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Competition is the main driver of population dynamics, which shapes the genetic composition of populations
and the assembly of ecological communities. Neutral models assume that all the individuals are equivalent and that
the dynamics is governed by demographic (shot) noise, with a steady state species abundance distribution (SAD)
that reflects a mutation-extinction equilibrium. Recently, many empirical and theoretical studies emphasized
the importance of environmental variations that affect coherently the relative fitness of entire populations. Here
we consider two generic time-averaged neutral models; in both the relative fitness of each species fluctuates
independently in time but its mean is zero. The first (model A) describes a system with local competition and linear
fitness dependence of the birth-death rates, while in the second (model B) the competition is global and the fitness
dependence is nonlinear. Due to this nonlinearity, model B admits a noise-induced stabilization mechanism that
facilitates the invasion of new mutants. A self-consistent mean-field approach is used to reduce the multispecies
problem to two-species dynamics, and the large-N asymptotics of the emerging set of Fokker-Planck equations
is presented and solved. Our analytic expressions are shown to fit the SADs obtained from extensive Monte Carlo
simulations and from numerical solutions of the corresponding master equations.
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I. INTRODUCTION

Neutral models play a central role in the theoretical analysis
of population genetics and community ecology [1–3]. These
models neglect the details of interspecific interactions and
emphasize the role of stochastic processes as key drivers
of abundance variation and species diversity. Deterministic
factors (like selection, niche partitioning, and species specific
interactions) are not included in the model. Instead, one consid-
ers a (usually, zero sum) competition between types (species,
strains, alleles, etc.) where all the individuals are functionally
equivalent (“neutral”). The structure of a community, i.e., the
commonness or rarity of different species, reflects the inherent
stochasticity of the underlying birth-death process, while the
corresponding birth-death rates are species independent and
are fixed in time.

A two-species competition of this kind is described by the
classical voter model [4] that leads, inevitably, to the extinction
of one of the species and to fixation by the other. When the
model allows for the generation of new types, via mutation
or speciation events, the system may reach a steady state
that reflects the balance between mutations and extinctions.
Quantities like the species abundance distribution (SAD, also
known as the site frequency spectrum) and the mean species
richness (SR) may then be calculated as a function of the model
parameters [3,5]. The ability of these SADs to account for
empirically observed species abundance distributions in many
high-diversity assemblages [6–8] is considered as the main
success of the neutral model of biodiversity.

Despite their great influence, some aspects of the traditional
neutral models are problematic. In particular, these models
assume that the dynamics is driven by a stationary birth-death
process. Under this assumption, variations in abundance of
a species reflect the cumulative effect of the uncorrelated

reproductive success of all its individuals. In such a binomial
process both the per-generation population variance and the
time to extinction (in generations) scale linearly with the
population size. In contrast, many empirical analyses show that
the magnitude of temporal abundance variations is much higher
[9–14], that the scaling of population variance with population
size is superlinear [12,15], and that the rate of changes in
species composition is much faster than the predictions of the
neutral model [16,17].

The simplest solution to that problem is environmental
stochasticity [18] (also known as fluctuating selection [19,20],
temporal niches, etc.): a time-varying environment may alter
the demographic parameters (such as growth and mortality
rates) and the competitive ability of an entire population, so
the reproductive success (say, the average number of offspring)
of all the conspecific individuals increases or decreases in a
correlated manner. Accordingly, population variance scales
with n2, where n is the population size. The stochastic process
is no longer stationary, and at any given time some species are
superior and others are inferior. The model may still be consid-
ered as neutral if the time-averaged fitnesses of all species are
equal (time-averaged neutrality [17]). Numerical and empirical
analyses suggest that time-averaged neutral models of this type
may explain both static and dynamic patterns in ecological
communities [17,21]. These observations raise the need for an
analytic solution for time-averaged neutral models.

A few versions of the two-species time-averaged neutral
model were considered recently (sometimes in the context of
the speed of evolution [22,23]), and quantities like the chance
of fixation and the time to fixation were calculated [24–29].
Other works dealt with the dynamics of a single species
under environmental variability, trying to infer the SAD of
the corresponding multispecies neutral model from the results
[30–32]. Here we present a solution for the species abundance
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TABLE I. Glossary.

Term Description

N Number of individuals in the community. The strength of demographic noise scales like 1/N .
ν The chance of new type generation (mutation or speciation events), per birth.
θ ≡ Nν The fundamental biodiversity number. Mean number of mutations per generation.
δ Correlation time of the environment, measured in generations.
γ The amplitude of the fitness fluctuations.
g γ 2δ/2, the strength of environmental stochasticity.
G ≡ Ng The ratio between environmental stochasticity and demographic noise.
ν/g = θ/G The ratio between mutation load and environmental stochasticity.

distribution in a multispecies time-averaged neutral model,
where the process of species extinction is compensated by the
introduction of new types via mutation or speciation events.
Our results are given in terms of the chance for mutation, the
strength of demographic noise, and the amplitude of environ-
mental variations; the relevant definitions are summarized in
Table I.

Technically speaking, neutral models are easier to solve
since the multispecies problem may be reduced to a set of
(identical) single species problems [33]. The abundance of
a focal species n and the size of the community N fully
determine the transition rates of this focal species, since
demographic equivalence implies that the partitioning of the
N − n individuals among all other species is irrelevant. This
feature is lost when environmental variations are taken into
account, as the instantaneous fitness of all other individuals
does affect the focal species. We will show that, in high
diversity assemblages, this obstacle may be overcome using
an effective medium theory that becomes even simpler in the
large N limit.

To pave the way for this analysis, we will consider first
a two-type, one-way mutation model with environmental
stochasticity. In this model the state (abundance and fitness)
of the focal species unambiguously determines the state of the
whole system, so the analysis is relatively easy. Then we will
show that the full, multispecies model may be reduced (with
appropriate modifications) to the two-species case and, using
this feature, we obtain the required SADs.

To facilitate the discussion, we introduce three appendixes
in which technicalities are introduced and discussed. Ap-
pendix A explains, using a simple example, the transition from
the master equation to the Fokker-Planck equation with a par-
ticular emphasis on the boundary conditions. The correspond-
ing calculations for the two-species, one-sided mutation case
are presented in Appendix B, and the relevant modifications
that allow us to solve the time-averaged neutral model are
discussed in Appendix C.

II. MODELS A AND B: ENVIRONMENTAL
STOCHASTICITY AND NOISE INDUCED STABILIZATION

In this section we would like to provide a few basic
insights regarding the effect of environmental variations, and
in particular to make a distinction between microscopic models
that lead to noise-induced stability and those that do not
support this feature. Our two examples here involve global
and local competition; we first present these models with pure

demographic noise, where they lead to the same outcome,
then we will explain their different behavior in fluctuating
environment.

As an example of local interactions (model A), one may
imagine two populations that live together on, say, an island.
Individuals are wandering around, looking for food, mates, or
territory. An encounter between two individuals may lead to a
struggle in which only one of them wins the desired goods and
increases its chance to survive and to reproduce. In a zero-sum
game of this kind two individuals are chosen at random from
the entire community for a duel; the loser dies and the winner
produces a single offspring. If one considers a two-species
community of size N , where the fraction of one species is
x = n/N , the chance for an interspecific duel is 2x(1 − x). In a
neutral model without environmental variations all individuals
have equal fitness all the time, so the chance to win a duel is
always 1/2. Accordingly, the chance of a population to grow
or to decrease by one individual after a single elementary event
(a duel) is equal, x(1 − x).

To present a model with global competition (model B), let
us consider a forest. Adult trees spread seeds all around and
we assume that the dispersal length is much larger than the
size of the forest, so the composition of the seed bank at each
location reflects the abundance of the corresponding species in
the forest. When an adult tree dies it leaves a gap and one local
seed is chosen to capture it. If the model is neutral the chance
of each species to recruit the gap is proportional to its relative
abundance. Hence, the abundance of x will grow by one tree
with probability x(1 − x) [an adult tree from another species
has been chosen to die with probability (1 − x) and the focal
species won the gap with probability x] and will shrink by one
tree with the same probability.

Accordingly, when the environment is fixed and the dy-
namics is purely neutral, the local competition model (A) and
the global competition model (B) are translated to the same
stochastic process (the voter model) and lead to the same
dynamics. However, this feature is lost when environmental
fluctuations do affect the relative fitness of different species,
even if the averaged fitness differences vanish.

To model environmental stochasticity we begin with a two-
species game, and later on we will extend the definition to
the general case. Focusing on a specific species with relative
abundance x, in model A the chance of an interspecific duel
is 2x(1 − x). We will define the fitness of this species (with
respect to its enemy) via the chance to win such a duel,

Pwin = 1

2
+ γ (t)

4
, (1)
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where γ (t) measures its relative (log) fitness. The focal species
mean population satisfies (time is measured in generations, N

elementary events in each generation),

ẋ = γ x(1 − x), (2)

or ż = γ z, where z ≡ x/(1 − x). Accordingly, if γ is fixed in
time the focal species abundance grows (when γ is positive) or
decays (for γ < 0) and the focal species reaches fixation (z >

1 − 1/N ) or extinction (z < 1/N ) on O(ln N ) timescales. Our
interest here is in a time-averaged neutral model where γ (t)
has zero mean. In that case ln(z) performs a simple unbiased
random walk without any stabilizing force.

In model B the role of environmental variations is not so
simple. If the fitness affects the chance of recruitment but death
occurs randomly, the chance of the focal species to increase
its abundance is equal to the chance that a tree from another
species dies, 1 − x, times the chance of the focal species to
win the empty slot, which is defined to be the ratio between
the fitness of the local species and the average fitness of the
community,

xeγ

(1 − x) + xeγ
. (3)

The focal species shrinks if one of its individuals was chosen
to die (with probability x) and the other species wins the com-
petition with probability (1 − x)/(1 − x + xeγ ). Accordingly,
x satisfies

dx

dt
= x(1 − x)eγ

1 − x + xeγ
− x(1 − x)

1 − x + xeγ

≈ γ x(1 − x) + γ 2

2
x(1 − x)(1/2 − x), (4)

where the last term comes from a second order expansion
in γ . Unlike model A, here the nonlinear dependence of the
chance to win on γ leads to a second, O(γ 2) term, that by itself
tends to stabilize the coexistence point at x = 1/2. Of course
this term is much smaller than the first, O(γ ) term, so under
fixed environmental conditions the focal species still shrinks
or grows exponentially. However, when γ (t) fluctuates around
zero the O(γ ) term averages out while the O(γ 2) terms add
up, so (at least when the rate of variations is fast enough) the
stochasticity tends to stabilize the coexistence point.

The difference between model A and model B is most
evident when the environmental fluctuations are extremely
rapid, e.g., when γ is picked at random after each elementary
(birth-death) event. Model A reduces, in this case, to its purely
demographic limit: instead of choosing the winner by a single
toss of a coin one first picks the weather and then the winner,
but the end result is a chance of 1/2 to win any elementary
competition. In contrast, in model B the stabilizing effect of
the environment reaches its maximum strength in this rapid
fluctuations limit where theO(γ ) terms cancel each other more
efficiently.

The stabilizing effect of environmental variations in models
with nonlinear fitness dependence (like our model B) was
pointed out by Chesson and co-workers a while ago [34,35].
Technically, model B considered here is very close to Chesson-
Warner lottery game. However, as discussed in [25], the lottery
game has no demographic noise, so it does not allow for
extinction events and one cannot analyze the properties of a

community in which the biodiversity reflects an extinction-
speciation equilibrium.

III. AN INDIVIDUAL-BASED TWO-TYPE MODEL
WITH ENVIRONMENTAL STOCHASTICITY AND

ONE-WAY MUTATION

As explained above we shall start our analysis, in this
section, with a two-species game, and then (in Sec. IV) extend
the treatment to the full problem. In these two sections we
begin with model A and then consider model B.

A. Model A

Let us consider a system of N individuals with two species
(types), A and B. As in [36] (p. 208) no mutation of B to A is
allowed, while an offspring of type A may mutate to become
a B type.

In each elementary event two individuals are picked at
random; the winner reproduces and the loser dies. If a B type
wins, the offspring is also a B. If an A wins, the offspring is
an A with probability 1 − ν and mutates to be a B-type with
probability ν.

Accordingly, in a system of N individuals with n A types
and N − n B types, the only absorbing state is n = 0. In this
section we assume that, very rarely, a new A-type individual
arrives (say, as an immigrant) and then the game is played again
until the A species goes extinct (this happens before the next
immigration event). Our aim is to calculate Pn, the probability
to find the system with n A types, conditioned on the existence
of A in the system (i.e., not including the periods between
extinction and recolonization events).

As explained, this process takes place via a series of duels.
In case of an interspecific duel A wins with probability Pwin

(to be defined below) and B wins with probability 1 − Pwin.
The possible outcomes of all kinds of duels are summarized
by (here the expressions above the arrows are probabilities, not
rates)

B+B
1−→ 2B A+A

1−ν−−→ 2A A+A
ν−→ A+B

A+B
1−Pwin−−−→ 2B A+B

Pwin(1−ν)−−−−−→ 2A A+B
νPwin−−→ A + B.

(5)

To fully characterized the process, Pwin should be specified.
We define Pwin via

Pwin = 1

2
+ sA − sB

4
, (6)

where sA (sB) is the logarithmic fitness of the A (B) type.
Without loss of generality we can set sB = 0. Under environ-
mental variations sA (hence Pwin) is time dependent, but to
keep time-average neutrality its mean has to be zero. Clearly,
the main characteristics of such environmental fluctuations are
their amplitude and their correlation time. Here we assume a
dichotomous (telegraphic) noise such that sA = ±γ , so half of
the time Pwin = 1/2 + γ /4 (the plus state of the environment)
and half of the time Pwin = 1/2 − γ /4 (the minus state). Both
white Gaussian noise and white Poisson noise can be recovered
from the dichotomous noise by taking suitable limits [37], so
the results obtained here are quite generic.
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Time is measured in units of generations, where a generation
is defined as N elementary duels. After each elementary duel
the environment switches (from ±γ to ∓γ ) with probability
1/(Nδ), so the sojourn times of the environment (measured in
generations) are geometrically distributed with mean δ.

At this point the model is fully specified. A full list of
the transition probabilities is given in Appendix B, Eq. (B2).
Using that, one may write down the corresponding set of
master equations (B1). In Appendix B we show how to derive,
from this exact master equation, an effective Fokker-Planck
equation for P (x); the chance (averaged over time, including
plus and minus periods) to find the system with n ≡ Nx A-type
individuals, satisfies

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′
−{[Gx(1 − x)(1 − 2x) − θx]P (x)}′ = 0. (7)

Here tags are derivatives with respect to x and G ≡ Nδγ 2/2
is the ratio between the effective strength of the environmental
stochasticity, g = γ 2δ/2, and 1/N , the strength of the demo-
graphic noise. The fundamental biodiversity number θ = Nν

is a measure of the population mutation rate (mutation load per
generation).

Solving for P (x) with the appropriate boundary conditions
(see Appendixes A and B, where we explain this subtle issue),
one obtains

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]θ/2

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2)
√

G/(4+G)

, (8)

where C is a normalization factor. To provide a background for
later discussions, let us consider a few features of the solution
(8).

1. When G → 0 (no environmental stochasticity) we have
a model with mutations and demographic noise. In that case,
P (x) obtained from our two-species model is simply

P (x) = C
(1 − x)θ−1

x
, (9)

i.e., the Fisher log series that converges to e−θx/x when θ �
1. In this case the two-species model yields the SAD of the
neutral model, since there is no real difference between the
two. Every species in the neutral model emerges via mutation
(or speciation) and goes extinct because of demographic noise,
so the average over colonization-extinction periods that yields
P (x) is the same as the average over different species that yields
the SAD of the neutral model. As we shall see below, when
environmental stochasticity kicks in, P (x) of the two-species
model differs from the SAD of the neutral model.

When θ 	 1 the expression for P (x) in Eq. (9) reduces to
[x(1 − x)]−1, since in that case the system spends most of its
time close to the fixation or extinction points in a symmetric
manner.

2. For strong environmental stochasticity, i.e., when G �
1, one may use the approximation

√
G/(G + 4) ≈ 1 − 2/G.

When this expression is plugged into Eq. (8) and constants are
absorbed into the normalization factor one obtains

P (x) = C(1 − x)ν/g−1

(
(1 + Gx)(1 − x)

1 + Gx(1 − x)

)θ/2 (1 + Gx)−ν/g

x
.

(10)

When all parameters are kept fixed and x decreases such that
Gx 	 1 and θx 	 1 (which implies, of course, also x 	 1),
the dynamics is purely demographic and Eq. (10) reduces to

P (x) ∼ 1

x
. (11)

On the contrary, in the region where the demographic noise in
negligible, Gx � 1,

P (x) ∼ (1 − x)ν/g−1

xν/g+1
exp

(
− θx/2

1 + Gx(1 − x)

)
. (12)

2i. When ν > 2g, the exponent in (12) truncates P (x) at

xc = 1

N (ν/2 − g)
. (13)

In the large N limit xc 	 1 so (1 − x)ν/g−1 ≈ 1. Accordingly,
P (x) looks like 1/x for x 	 1/G, like x−1−ν/g in the narrow
region 1/G 	 x 	 1/(θ/2 − G), and decays to negligible
values above this point. The intermediate power-law regime
disappears when ν > 4g, where P (x) takes the general form
of the Fisher log series with an effective mutation rate which
is half of the bare mutation rate, plus some modifications due
to G in the tail of the distribution.

2ii. When ν = 2g the exponential term in Eq. (12) still pro-
vides a cutoff, now at xc ∼ 1/

√
G. Since xc is still microscopic

in the large N limit, the intermediate power law x−3 is valid in
the region 1/G 	 x 	 1/

√
G.

2iii. If ν < 2g, the exponential cutoff point becomes N

independent,

xc = 1 − ν

2g
, (14)

so,

P (x) ∼ (1 − x)ν/g−1

xν/g+1
e−ν/2g(1−x). (15)

Below xc, the behavior is determined by the pre-exponential
factor. If g < ν < 2g, this factor decays monotonously with x,
so one observes two power laws with an Arrhenius truncation
above xc. In the region ν < g the prefactor grows with x above
x∗ = 1/2 + ν/(2g). When x∗ < xc, i.e., ν < g/2, P (x) admits
an observable peak at finite x, as demonstrated in Fig. 1(b).

The adequacy of Eq. (8) and the different behaviors of
P (x) are demonstrated in Fig. 1. The analytic predictions are
shown to fit the outcomes of Monte Carlo simulations and the
numerical solutions of the master equation. As expected, when
g > ν a peak appears close to x = 1.

B. Model B

In model B, each elementary step begins with the death
of a randomly chosen individual, so death probability is
fitness independent. In our one-sided mutation game, with
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FIG. 1. P (x), the chance of finding the A-type at relative abundance x, is plotted for a two competing species system with one-sided
mutation, environmental stochasticity, and demographic noise. In both figures N = 1000, ν = 0.01, and the main panels are plotted using a
double logarithmic scale. Results shown include those obtained from a Monte Carlo simulation (green circles), numeric solutions for the steady
state of the master equations (B1)–(B3) (red diamonds), and the analytic prediction of Eq. (8) (black line). In panel (a) the results are depicted
for δ = 0.5 and γ = 0.2, such that ν = g. In panel (b) δ = 1.25 and γ = 0.4 so ν = 0.1g. As discussed in the main text, when ν < g/2 there
is a peak at high values of x. To emphasize this peak we have added an inset where the same results are shown using a linear scale. The fit
between the three curves is quite good.

probability ν the gap is recruited by a B type individual.
With probability 1 − ν the chance of each species to capture
the vacancy is proportional to its abundance, weighted by its
fitness. Accordingly, if the relative logarithmic fitness of A type
is γ and its fraction is x, its chance to increase its population
by 1 comes from events where a B individual was chosen to
die (with probability 1 − x) and no mutation happens, so the

transition probabilities are

Wn→n+1 = (1 − ν)
(1 − x)xeγ

1 − x + xeγ
,

Wn→n−1 = x

(
ν + (1 − ν)

(1 − x)

1 − x + xeγ

)
. (16)

FIG. 2. PmodelB(x), the chance of finding the A type at relative abundance x, is plotted for a system with two competing species with
one-sided mutation, environmental stochasticity, and demographic noise. In both figures N = 1000, ν = 0.005. Results shown include those
obtained from a Monte Carlo simulation (filled circles), numeric solution for the steady state of the master equations, and the analytic prediction
of Eq. (18) (lines with different colors). In panel (a) (plotted using a double logarithmic scale) the results are depicted for large value of δ, δ = 2,
so the outcomes imitate those obtained for model A, in particular the two power laws when γ = 0.2 (green circles) and the peak close to x = 1
when γ = 0.4 (blue circles). In panel (b) (where the scale we have used is semilogarithmic) γ = 0.4 while δ = 0.4 for the blue circles and
δ = 0.1 for the greens. Since δ is small, the peak at x = 1/2 is pronounced, and it becomes even steeper as δ decreases. Here, and in all other
figures, the marker sizes were chosen to allow one to distinguish between the three data sets, but the actual width of the lines is smaller. We did
not track the standard deviation associated with the outcomes of our Monte Carlo simulations, but the almost perfect agreement between the
lines obtained using three different techniques implies that the corresponding error bars are tiny.
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Under dichotomous environmental stochasticity after each step
the system switches from ±γ to ∓γ with probability 1/(Nδ).

Implementing the same method used for model A, one finds
the corresponding Fokker-Plank equation,

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′
−{[(Gηx(1 − x)(1 − 2x) − θx]P (x)}′ = 0, (17)

where η ≡ 1 + 1/δ. The only difference between this Fokker-
Planck equation and the equation for model A [Eq. (7)] is the in-
nocent looking factor η. However, this may lead to a substantial
modification of the results. In model A, the deterministic bias
towards x = 1/2, represented by the Gx(1 − x)(1 − 2x) in the
convection term, is balanced by the decrease in the diffusion
rate close to the edges, related to the factor Gx2(1 − x)2 in
the diffusion term, and the two phenomena cancel each other
exactly in the steady state [30]. Since η > 1, the attraction
towards 1/2 is dominant in model B, hence the steady-state
probability may have a peak at a finite value of x.

The steady state of model B turns out to be

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]−1/δ+θ/2

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2)
√

G/(4+G)

= [1 + Gx(1 − x)]1/δPModelA. (18)

Clearly, the extra term has a maximum at x = 1/2 and the peak
becomes more pronounced when δ decreases, as expected.

Therefore, model B is richer than model A: for δ � 1, P (x)
in model B may yield the same behaviors described above,
such as a truncated power law or a peak close to x = 1.
However, when δ 	 1 the stabilizing force is strong and the
probability develops a peak close to x = 1/2. These behaviors
are demonstrated in Fig. 2.

IV. A MULTISPECIES, TIME-AVERAGED
NEUTRAL MODEL

Having solved the problem of a two-species system with
environmental stochasticity and one-sided mutation, we return
to the main goal of this paper: the attempt to find the SAD
of a neutral model with both demographic and environmental
stochasticity. In this model the system may support many
species, and each of these species is characterized by its
abundance n and by its instantaneous fitness.

Without environmental noise the dynamics of every focal
species in a neutral system is identical to the dynamics of type
A in the two-species one-sided mutation model considered in
the previous section. Accordingly, as demonstrated in the last
section, in that case the function P (x) of the two-species model
is proportional, up to a normalization constant, to the SAD
of the multispecies neutral model [defined also as P (x), but
now it is the probability that a randomly picked species has
abundance x]. When the environmental variations change the
relative fitness of different species this is not the case anymore.
In this section we develop an effective field theory that allows
us to map the neutral model to a (slightly modified) two-species

system. Once this goal is achieved, we can solve for the SAD
using the techniques presented above. Again, we begin with a
discussion of model A, then we consider model B.

A. Model A

As before, in each elementary step two individuals are
picked randomly for a duel, and the winner is determined
with probability that depends on their relative fitness. The
offspring takes the species identity of its parent with probability
1 − ν and becomes the originator of a new species with
probability ν. Unlike the two-species model, here there are
no recurrent mutations—an offspring cannot mutate into an
existing type (an infinite allele model). As a result, the structure
of the community reflects the balance between mutations and
extinction events.

The environmental noise is again dichotomous: there are
two fitness state, ±γ , and the fitness of every species jumps
randomly between these two states, such that the sojourn times
are distributed geometrically with mean of δ generations. The
states of different species are not correlated, and the fitness of
an originator of a species is chosen at random upon its birth.
Accordingly, in this time-averaged neutral model there are two
types of duels: the two randomly picked individuals may have
the same fitness (either plus or minus), in which case the chance
of each of them to win the duel is 1/2, or they may have
different fitnesses, in which case the corresponding chances
will be 1/2 ± γ /2. Unlike the two-species model considered
in the last section, here two fighting individuals may have the
same fitness, so the γ /4 factor above [e.g., in Eqs. (1) and (6)]
has to be replaced by γ /2 to keep the relationship between the
environmental fluctuations and the demographic noise fixed.
The full specifications of the model, including all the transition
probabilities, are provided in Appendix C.

Let us consider now the dynamics of a single (focal) species.
As opposed to the two-species system considered above, here
when an individual of the focal species is chosen for an
interspecific duel, the fitness of its rival is not specified uniquely
by the focal species fitness. For example, if the focal species
is in the plus state, it may compete with either an inferior or
an equal individual. Therefore, to analyze the dynamics of the
focal species we need an extra parameter f+, the chance that
the rival in an interspecific duel will be in the plus state. If f+
is a constant (time, state, and abundance independent–see the
discussion below), then the chance of a focal species individual
to win a duel, when the focal species is in the plus state, is

q = f+
1

2
+ (1 − f+)

(
1

2
+ γ

2

)
= 1

2
+ γ

2
(1 − f+). (19)

When f+ = 1/2 the dynamics reduces to the two-species
model considered above.

The introduction of the constant f+ allows us to implement
the method presented in the last section to the dynamics
of a focal species in the time-averaged neutral model. In
Appendix C we show that, in this case, P (x) of an arbitrary
focal species (and hence the SAD of the model) satisfies

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′ − {[Gx(1 − x)(1 − 2x)

+Nγx(1 − x)(1 − 2f+) − θx]P }′ = 0. (20)
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The solution of this equation is

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]θ/2

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2−ζ )
√

G/(4+G)

, (21)

where

ζ ≡ − 2

γ δ
(1 − 2f+).

In general f+ may depend on the abundance of the focal
species. However, when the abundance of each species is only
a tiny fraction of N (which is the case when the system supports
many species, see below) one may expect it to be independent
of the details of the state of the system. Our numerics shows that
taking f+ as a constant becomes a very good approximation
when N is large. In fact, f+ turns out to be independent of the
abundance and the state (plus/minus) of the focal species, but
it fluctuates in time. Since the transition rates are linear in f+,
their average depends only on its mean, f +.

Given that, we can obtain a closed form for the species
abundance distribution by calculating f + as a function of the
system parameters. If all species are “microscopic” (n 	 N )
f + has to be, more or less, the fraction of individuals in the
plus state, so it satisfies the self-consistency equation

f + = 1

x

∫ 1

0
xP +(x) dx. (22)

P +(x) [P −(x)] is the probability that a randomly picked
species has abundance x and its fitness is +γ [−γ ]. The mean
relative abundance of a species, x ≡ ∫ 1

0 x[P +(x) + P −(x)], is
related to the total number of species (species richness) in the
system, SR, by x = 1/SR.

This, plus the relationship we have derived from the master
equations in Appendix C [Eq. (C3)],

γ δ

2
[x(1 − x)P ]′ = P −(x) − P +(x), (23)

leads, via integration by parts, to

ζ = − 2

γ δ
(1 − 2f +) = 1

x

∫ 1

0
x(1 − x)P (x) = 1 − x2

x
.

(24)

Equations (21) and (24) provide a closed form for the
species abundance distribution of the neutral model: the nor-
malization constant C cancels out in (24), so one may use
(24) to determine ζ which, in turn, specifies uniquely P (x).
Moreover, if P (x) decays faster than x−2, the quantity x2/x

tends to zero as N → ∞, so asymptotically

ζ = − 2

γ δ
(1 − 2f +) → 1. (25)

The same result emerges from a simple argument about the
dynamics of f+: when all the species are microscopic, ḟ+ =
2γf+(1 − f+) − f+/δ + (1 − f+)/δ, so (when γ δ 	 1) the
steady state is f + ≈ 1/2 + γ δ/4, in agreement with (25).

Given that, one may easily recognize the qualitative features
of our main result, Eq. (21). As in the two-species case, when
all other parameters are kept fixed and G → 0, the Fisher log-
series distribution is recovered. When G is large (21) reduces
to

P (x) = C

x(1 − x)

[
(1 − x)

(
1
G

+ x
)

1 + Gx(1 − x)

]θ/2[(
1
G

+ x
)

1 − x

]−ζ−ν/g

.

(26)

There is, again, a demographic regime: as long as Gx 	 1
and θx 	 1, P (x) ∼ 1/x, as in Eq. (11) above. When Gx � 1
one obtains

P (x) ∼ (1 − x)ν/g+ζ−1

xν/g+ζ+1
exp

(
− θx/2

1 + Gx(1 − x)

)
. (27)

This expression is very similar to (12), and the only mod-
ification is the replacement of ν/g by ν/g + ζ in the pre-
exponential factor. This implies that the general analysis
presented in the discussion of the two-species case still holds:
for ν > 2g the exponential truncation starts above xc which
is O(1/N ) while for ν < 2g, xc is O(1). The only qualitative
difference between the multispecies and the two-species case
appears in the ν < g/2 regime, where the pre-exponential
function grows above x∗ = 1/2 + ν/(2g) + ζ/2. One may see
a peak at finite value of x only if x∗ < xc, a condition that
translates to

ν <
g(1 − ζ )

2
. (28)

Therefore, when N → ∞ and ζ → 1 there is no peak in the
species abundance distribution [see Fig. 3(b), in comparison
with Fig. 1(a)]. Since the decay is faster than 1/x2, the
assumption ζ → 1 is self-consistent.

In parallel with Fig. 1, Fig. 3 demonstrates the ability of
Eq. (21) to fit both the numerical solution of the master equation
and the outcomes of Monte Carlo (MC) simulations. Note
that, unlike the last section, here the agreement between the
MC simulations and the numerics of the master equations is
nontrivial, since the master equations were built for a single
species, assuming the ability to use an effective medium theory
with one parameter, f+.

B. Model B

Now let us present the analysis of the multispecies version
of model B presented above: a community with time-averaged
neutral dynamics, in which the competition is global and the
dependence of the transition rates on the fitness is nonlinear.

As before, we would like to reduce our analysis to a focal
species and to encapsulate the effect of all other individuals by
their average fitness A, defined as

A = f+e2γ + (1 − f+), (29)

where, as before, f+ measures the fraction (of all individuals
that do not belong to the focal species) who are in the plus state.
In parallel to our analysis of model A, we have multiplied the
value of γ by a factor of 2, with respect to the two-species
game, in order to keep the overall strength of environmental
stochasticity g at γ 2δ/2. as we shall see below, here also the
mean value of f+ approaches 1/2 + γ δ/4.
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FIG. 3. The species abundance distribution, P (x) as a function of x, for a time-averaged neutral model (model A) with environmental
stochasticity and demographic noise. In both figures N = 104 and ν = 0.01, and the results are plotted using a double logarithmic scale. The
outcomes of a Monte Carlo simulation (green circles), numeric solution for the steady state of the master equations (see Appendix C) (red
diamonds) and the analytic predictions of Eq. (21) (black line) are compared, and the fit is very good. In panel (a) the results are depicted for
δ = 0.5 and γ = 0.5, such that ν/g = 0.16. In panel (b) δ = 0.25 and γ = 0.2 so ν/g = 2. In both panels the small x behavior is P ∼ 1/x, but
in panel (a) this regime is very narrow since it requires x 	 1/G = 1.6 × 10−3. The Gx � 1 behavior obeys a power law in panel (a), where
the environmental stochasticity dominates (ν/g < 1/2) and is dominated by an exponential decay in panel (b), where the mutation losses are
stronger. In these parameters, N is not big enough to justify the use of the asymptotic value ζ = 1. Instead, the value of f + used in Eq. (21)
was obtained by measuring the long-term average fraction of individuals in the plus state through the MC simulations.

Naively, one would like to define new transition probabili-
ties for the focal species using A. Given the value of γ , these
transition probabilities are

Wn→n+1 = (1 − ν)
(1 − x)xe2γ

(1 − x)A + xe2γ
,

Wn→n−1 = x

(
ν + (1 − ν)

(1 − x)A

(1 − x)A + xe2γ

)
. (30)

From this point one may continue, as in model A, to derive the
two coupled master equations and the corresponding Fokker-
Planck equations, from which an appropriate expression for
P (x) may be extracted.

When we did that, we discovered that the emerging for-
mula for P (x) does not fit the outcome of our Monte Carlo
simulations. It turned out that the origin of the problem are
the f+ fluctuations: since species flip continuously from the
plus to the minus state and vice versa, the number of species in
the plus state varies binomially. Accordingly, f+, which is the
number of species in the plus state times the average abundance
of such a species, fluctuates such that f+ = f + + δf+, where
δf+ is a random number taken, more or less, from a zero-mean
Gaussian distribution with width σ ≡ √

Var(f+). In general
σ → 0 as N → ∞, but to fit the results of our simulations
with finite N we had to use this parameter. In model A this
variance did not play any role, since the transition probabilities
are linear in f+ so the average Wn→n±1 depends only of f +. In
contrast, here the nonlinearity of the W ’s compels one to take
f+ fluctuations into account.

Accordingly, we have implemented the procedure described

above, replacing each of the W ’s of Eq. (30) by
∼
W =

(1/2)W (f + + σ ) + (1/2)W (f + − σ ). It turns out that this is

a decent approximation and there is no need to average the W ’s
using the exact f+ distribution. Doing that, we have expanded
these average transition probabilities to a second order inγ , and
used the approximated W ’s to build the corresponding master
and Fokker-Planck equations, in parallel with Eq. (C2). After
long and tedious calculations, the effective, one dimensional
Fokker-Planck equation turns out to be of the same general
form of (20),

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′ − {[Gx(1 − x)(1 − 2x)

+ x(1 − x)N (γ (1 − 2f +) + γ 2{1 − 2x − 4(1 − x)

× [f +(1 − f +) − σ 2]}) − θx]P }′ = 0. (31)

Solving this equation for P (x) one obtains

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]θ/2−1/δ−κ

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2−ζ−1/δ+κ)
√

G/(4+G)

, (32)

where

κ = 1

δ
[1 − 4f +(1 − f +) + 4σ 2]. (33)

Comparing (32) with Eq. (21) one realizes that in the
environmental-noise-controlled regime, Gx(1 − x) � 1,

PmodelB(x) = (1 − x)2/δx2κPmodelA(x), (34)

since the value of κ is typically small, while 1/δ is a large
factor in the interesting regime of strong stabilizing effect, the
species richness of model B is typically larger than the species
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FIG. 4. The SAD, P (x) vs x, for model B. In both figures N = 105 and ν = 0.001, and the results are plotted using a double logarithmic
scale. The outcomes of a Monte Carlo simulation (blue circles), numeric solution for the steady state of the master equations (red line), and
the analytic predictions of Eq. (32) (yellow line) are compared. In panel (a) the results are depicted for δ = 0.5 and γ = √

0.025, such that
ν/g = 0.16. In panel (b) δ = 0.1 and γ = 0.05 so ν/g = 8. The values of f+ and σ were taken from the Monte Carlo simulations.

richness of model A for the same set of parameters. When δ is
large model A and model B have similar behavior and, if G > θ

one expects that the SAD will be much wider than the Fisher
log series; this type of behavior was observed numerically in
[38].

In the corresponding two-species model the stabilizing
effect of the noise increases the chance of rare species to
grow and of common species to shrink, thus stabilizing the
x = 1/2 state. Here we see that the same stabilizing mechanism
causes an increase in the species richness, i.e., it decreases
the mean abundance of a single species. Because f+ > 1/2,
in the multispecies model the mean fitness of a focal species
is slightly smaller than the mean fitness of the community,
and this effect almost cancels the noise-induced growth of
rare species. Accordingly, the main impact of the stabilizing
mechanism is to limit the growth of common species.

The expression (32) depends (via ζ and κ) on the parameters
f + and σ 2. When N → ∞, these two parameters converge
to 1/2 + γ δ/2 and zero, correspondingly. For finite N the
situation is slightly more complicated. While in model A
Eqs. (21) for P (x) and (24) for ζ (that depends on f +) provide
a closed form, here another equation has to be used in order to
determine σ 2 in a self-consistent manner.

To do that, we begin with the calculation of the species
richness (SR). As we show in Appendix D, the SR distribution
is quite narrow with a peak at 1/x. Accordingly, we neglect
temporal and system-to-system fluctuations in the species rich-
ness and approximate it by its peak value. Neglecting similar
binomial fluctuations we assume that SR/2 of the species are
in the plus state and SR/2 in the minus state. The chance to find
f+ at a certain value φ is thus the chance that the abundance
of half of the species, which are in the plus state, sums up to φ

while the sum of the abundances of the other half (who are in
the minus state) is 1 − φ. Now we make another approximation
and assume that these two distributions, for the sum over the
plus species and the minus species, are identical, so σ 2 is not
affected by the difference between f + and 1/2. Using the

central limit theorem one has

P (f+ = φ) = C1 exp

(
− (φ − x SR/2)2

SR Var(x)

)

× exp

(
− (1 − φ − x SR/2)2

SR Var(x)

)

= C1 exp

(
− (φ − 1/2)2

Var(x)/x

)

× exp

(
− (1 − φ − 1/2)2

Var(x)/x

)

= C2 exp

(
−2(φ − 1/2)2

Var(x)/x

)
, (35)

where C1 and C2 are normalization factors. As expected,
Eq. (35) suggests a slightly wrong value, 1/2, for f +. Nev-
ertheless, it captured the leading contribution to σ 2,

σ 2 ≡ Var(f+) = Var(x)

4x
. (36)

Equation (36) for σ 2, together with Eq. (32) for the distri-
bution and Eq. (24) for f +, provide a closed form from which
P (x) may be calculated iteratively by extracting x and Var(x)
from the distribution, plugging it in the expressions for f +
and σ 2 and iterating the process to convergence. This process
allows one to fit the data in Fig. 4.

There is, of course, a numerical alternative to this procedure:
assuming a distribution for P±(x) one may pick numbers
from it until the sum reaches 1 and calculates f+. Iterating
this for many times, a direct estimation of the mean and the
variance of f+ is obtained. We have verified our analytic
approximation using this procedure, and the deviations (for
the system parameters considered here) are smaller than 10%.
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V. DISCUSSION

The first neutral model, the neutral theory of molecular
evolution, was suggested a few decades ago by Kimura [1].
By incorporating spatial effects (mainland-island dynamics),
Hubbell [39] established the neutral model of biodiversity and
biogeography. In both theories the diversity of a community
reflects the balance between stochastic extinction and the
emergence of new types via mutation, speciation, or (on a local
community in Hubbell’s model) migration. The reproduction
rate of all individuals is assumed to be equal at any time and the
only driver of abundance fluctuations is demographic noise.

In the immense body of literature published so far, neutral
models are used in three distinct contexts: first, they serve
as ultimate null models against which tests for selection or
niche-based dynamics can be applied [10,40] (though see [41]).
Second, these models describe the dynamics of all kinds of
unlinked mutations and phenotypic variations that does not
affect fitness (e.g., synonymous mutations). Third, even in
systems like tropical trees or coral reefs one may argue that the
very different species play, more or less, a neutral game, since
the inferior species are already extinct, a mechanism known as
emergent neutrality [31,42,43].

In this paper we have considered the simplest (and most im-
portant) neutral theory, the well-mixed model of Kimura which
(without environmental noise) satisfies Ewens’ sampling for-
mula [44]. Under environmental variations that independently
affect the relative fitness of species, such that all species still
have the same time-average fitness, we provided the average
(over histories and states of the environment) SAD.

A remark about nomenclature should be added. Some will
argue that our model does not deserve the title “neutral” since,
for them, the concept of neutrality implies that all species
are demographically equivalent at every instant of time. For
example, in [45] the same phenomenon discussed here were
considered as part of a non-neutral model with temporal niche
differentiation. However, it is clear that demographic equiv-
alence is a matter of scale. Demographic and environmental
stochasticity are the two extremes of the same phenomenon,
namely, the stochastic effects of the environment on the fitness
of a population: demographic noise is uncorrelated between
different individuals, while the “environmental stochasticity”
are those random variations that coherently affect an entire pop-
ulation. For us, neutrality means symmetry between species,
i.e., it corresponds to the assumption that the time-average
fitness of all species is the same and that the dynamics is driven
by (various kinds of) fluctuations.

Previous works that dealt with this problems were focused
on the dynamics of a single species with fluctuating growth
rate, such that the time-averaged growth rate is (−ν) [31,32].
These works differ from the analysis presented here in two
aspects: First, in our model the growth rate (when a species
is favored by the environment) decays with its fraction x, and
second (and more important) we consider here the increase in
the number of individuals in the plus state, which manifests
itself in the value of f+ > 1/2. This second effect leads to
an increased pressure on a focal species, hence the power-law
decay [Eq. (27)] at large values of x is characterized by an
exponent which is larger than the exponent predicted for a
two-species game. In [30] the effect of the mutations on the

growth rate of an existing species was neglected, and again the
extra pressure due to f+ > 1/2 was not taken into account.

In some circumstances, environmental stochasticity may
act as a stabilizer of the community dynamics, increasing
the chance of a new mutant to invade and decreasing the
chance of a dominant species to grow. This phenomenon
was pointed out by Chesson and co-workers [34,46] and is
known in the ecological literature as the storage effect. The
storage effect stabilizes a coexistence state when the fitness
affects recruitment but death occurs at random. This is the
situation in our model B, which is very similar to the lottery
game considered by Chesson and Warner [34]; see a detailed
discussion in [25]. On the other hand, in model A fitness affects
both birth and death in an anticorrelated manner. As a result
there is no storage effect stabilization in that case.

Demographic noise and mutations were not taken into
account in the works of [34,46], so their models did not allow
for extinction (i.e., for an absorbing state) and of course one
cannot use them to study extinction-mutation equilibrium.
Moreover, for neutral dynamics without demographic noise
γ cancels out from the steady state equations so the SAD
depends only on δ [25,46]: this happens because there is no
other scale in the problem, and leads to the paradoxical result
that the steady state SAD is independent of the amplitude of
environmental variations. When demographic stochasticity is
taken into account, as we did here, the parameter G = Ng

sets the scale of environmental noise in terms of demographic
stochasticity, and allows for a smooth transition between the
purely demographic and the environmental models.

In the original neutral model, with pure demographic noise
and a Fisher log series SAD, P (x) decays like 1/x for x 	
1/(Nν) and the decay is exponential above this point. In model
A, the main effect of environmental stochasticity is to allow for
species with higher abundance; if environmental variations are
strong enough the exponential cutoff is replaced by a power-
law decay as in Eq. (27). This implies that in such a system
both the number and the abundance of “hyperdominant” [8,47]
species is larger, and the overall species richness is smaller,
than in a system without environmental variations and the
same speciation rate. Recently, the heterogeneity of SADs
obtained in the marine biosphere was shown to be greater
than expected by a purely demographic neutral model [48]
– this may be an indication for the effect of environmental
variations. As species richness reflects a speciation-extinction
balance, this observation is consistent with the results of
previous works, where the time to absorption has been shown to
shrink when environmental stochasticity turned on and there
is no mechanism that allows for noise induced stabilization
[14,26–28].

The response of model B systems to environmental fluctua-
tions is more intricate. In a model without mutations and with-
out demographic noise, the single species SAD peaks at 1/SR
[25], but this implies that such a system is vulnerable to the
invasion of a new species. The remnant of this behavior is the
Beta-distribution-like function that multiplies P (x) of model
A to yield the SAD of model B in Eq. (34). When δ is large,
model A and B behave similarly. However when δ is small and
the stabilizing effect is strong, the SAD has a strong cutoff at
x ∼ δ/2 and the species richness increases substantially with
respect to model A with the same parameters. Moreover, when
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δ < 2/θ the species richness of model B will be even larger
than the SR of the purely demographic neutral model that has
a cutoff at x = 1/θ , as already demonstrated numerically in
Fig. 5 of [25].

There are some limitations to our analysis: first, we assumed
that the size of the community N is large, and that the number
of species in the steady state is much larger than 2 (otherwise
the mean-field approach failed, in particular the neglect of the
time dependence of f+ becomes problematic). Moreover, our
approximations fail when δ becomes extremely large (f+ →
1), since in such a case the system reduces to a neutral model
for all the plus state species, while the minus species simply go
extinct. These limitations, of course, have nothing to do with
the practical applications of the neutral model to empirical
dynamics like those considered in [17,21]. We believe that
the theory presented here, when applied to experiments and
field data in population genetics and community ecology,
may suggest many insights into the processes that govern the
composition of populations and communities.
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APPENDIX A: FROM MASTER EQUATION TO
FOKKER-PLANCK EQUATION: CONTINUUM

APPROXIMATION AND BOUNDARY CONDITIONS

The Fokker-Planck equations studied through this paper are
obtained as a continuum approximation of an exact master
equation. The justification for this procedure, and its limita-
tions, were discussed in detail in [49]; in this appendix we
provide a few comments that illustrate the method used here,
with a particular emphasis on the boundary conditions. We
stick to a simple system that allows us to demonstrate the
problems and their solutions while keeping the algebra and
calculus relatively straightforward.

To begin, let us write down the master equation for a generic
system with nearest neighbors transitions where the number
of individuals is between 1 and N . If Wn±1→n and Wn→n

are the probabilities to jump into the state with n individuals
during one elementary step (after each elementary step, time
is incremented by 1/N ), the master equation takes the form

P
t+1/N

1 = W1→1P
t
1 + W2→1P

t
2 ,

P t+1/N
n = Wn→nP

t
n + Wn+1→nP

t
n+1 + Wn−1→nP

t
n−1,

1 < n < N, (A1)

P
t+1/N

N = WN→NP t
N + WN−1→NP t

N−1.

In the steady state, P
t+1/N
n = P t

n for all n’s. In such a case
the set of equations (A1) appears to provide N equations
for the N unknown variables Pn. However, conservation of
probability implies that the corresponding Markov matrix is
singular, i.e., it admits a nontrivial eigenstate with zero eigen-
value. The missing constraint is supplied by the normalization
condition

∑
Pn = 1, and with this condition the solution is

fully specified. This example may be generalized to include
environmental noise, long-range hopping, and so on.

Now let us discuss the transition to the continuum. The
simplest way to make this approximation is to consider both P

and W as functions of x = n/N , and to expand quantities like
Pn+1 → P (x + 1/N ) to second order in 1/N . If it is possible
to use this procedure for any value of n (and this is not the
case; see below) the equations for P1 and PN , which are not
in the general form of all other equations, supply a no-flux
(Robin) boundary condition at x = 0 and x = 1. As before,
although one obtains a second order differential equation with
two boundary conditions, the steady state is not specified
completely since the satisfaction of one boundary condition
leads automatically to the satisfaction of the other one. The
extra constraint is provided by normalization.

To examine the transition to continuum more closely, let us
specify the transition probabilities. As an example we take a
two-species neutral model with pure demographic noise and
“reflecting” boundary conditions. At each step one individual
is chosen at random to die and is replaced by an offspring of
another, randomly chosen, individual. However, a singleton
(the last individual that belongs to a certain species) cannot
die. The corresponding transition probabilities are

Wn−1→n = (n − 1)(N − n + 1)

N (N − 1)
, 2 � n � N − 1,

Wn+1→n = (n + 1)(N − n − 1)

N (N − 1)
, 1 � n � N − 2,

(A2)

Wn→n =
(

1 − 2n(N − n)

N (N − 1)

)
, 2 � n � N − 2,

W1→1 = 1 − W1→2, WN−1→N−1 = 1 − WN−1→N−2.

Interestingly, for this model the steady state of the master
equation (A1) has a simple form,

Pn = A

n(N − n)
, (A3)

that satisfies both the master equation and the boundary
condition. A is determined by the normalization condition.

Plugging the transition probabilities in Eq. (A2) into
Eq. (A1), the continuum equation is obtained by the set
of replacements n = xN , Pn → P (x), and Pn±1 → P (x) ±
P ′(x)/N + P ′′(x)/2N2. The middle equation of (A1) is trans-
lated into

dP (x,t)

dt
= 1

N2

∂2

∂x2
[x(1 − x)P (x)], (A4)

and the steady state solution satisfies Ṗ = 0, namely,

1

N2

∂2

∂x2
[x(1 − x)P (x)] = 0. (A5)

The steady state solution of Eq. (A4) has the general form

P (x) = A + Bx

x(1 − x)
. (A6)

As explained above, one of the free constants A and B should
be determined by (one of) the boundary conditions, while

042406-11



MATAN DANINO AND NADAV M. SHNERB PHYSICAL REVIEW E 97, 042406 (2018)

the other allows for normalization. Comparing (A6) and (A3)
one realizes that B = 0 should be the correct answer, but the
derivation of this result from the boundary conditions of the
continuum differential equation is not trivial.

The problem (that has already been discussed in [49])
is that the continuum approximation itself may break close
to x = 0 and x = 1. For example, in our case P1 ≈ 2P2.
Deriving the boundary condition from a continuum approxima-
tion, P (2/N ) = P (1/N ) + P ′(1/N)/N , one finds P ′(1/N) =
NP (1/N )/2, but this is incompatible with B = 0 in Eq. (A6)
[B = 0 implies P ′(1/N ) = NP (1/N), without the factor 2].
This happens because the derivation of the boundary condition
assumes that Pn is smooth so the first derivative may be
extracted from the difference between P1 and P2, but since
the actual difference is a factor of 2, the approximation fails
and supplies the wrong boundary condition.

A way to solve this problem is to define another vari-
able that will be smooth at the boundaries. For example,
the quantity Y = x(1 − x)P undergoes a simple diffusion
process so Eq. (A4) implies that at equilibrium Y = A + Bx,
hence Y ′(x) = B. The boundary condition is translated to
Y (1/N) = Y (2/N ), i.e., Y ′(1/N ) = 0, and this implies B = 0
as requested. However, we are not familiar with a method that
will allow one to produce a corresponding variable in more
complicated scenarios.

The generic method, suggested in [49], is to solve the
difference (master) equation exactly at the vicinity of the
boundary, and then to match this expression to the solution
of the differential (Fokker-Planck) equation in the bulk using
the asymptotic matching technique. However, for the problems
at hand this is a very complicated procedure and we have tried
to avoid it.

Returning to the steady state equation (A5), one notices
that the constant B is related to the first integration, i.e.,
[x(1 − x)P (x)]′/N2 = B, so taking B = 0 implies that after
the first integration the remaining equation is still homogenous.
This is not a coincident: it happens since the original problem
satisfies detailed balance: PnWn→n+1 = Pn+1Wn+1→n, i.e., the
probability flux between each pair of neighboring states is zero.

The detailed balance condition must hold in the steady
state of Markov chains, by induction from P1. Accordingly, in
any one-dimensional Fokker-Planck equation with the general
form [A(x)P (x)]′′ + [B(x)P (x)]′ = 0 and reflecting boundary
conditions one should omit the first integration constant. In the
next appendixes we consider systems that may, in principle,
allow for loops, but we map them to a one-dimensional system;
so as long as our approximation holds, the detailed balance
condition must be satisfied. As N increases this approximation
becomes better and better, since the relative width of the bound-
ary zone approaches zero. Accordingly, through this paper we
implement this detailed balance approximation (namely, we
drop the first integration constant). The fits of our results to the
numerical solutions of the master equations indicate that this
is indeed a decent approximation.

APPENDIX B: FOKKER-PLANCK EQUATION FOR THE
TWO-SPECIES MODEL WITH ONE-WAY MUTATIONS

In this appendix we derive the effective one-dimensional
Fokker-Planck equation for a model with two species (types) A

andB, with both demographic and environmental stochasticity,
and with one-sided mutations (an offspring of A may mutate
into B, but an offspring of B is always a B), as described in
Sec. III of the main text.

To begin, let us introduce two quantities, P t
n,+, the chance of finding the system with n A-type individuals in the (+γ ) state

at time t , and P t
n,−, the chance of finding the system in the (−γ ) state with n A-type individuals. The time evolution (time is

incremented by 1/N after each elementary step) of Pn,± is governed by the two coupled master equations:

P
t+1/N
n,+ = P t

n+1,+W++
n+1→n + P t

n−1,+W++
n−1→n + P t

n,+W++
n→n + P t

n−1,−W−+
n−1→n + P t

n+1,−W−+
n+1→n + P t

n,−W−+
n→n,

P
t+1/N
n,− = P t

n+1,−W−−
n+1→n + P t

n−1,−W−−
n−1→n + P t

n,−W−−
n→n + P t

n−1,+W+−
n−1→n + P t

n+1,+W+−
n+1→n + P t

n,+W+−
n→n, (B1)

where W++
n−1→n, for example, is the probability to increase the A-type population by 1 (from n − 1 to n individuals) while staying in

the plus environment, and W+−
n−1→n is the chance that the environment switches from plus to minus and then the A-type population

grows.
If the abundance of species A is n, the chance of an interspecific duel for two randomly picked individuals is Fn = 2n(N −

n)/N2 when N � 1. Using this notation we can write the transition probabilities as

W++
n+1→n =

(
1 − 1

δN

)[
(1 − ν)Fn+1

(
1

2
− γ

4

)
+ ν

n + 1

N

]
, W++

n−1→n =
(

1 − 1

δN

)[
(1 − ν)Fn−1

(
1

2
+ γ

4

)]
,

W−−
n+1→n =

(
1 − 1

δN

)[
(1 − ν)Fn+1

(
1

2
+ γ

4

)
+ ν

n + 1

N

]
, W−−

n−1→n =
(

1 − 1

δN

)[
(1 − ν)Fn−1

(
1

2
− γ

4

)]
,

W−+
n+1→n = 1

δN

[
(1 − ν)Fn+1

(
1

2
− γ

4

)
+ ν

n + 1

N

]
, W−+

n−1→n = 1

δN

[
(1 − ν)Fn−1

(
1

2
+ γ

4

)]
, (B2)

W+−
n+1→n = 1

δN

[
(1 − ν)Fn+1

(
1

2
+ γ

4

)
+ ν

n + 1

N

]
, W+−

n−1→n = 1

δN

[
(1 − ν)Fn−1

(
1

2
− γ

4

)]
,

W++
n→n = W−−

n→n =
(

1 − 1

δN

)[
(1 − ν)(1 − Fn) + ν

(
1 − n

N

)]
, W+−

n→n = W−+
n→n = 1

δN

[
(1 − ν)(1 − Fn) + ν

(
1 − n

N

)]
.
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As explained, our system admits a single absorbing state at n = 0 and the dynamics inevitably leads to the extinction of the A

species, so we have to assume that, very rarely (on timescales that are much larger than the extinction time) a new A individual
arrives and the game is played over and over again. If our interest is in the chance of A to have abundance n conditioned on its
existence in the system, we can merge together all the colonization-extinction periods. Colonizations are random in time, so the
chance of a colonization during each state period is 1/2. This is equivalent to the use of the master equation (B1) only for n � 2,
while for n = 1 the boundary equations are

P
t+1/N

1,+ = P t
2,+W++

2→1 + P t
2,−W−+

2→1 + P t
1,+W++

1→1 + P t
1,−W−+

1→1 + 1
2 ([W++

1→0 + W+−
1→0]P t

1,+ + [W−−
1→0 + W−+

1→0]P t
1,−),

P
t+1/N

1,− = P t
2,−W−−

2→1 + P t
2,+W+−

2→1 + P t
1,−W−−

1→1 + P t
1,+W+−

1→1 + 1
2 ([W++

1→0 + W+−
1→0]P t

1,+ + [W−−
1→0 + W−+

1→0]P t
1,−). (B3)

Equations (B1)–(B3) define a linear equation

P t+1/N = MP t , (B4)

where P t is a 2N vector (Pi = Pn=i,+ for i � N and Pn=i−N,− for N < i � 2N ) and M is a 2N × 2N Markov matrix. The
steady state is the eigenvector of M with the (highest) eigenvalue λ = 1. To obtain a solution for this steady state given a set of
parameters that determine the elements of M we have solved numerically for this eigenvalue. As discussed in Appendix A, the
overall scale of the steady state Pn’s is determined by the normalization condition.

Now we would like to develop a Fokker-Planck differential equation for this steady state distribution. Defining P +
n (P −

n ) as the
chances to find the system with n individuals in the plus (minus) state in a period between colonization and extinction, Eq. (B3)
takes the form

P +
n = P +

n+1W
++
n+1→n + P +

n−1W
++
n−1→n + P +

n W++
n→n + P −

n−1W
−+
n−1→n + P −

n+1W
−+
n+1→n + P −

n W−+
n→n,

P −
n = P −

n+1W
−−
n+1→n + P −

n−1W
−−
n−1→n + P −

n W−−
n→n + P +

n−1W
+−
n−1→n + P +

n+1W
+−
n+1→n + P +

n W+−
n→n. (B5)

Plugging (B2) into (B5) and using the definition q ≡ 1/2 + γ /4 (this is the parameter qA, introduced in Sec. III, in the plus
state):

P +
n =

(
1 − 1

Nδ

){
(1 − ν)(qFn−1P

+
n−1 + (1 − q)Fn+1P

+
n+1 + (1 − Fn)P +

n ) + ν

(
n + 1

N
P +

n+1 + N − n

N
P +

n

)}

+ 1

Nδ

{
(1 − ν)((1 − q)Fn−1P

−
n−1 + qFn+1P

−
n+1 + (1 − Fn)P −

n ) + ν

(
n + 1

N
P −

n+1 + N − n

N
P −

n

)}
,

P −
n =

(
1 − 1

Nδ

){
(1 − ν)((1 − q)Fn−1P

−
n−1 + qFn+1P

−
n+1 + (1 − Fn)P −

n ) + ν

(
n + 1

N
P −

n+1 + N − n

N
P −

n

)}

+ 1

Nδ

{
(1 − ν)(qFn−1P

+
n−1 + (1 − q)Fn+1P

+
n+1 + (1 − Fn)P +

n ) + ν

(
n + 1

N
P +

n+1 + N − n

N
P +

n

)}
. (B6)

These two coupled difference equations for P + and P − may be translated to another pair of coupled difference equations for
their sum (which is the chance to be at n, no matter what the weather) and their difference,

Pn ≡ P +
n + P −

n , n ≡ P +
n − P −

n . (B7)

Defining x ≡ n/N one may switch to the continuum limit, with Pn → P (x) and Pn±1 → P (x ± 1/N ). Expanding to second
order in 1/N , the emerging couple of steady state differential equations is

(1 − ν)

{
1

N
[x(1 − x)]′′ − γ [x(1 − x)P ]′

}
+ ν[x]′ = 2

δ
(
1 − 2

δN

) ,

(1 − ν)

{
1

N
[x(1 − x)P ]′′ − γ [x(1 − x)]′

}
+ ν[xP ]′ = 0. (B8)

In what follows (and in the main text) we neglect the
difference between 1 − ν and 1, since in the relevant parameter
regime ν is very small compared to 1 (otherwise one may
replace, from now on, every ν by ν̃ ≡ ν/(1 − ν). In a very
similar process where the rate of duels is 1 and the rate of
mutations is ν, this (1 − ν) factor disappears). Moreover, since
we are interested in the large N , fixed δ limit, 2/(δN) 	 1.

Dominant balance analysis (see discussion below) reveals
that, for reasonably large N , the first and the third term in the
upper equation of (B8) are negligible. Accordingly,

 = γ δ

2
[x(1 − x)P ]′. (B9)
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When this expression is plugged into the second equation one
obtains an autonomous equation for P ,[

x(1 − x)

(
1

N
+ gx(1 − x)

)
P

]′′

−{[gx(1 − x)(1 − 2x) − νx]P }′ = 0, (B10)

where g ≡ δγ 2/2 is the strength of the environmental stochas-
ticity. This equation and its solution for different parameter
regimes are discussed in Sec. III of the main text.

Our dominant balance analysis was based on numerical
observations (solving numerically the Fokker-Planck equation
and comparing the magnitude of different terms) but we can
provide a few arguments for its self-consistency.

First, it is clear that in the demographic regime (i.e., Gx 	
1) environmental fluctuations are negligible and the  terms
are irrelevant, so the upper equation in (B8) plays no role. By
the same token, if the P term in the upper equation is negligible
in the large N limit the solution is  = 0 and the effect of
environmental stochasticity disappears, so this term should be
dominant when environmental variations are important.

Let us define Y (x) ≡ x(1 − x)P , so Eq. (B9) implies that
 = (γ δ/2)Y ′. Clearly, as long as (B10) holds,

Y (x) = −1 − x

ν

(
1

N
+ gx(1 − x)

)
Y ′(x), (B11)

and the dominant balance argument is consistent if, as N →
∞, the two conditions,

νx 	 γ Y,
[x(1 − x)]′

N
	 γ Y (B12)

or

δν2x

2
Y ′ 	 (1 − x)

(
1

N
+ gx(1 − x)

)
Y ′,

δν

2N
[x(1 − x)Y ′]′ 	 (1 − x)

(
1

N
+ gx(1 − x)

)
Y ′ (B13)

are satisfied.
When 1/N 	 gx(1 − x) the left condition is translated

to x 	 1 − ν/γ . On the other hand, if at large N the third
term balances the second, νx ∼ γ Y , one may plug it into
the γ [x(1 − x)]′ in the lower equation of (B8) to find that
this term is negligible with respect to the third one if x > 1 −
ν/γ . Accordingly, in the regime where our dominant balance
argument is wrong, environmental stochasticity is negligible.
Similarly, since the maximum value of Y ′′/Y ′ is θ , the right
condition in (B13) holds when x 	 1 − ν2/γ 2, but if one
assumes that the dominant balance is [x(1−x)]′

N
∼ γ Y and plug

it into the lower equation of (B8), the result is Y ∼ exp(−θx)
and the effect of environmental noise vanishes for γ 2 < ν2, so
we are back in the demographic regime.

APPENDIX C: A FOKKER-PLANCK EQUATION FOR
THE MULTISPECIES MODEL

Unlike the two-species game studied in Appendix B, here
we consider the dynamics of a focal species in a multispecies
environment. In a duel, an individual of the focal species may
encounter an enemy with the same fitness (a neutral enemy),
superior enemy (if the focal species is in the minus state), or

inferior enemy (if it is in the plus state). As explained in the
main text, we assume that the fraction of individuals in the plus
state is fixed and equal to f+. Accordingly, Eq. (B1) still holds
but the transition probabilities depend on the chance to find a
neutral, superior, or inferior enemy. If ν = 0 these probabilities
are

W++
n±1→n =

(
1 − 1

δN

)
Fn±1

[
f+
2

+ (1 − f+)

(
1

2
∓ γ

4

)]
,

W−−
n±1→n =

(
1 − 1

δN

)
Fn±1

[
1 − f+

2
+ f+

(
1

2
± γ

4

)]
,

W+−
n±1→n = 1

δN
Fn±1

[
1 − f+

2
+ f+

(
1

2
± γ

4

)]
,

(C1)

W−+
n±1→n = 1

δN
Fn±1

[
f+
2

+ (1 − f+)

(
1

2
∓ γ

4

)]
,

W++
n→n = W−−

n→n =
(

1 − 1

δN

)
(1 − Fn),

W+−
n→n = W−+

n→n = 1

δN
(1 − Fn).

As in Eqs. (B2), when ν = 0, each of these terms is multiplied
by (1 − ν), the quantity ν(n + 1)/N is added to all the Wn+1→n

terms, and the quantity ν(1 − n/N ) is added to all the Wn→n

terms.
Using the same boundary conditions (B3), we can solve

numerically for the steady state of the linear equation (B4)
using an iterative procedure: starting from an initial value of
f+ we solve for the steady state, calculate (for this steady state)
the new value of f+ using the discrete version of Eq. (22), and
iterate this process until convergence.

Expanding Eq. (B5), using the new W s, we obtain

(1 − ν)

{
1

N
[x(1 − x)]′′ − γ [x(1 − x)(P + (1 − 2f+)]′

}

+ ν[x]′ = 2

δ
(
1 − 2

δN

) ,

(1 − ν)

{
1

N
[x(1 − x)P ]′′ − γ [x(1 − x)( + (1 − 2f+)P ]′

}
+ ν[xP ]′ = 0. (C2)

Using the dominant balance argument and the approximations
that we presented in the appendixes above, the upper equation
of (C2) becomes

 = −γ δ

2
[x(1 − x)P ]′. (C3)

Plugging this expression for  into the lower equation one
finds the effective Fokker-Planck equation for P (x),

[
x(1 − x)

(
1

N
+ gx(1 − x)

)
P

]′′
− ({x(1 − x)[g(1 − 2x)

+ γ (1 − 2f+)] − νx}P )′ = 0, (C4)

which is Eq. (20) of the main text.
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APPENDIX D: THE SPECIES RICHNESS AND
ITS DISTRIBUTION

This paper is focused on the species abundance distribution
(SAD). In this appendix we would like to provide an expression
for the overall species richness in the community given the
SAD. To do that we implement standard tools which are
relevant to any SAD, not only to those considered above.

We start from P (x), the chance that a randomly chosen
species has abundance x. Picking numbers at random from this
distribution until their sum exceeds 1, a possible instantaneous
realization of the composition of the system is obtained.
Defining the random variable

zk =
k∑

j=1

xj , (D1)

one realizes that the cumulative distribution function (CDF)
for the species richness is

P (SR < k) = 1 − P (zk < 1). (D2)

The central limit theorem suggests that zk is distributed like a
Gaussian random variable with mean kx and variance kVar(x).
Accordingly,

P (SR < k) = 1 − 1√
π

∫ b

a

dy e−y2
, (D3)

where y ≡ (zk − kx)/
√

2kVar(x), a = y(zk = 0), and b =
y(zk = 1). The distribution function for the species richness
is the derivative of this CDF, and if 2Var(x) 	 x (which is the
common case),

P (SR = k) = (xk + 1)e−(xk−1)2/2Var(x)k

2
√

2πVar(x)k3/2
. (D4)

Equation (D4) is a slightly skewed Gaussian that peaks at k =
1/x.
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