2GDer

h (gL + gh) + (GDer
h )2]. This is reflected in the

numerical values as shown in Figs. 5(a)–5(c). Figure 5 shows
the resonance frequency for different values of τh and V ,
when gh is varied. Notice that the resonance frequency has
a voltage dependency with a maximum value near −90mV
and low values for depolarized and hyperpolarized membrane
potentials, resembling the voltage-dependent behavior of GDer

h .
This trend strongly suggests that GDer

h is the main factor
determining the voltage dependency of ωres.

In Figs. 5(d)–5(f) we show the value of the resonance fre-
quency when the membrane potential is fixed at V = −85 mV,
which is a membrane potential close to the highest resonance
frequency [see Figs. 5(a)–5(c)]. Notice that changing the leak
conductance from 1 to 10 nS increases the resonance frequency
(≈10 Hz), but the change is smaller than that observed when
the Ih conductance is changed in the same proportion.

But what is the mechanism by which Ih determines the
resonance frequency? Based on the results presented above,

we propose that it is the magnitude of the change of the
activation variable in time dAh/dt that determines the reso-
nance frequency. This would explain why increasing GDer

h in-
creases the resonance frequency while increasing τh decreases
the frequency resonance, as suggested by Eq. (10).

To verify this hypothesis, we analyzed the impedance pro-
files obtained from computational simulations where ZAP cur-
rents where injected into a single compartment neuron model
with a leak current and Ih. Figure 6(c) shows the variation
of the activation variable for different membrane potentials,
sweeping the Ih activation range. Note that the maximum
variation of Ah is observed for V = −80 mV [see Fig. 6(a)],
i.e., the membrane potential for the maximum GDer

h . Moreover,
�Ah decreases monotonically with ω. Figure 6(d) shows the
variation of the activation variable for different τh values.
Notice that the initial �Ah is the same for all τh values but
each curve evolves differently, where the curve with the lower
τh (5 ms) has a slower decay with the frequency.

It is well known that the resonance frequency is related to
the frequency-dependent attenuation due to Ih activation. Ih

acts as a high pass filter, attenuating strongly slow voltage
changes but not affecting fast voltage changes. Our results
suggest that GDer

h and τh are the main factors that influence
this attenuation. Our hypothesis is that GDer

h and τh determine
the variation of the activation variable in time (dAh/dt), and
such variation determines the magnitude of the attenuation due
to Ih. If this is true, then the increase of dAh/dt should increase
the attenuation of the voltage changes by Ih and, consequently,
increase the resonance frequency.

But how τh determines the resonance frequency? The
change of Ah in time is not instantaneous but obeys some
dynamics which is determined by τh [Fig. 7(a)]. The slower the
τh the smaller the change of Ah in time; i.e., dAh/dt is smaller
for bigger τh. Increasing τh implies a decrease in dAh/dt .
Such decrease leads to a decrease of the Ih attenuation, thus
decreasing the resonance frequency. In agreement with this,
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FIG. 6. Impedance profiles and their dependency with V and τh.
(a) Impedance profiles for different membrane potentials, and (b) for
different τh. (c, d) Variation of Ah. In (a, c) τh = 50 ms. In (b, d) we
fixed V = −90mV and varied τh (5, 50, and 100 ms).

notice that decreasing τh decreases the impedance magnitude
[Fig. 6(b)]; i.e., decreasing τh enhances the Ih attenuation.

Figure 6(d) shows that Ah with slower τh decays faster than
Ah with faster τh, and this tendency is reflected by ωres, where
Ah with faster decay has an impedance profile with lower ωres.

But how GDer
h determines the resonance frequency? GDer

h is
directly proportional to dA∞

h /dV , i.e. the maximum variation
of the activation variable for a change of the voltage. Since
the magnitude of dAh/dt is directly proportional to dA∞

h /dV ,
then increasing GDer

h implies an increase in dAh/dt due to
an increase in dA∞

h /dV [Fig. 7(b)]. This increase in dAh/dt

leads to an increase of the Ih attenuation, thus increasing
the resonance frequency. Accordingly, this tendency can be
observed in Fig. 6(a) at ω = 0. Notice that the impedance
profiles with higher attenuation correspond to higher �Ah

values.
More specifically, when ω → 0, the impedance defined in

Eq. (8) becomes |Z| = (A + B)−1/2. By rearranging the terms
we have that lim

ω→0
|Z| = (gL + Gh)−1. This result demonstrates

that the impedance magnitude when ω → 0 is independent of
τh, but voltage-dependent following the Ih slope conductance
(Gh). In the same equation, one also see that the increase of
gL or ḡh decreases the impedance magnitude when ω → 0.

Consistent with our hypotheses, variations of τh change
the variation of Ah for high frequencies [see Fig. 6(d)] in
a manner in which increasing τh decreases the variation
of Ah.

Summarizing, we conclude that the main factors that deter-
mine the resonance frequency are GDer

h and τh acting on the
change of the activation variable in time (dAh/dt).

FIG. 7. Schematic diagram explaining the mechanism by which
the interaction between frequency and activation variable time evo-
lution determines the amount of the change of the activation variable
�Ah. The maximum amplitude of the change of the activation variable
is determined by dA∞

h /dV , while the time evolution is determined by
τh. (a) For the same value of dA∞

h /dV , �Ah is bigger for the faster
τh values. (b) For the same τh, �Ah is bigger for the bigger dA∞

h /dV

values.

D. Impedance attenuation by Ih at low frequencies

It is well known that Ih behaves as a high pass filter,
attenuating slow changes of the voltage. Figures 2(a)–2(e)
and 6 show that the variation of the impedance profile with
Ih displays a band-pass behavior due to an attenuation of the
impedance magnitude at low frequencies, and this attenuation
is also influenced by τh. This is clearly observed in Figs. 2(a)–
2(e) when comparing the impedance magnitude of a neuron
model with only leak (ZL) current with a neuron model with
leak plus Ih (ZL+h) current. Accordingly, one can observe
in all ZL+h curves the same attenuation at low frequencies.
At first, this attenuation seems to cover the whole range of
frequencies. However, when we zoom in we observe that
depending on the τh value some impedance curves for the ZL+h

case are unexpectedly amplified at high frequencies, when
compared with the ZL case. Thus, to determine the behavior
of the Ih attenuation on the impedance magnitude [see Eq. (8)]
for different stimulation frequencies, we will compare the
impedance profiles of the passive case (i.e., only leak current)
and the case with Ih. Our interest is to determine the regions
where Ih attenuates the impedance magnitude and the regions
where Ih amplifies it. Thus, by making |ZL| = |ZL+h| we will
be able to study the existence of crossing frequencies (ωc), and
describe the regions with attenuation by comparing the curves.

In this regard, we obtain

(g2
L + ω2C2)−1/2 =

(
A + ω2C2 + B − Dω2τh

1 + ω2τ 2
h

)−1/2

,

(11)
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and with a simple rearrangement of terms we isolate the
crossing frequency ωc:

ωc =
√

B + E

Dτh − Eτ 2
h

, (12)

where E = 2gLgh + g2
h. Note that the solution in Eq. (12) has

some constraints due to a subtraction in the denominator as
well as the existence of a square root. If the solution is real (i.e.,
when D > Eτh), then the curves cross once at some frequency
(ωc); otherwise, the curves do not cross. Examples of both
cases are shown in Fig. 9. As a general trend, one observes that
the profiles |ZL| and |ZL+h| can cross or not, but two profiles
|ZL+h| with different τh always cross each other (see below).

Since there cannot be more than one crossing point, one
curve will be above the other on one side of ωc and the curves
switch position on the other side of ωc. Then, if one evaluates
any values of the curves on one side of ωc and checks their
relative positions, one can infer all the other relative positions
with respect to ωc.

Using this approach, we will demonstrate that Ih always
attenuates the impedance magnitude at low frequencies but

not always for high frequencies. We know that for ω <
√

B
Dτh

,

both the left-hand and the right-hand sides of Eq. (11) are
positive and the sum of the terms inside the square root is
higher on the right-hand side than on the left-hand side. As
a consequence of this, the impedance magnitude of the right-
hand side (i.e., with leak current plus Ih) is lower than the
impedance magnitude of the left-hand side (i.e., with only leak
current) for low frequencies (Fig. 9). The same conclusion
could be achieved if one studied the limit ω → 0 as one can
see in Fig. 8.

The addition of an Ih current decreases the impedance
magnitude for low frequencies when compared with the case
with only leak current. This implies that for ω > ωc, Ih

increases the impedance magnitude (Fig. 9). Moreover, if
there is no crossing frequency, then adding Ih decreases the
impedance magnitude for all frequencies.

Figures 2 and 9 show that two profiles |ZL+h| with different
τh always cross each other. Thus, one can determine the
influence of τh on the Ih attenuation of the impedance mag-
nitude [Eq. (8)]. To do this, one can compare two impedance
profiles having different τh values: τh,1 and τh,2, for example.
Following the same reasoning as above for Eq. (11), we take

FIG. 8. Impedance at vanishing frequency is voltage-dependent.
Impedance magnitude when ω = 0 Hz.

FIG. 9. Impedance profiles. Impedance magnitude for V = −80
mV. The blue (solid) curve is the case with only a leak current. Orange
(dotted and dashed), green (dashed), and red (solid with stars) curves
correspond to the cases with leak current plus Ih with τh = 10,100,
and 1000 ms, respectively. The green (dashed) and red (solid with
stars) curves cross at ≈25 Hz, the orange (dotted and dashed) and
blue (solid) curves cross at ≈85 Hz, and the red (solid with stars) and
blue (solid) curves never cross.

Eq. (8) and look for crossing points, i.e., points that obey
|Z(τh,1)| = |Z(τh,2)|. This gives

B − Dω2τh,1

1 + ω2τ 2
h,1

= B − Dω2τh,2

1 + ω2τ 2
h,2

, (13)

and the crossing frequency (ωc) can be determined as

ωc =
√

B(τh,1 + τh,2) + D

Dτh,1τh,2
. (14)

The term inside the square root in Eq. (14) is always positive,
implying the solution is always real and there is always a
crossing point (only one) when two impedance profiles with
different values of τh are compared.

Additionally, we can check which curve is on top of each
other before and after ωc is crossed, as before. If τh,1 > τh,2 and

ω <
√

B
Dτh,1

, both the left- and the right-hand sides of Eq. (13)

are positive and the numerator of the term on the left-hand side
is lower than the numerator of the term on the right-hand side.
Also, the denominator of the term on the left-hand side is higher
than the denominator of the term on the right-hand side. Thus,
the value on the left-hand side is smaller than the value on the
right-hand side. As a result, substituting the terms in Eq. (13)
into Eq. (8), the impedance magnitude of the left-hand side
(i.e., with τh,1) is higher than the impedance magnitude of the
right-hand side (i.e., with τh,2) for low frequencies (Fig. 9).

Therefore, we conclude that decreasing τh decreases the
impedance magnitude for low frequencies. However, this
implies that for ω > ωc (at high frequencies) the impedance
behavior is inverted implying that a decrease in τh will increase
the impedance magnitude. These observations are shown in the
examples of Fig. 9.

E. Effect of instantaneous currents on resonance properties

The model used with leakage and Ih currents is useful
to understand the resonance properties of the neuron. How-
ever, real neurons have other voltage-dependent subthreshold
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currents besides the resonator currents. A special case that
has been well characterized is the one when these currents
have almost instantaneous activation [1,12,13]. The persistent
sodium current (INaP) and the inwardly rectifying potassium
current (IKIR) are two types of currents with these features
that are expressed in cortical and other types of neurons
[12,13,16].

When τ = 0, the impedance can be written as Z = [gL +
Gi + iωC + gh + GDer

h /(1 + iωτh)]−1, where Gi is the slope
conductance of the instantaneous current. Then, if we rewrite
this equation using g′

L = gL + Gi we notice that the main
effect of an instantaneous current on the impedance is an
increase or decrease of the leak conductance depending on
the sign of Gi . For instance, in the subthreshold range GNaP is
negative [16] while GKIR can be positive or negative. If Gi is
positive g′

L will increase, and if Gi is negative g′
L will decrease.

The predictions on changes on leak conductances is shown in
Fig. 5.

IV. DISCUSSION

The objective of this paper was to determine the role of
the derivative conductance and the current kinetics on the
resonance properties of neurons with leakage and Ih currents.
Our main finding is that the interplay between the derivative
conductance and the current kinetics, represented by dAh/dt ,
determines the existence of the resonance and the resonance
frequency.

We found that increasing GDer
h or τh increases the likelihood

of occurrence of resonance. Resonance can arise even at a low
value of each one of these parameters if the value of the other is
high. For instance, neurons from the auditory brainstem display
resonance created by a fast activated potassium current (τK <

1 ms) with a high conductance value (gK = 190 nS) [18]. In
contrast, CA1 pyramidal cells display resonance created by the
slow Ih (τh > 10 ms up to 1 s) with a low conductance value
(gh = 5 nS).

According to Hutcheon and Yarom [1], resonance emerges
when a current with a positive slope conductance has an
activation time constant bigger than the neuron’s passive time
constant. In this work we showed that the interplay between
GDer

h and τh expands the possibilities of existence of resonance
beyond the restriction imposed by Hutcheon and Yarom.
Since resonance can exist when τh → 0 if simultaneously
GDer

h → ∞, then in principle resonance can exist even when
τh < τm.

Our phase plane analysis in the Ah-V plane allowed us to
conclude that resonance emerges when the initial variation of
Ah is big but rapidly decreases when ω increases. This behavior
is controlled by the interplay of two factors: GDer

h , which is
directly proportional to dA∞

h /dV and determines the initial
amplitude of �Ah, and τh, which determines the speed with
which �Ah decreases when ω increases.

We also found that increasing GDer
h increases the reso-

nance frequency while increasing τh decreases the resonance
frequency. This is in agreement with experimental studies:
whereas neurons from the auditory brainstem with high GDer

K

and low τK display resonance with high-frequency values
(fres = 260 Hz), CA1 pyramidal cells with low GDer

h and high

τh (i.e., GDer
h < GDer

K and τh > τK ) display resonance with
low-frequency values (fres = 2–7 Hz) [18,23].

The resonance frequency is influenced by changes in gL.
Our results show that increasing gL tenfold increases ωres.
Our results suggest that in CA1 pyramidal cells ωres reflect
mainly the biophysical properties of the Ih current, namely
GDer

h and τh, as reported elsewhere [5]. In addition, our results
about the effect of GDer

h , τh and gL are in agreement with
previous experimental, computational, and theoretical studies
[11–13].

When we studied the case of addition of an instantaneous
current to the neuron model with leakage and Ih currents, we
observed an increase or decrease of the leak conductance for
positive or negative values of the slope conductance (Gi),
respectively. Clearly, this leads to an increase or decrease
of the impedance magnitude and, finally, to a resonance
amplification or attenuation [12–14,16]. However, this also
leads to a novel effect since any change in the leak conductance
is able to slightly change the probability of existence of
resonance and the corresponding resonance frequency. Thus,
we predict that INaP and IKIR are able to slightly modulate the
probability of existence of resonance and change the resonance
frequency in neurons with Ih, e.g., CA1 pyramidal cells
[5,11–13].

In addition, given that the Ih current is spread along the
dendritic tree and soma with different kinetics, our results can
be generalized for resonance properties in dendritic compart-
ments at different positions of a neuron’s dendritic tree. It has
been shown that resonance properties in the different locations
are related to intrinsic properties [24,25]. Moreover, different
resonant currents also can be expressed at varying locations
along the dendritic arbor with distinct dynamics. Since the
dynamics for some other resonant currents can be defined using
the same mathematical representation as the one adopted here
for the Ih [2], our results can be adapted to study the resonance
properties caused by these other currents. However, a study
of the combined effect of many resonant currents distributed
along a neuron’s dendritic tree can only be done via computer
simulations.

Our results have important implications for experimental
research. For instance, we observed that for low τh values
the resonance mainly exists for membrane potentials close
to the maximum value of GDer

h . This means that if there is
no resonance for the membrane potential value where GDer

h

is maximum, then we expect that there is no resonance for
any other value of the membrane potential. In addition, the
resonance frequency is highest for the membrane potential
where GDer

h is maximum. Since it is experimentally challenging
to measure resonance peaks for low frequencies, we predict
that the best membrane potential candidate for the detection
of a resonance by Ih is the membrane potential where GDer

h is
maximal.

Furthermore, subthreshold resonance properties of neurons
might be related to their information processing capabilities as
they can influence the spiking characteristics of a neuron. For
instance, the neuron’s spiking response can follow the same
frequency filtering selectivity of its subthreshold resonance
[26,27], and this may influence network behavior [28]. Our
results suggest a possible link between a measurable intrinsic
neuronal property, namely its derivative conductance, and
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the spike times, which are usually considered as a basis
for estimating the neuron’s information processing capacity
[29,30].

Consistent with previous studies [12,13], our results show
that the main effect of Ih is to attenuate the impedance at low
frequencies and that decreasing τh enhances this attenuation.
Unexpectedly, we also found that Ih amplifies the impedance
at high frequencies.

Previous studies have used a theoretical approach to elu-
cidate the mechanisms by which Ih generates resonance in
neurons [11,27]. It has been challenging to relate these studies
with experimental results. To fill this gap, we used a biophysical
approach to study the mechanisms by which Ih generates
resonance in neurons. Our approach is testable by means of the
derivative conductance GDer

h and the activation time constant
τh, which have been experimentally recorded as reported in
Refs. [5,16]. Therefore, we propose a verifiable hypothesis
that the interplay between the derivative conductance and the

activation time constant is the main biophysical mechanism
underlying resonance in neurons.
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