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Multimodal transport and dispersion of organelles in narrow tubular cells
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Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive
diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical
simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our
model describes length and time scales over which each transport mode dominates organelle motion, along with
various metrics to quantify exploration of intracellular space. For organelles that search for a specific target,
we obtain the average capture time for given transport parameters and show that diffusion and active motion
contribute to target capture in the biologically relevant regime. Because many organelles have been found to
tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to
tethering and increased probability of active transport. We derive parameter-dependent conditions under which
tethering enhances long-range transport and improves the target capture time. These results shed light on the
optimization of intracellular transport machinery and provide experimentally testable predictions for the effects
of transport regulation mechanisms such as tethering.
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I. INTRODUCTION

Transport of cargo within the intracellular environment is a
highly essential and tightly regulated process. Most eukaryotic
cells have an active transport machinery consisting of molec-
ular motors moving on a network of cytoskeletal polymers
such as microtubules or actin filaments. Organelles can couple
directly to motor proteins via specialized adaptors [1] or
hitchhike on other motile organelles [2]. This mode of transport
results in motion that is processive over variable length scales
up to many microns. Many organelles execute bidirectional
motion, switching direction between processive runs by either
engaging alternate motor types or transferring to a cytoskeletal
track with different orientation [3–7].

In addition to this motor-driven processive transport, effec-
tively diffusive motion of organelles can arise due to thermal
noise, active fluctuations of cytoskeletal networks [8], or
hydrodynamic entrainment in flow set up by moving motors
and cargo [9]. Evidence has shown that the short-time-scale
movement of organelles appears effectively diffusive even
when the underlying cytoplasmic medium is primarily elastic
[8,10,11]. For brevity, we will refer to this stochastic motion
of organelles as passive diffusion, while acknowledging that
the fluctuations underlying the motion can have a number of
actively driven origins.

The interplay between active and passive transport modes
gives rise to length-scale-dependent effects. While processive
transport is efficient at delivering cargo over long cellular
distances, diffusion can more effectively spread organelles over
smaller lengths. The balance between these transport modes
has been quantified in previous work using the Péclet number,
defined as Pe = vL/D, where v is the processive velocity,
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L is the length scale of interest, and D is the diffusivity in
the passive state [12]. High Péclet numbers correspond to
lengths where active transport becomes dominant, assuming
infinite processivity. In the case of finite processive run lengths,
effectively diffusive behavior arises at long times as the particle
executes many runs in randomly chosen directions [13,14].

While much previous work has relied on the mean square
displacement (MSD) as a measure of particle spreading
[13–15], this metric cannot be directly translated into quantities
of biological relevance such as the rate of arrival to intracellular
targets or particle interaction rates. Theoretical studies of first
passage times by particles engaged in multimodal transport
have demonstrated the existence of an optimum run length both
in the absence of diffusion [16,17] and in the case where the
particles can only interact with their target in the diffusive state
[12,18,19]. These results suggest that the transport machinery
in the cell may be optimized to allow substantial contributions
from both processive and diffusive transport. In this work we
focus on the relative importance of both passive and active
transport modes to biologically relevant transport objectives,
assuming organelles are functional in both states of motion.
Endosomes, peroxisomes, lipid droplets, and mitochondria
are some example organelles known to employ multimodal
transport to move around within the cell while maintaining
their function [20–23].

A variety of cellular processes rely on efficient transport
to achieve distinct objectives necessary for biological func-
tion. One such objective is the establishment of a uniform
distribution of particles throughout the cell, as is observed
for peroxisomes, mitochondria, and lipid droplets [24–26].
Establishing this distribution, starting from the point of genesis
of particular organelles, requires rapid transport and broad
dispersion across long cellular length scales. Another objective
is the delivery of organelles to specific subcellular regions.
Examples include the motion of synaptic vesicles from the
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cell body to the presynaptic terminal of neuronal axons [27],
and the transport of vesicles containing newly synthesized
membrane-bound proteins from the Golgi apparatus to the cell
boundary [28]. The role of different transport modes in this
process depends on the length scale of separation between
the site of organelle synthesis and their eventual target. A
third cellular objective is the rapid encounter between an
intracellular target and any one of a uniformly distributed
population of organelles. For instance, peroxisomes serve to
neutralize oxidative metabolic by-products, and the health of
a cell is dependent on rapid removal of these toxic species
as soon as they appear [29]. Similarly, early endosomes rely
on contact with any of a population of lysosomes that aid in
releasing the endosomal contents into the cytoplasm [30]. The
efficiency of such a target encounter depends both on the nature
of transport processes for the organelles and on their density
within the cell.

The organization of the cytoskeletal network has a poten-
tially important role to play in the distribution of intracellular
particles. While a number of past models for intracellular
transport employed a continuum approximation for cytoskele-
tal density [12,31,32], it is becoming clear that the specific
arrangement of distinct cytoskeletal tracks has a substantial
impact on cargo transport [33]. Obstructions due to intersecting
microtubules may cause particles to pause or switch tracks
and change the direction of movement [6]. Localized traps
arising from heterogeneous filament polarity have been found
to hinder transport in cell-scale computational models [33].
In tubular cell projections such as neuronal axons and fungal
hyphae tips, the arrangement of cytoskeletal filaments is highly
simplified, with microtubules aligned along the tubular axis
and in many cases uniformly polarized towards the distal
tip [34,35]. These projections range in length from tens to
many hundreds of microns and require cargo to be efficiently
transported from the cell body to the distal tips and back again.
In addition to being particularly amenable to theoretical models
of transport phenomena, these cell types are of fundamental
biological importance. Defects in axonal transport in neurons
have been implicated in a number of human pathologies, rang-
ing from multiple sclerosis to Alzheimer’s to prion diseases
[36]. Due to their simplified morphology and long length,
these tubular cells form an ideal system for investigating the
length-scale-dependent effects of multimodal transport.

The discrete nature of cytoskeletal tracks within tubular
cell projections limits active transport to narrow axially ori-
ented bundles of microtubules [35]. It has been proposed in
several cellular systems that transport efficiency is increased
by directly tethering organelles to the microtubules in order
to prevent them from losing access to the tracks [7,37,38].
Tethering can occur by specialized adaptor proteins binding
the organelle to cytoskeletal tracks, as in the case for axonal
mitochondria that become preferentially anchored in cellular
regions with high metabolic needs [39–41]. Alternately, the
binding of multiple motor proteins to individual vesicles results
in a tethering effect that is believed to contribute to observed
motor cooperativity [7,42]. Because tethering is expected
to hinder short-range dispersion while enhancing the ability
of organelles to engage in long-range processive walks, it
can potentially serve as a regulatory mechanism for length-
dependent transport.

FIG. 1. Schematic for the transition between particle states. Here
D denotes diffusive particles, + denotes particles moving in the
rightward direction, and − denotes particles moving in the leftward
direction. The arrows are labeled with transition rates between states.

In this article we present a simplified model for transport in a
tube through a combination of processive walks and diffusion.
We analyze the relative contributions of the two transport
modes, as well as the possibility of tethering to cytoskeletal
tracks, in achieving the different transport objectives of the
cell. Section II establishes our halting creeper model and its
behavior in terms of the rate with which particles explore a
one-dimensional environment. In Sec. III we use the devel-
oped model to study the effects of bidirectional transport on
distributing particles uniformly within a domain. In Sec. IV
we explore the contribution of different transport modes to the
delivery of individual particles, as well as target clearance by
a dispersed particle population. Section V introduces an ex-
panded model that accounts for particle tethering, delineating
the effects of this mechanism on organelle dispersion and target
capture times.

II. HALTING CREEPER MODEL

We define a simplified stochastic model for intracellular
particles undergoing multimodal transport, focusing on motion
along a single dimension. Each halting creeper particle exists
in either a passive diffusive state characterized by diffusion
coefficient D or an actively moving state with constant speed
v in either the positive or negative direction (Fig. 1). Switching
between the states is a Markovian process with constant
starting rate γ for transitioning from the passive to the active
state and constant stopping rate λ for transitioning from active
to passive. Selection of the direction of motion is random
at each initiation of an active run, and we assume complete
symmetry between forward and backward motion. We note
that this model is a more general form of previously defined
creeping particle models [16], which have been analyzed in the
limit γ → ∞ and D → 0. Furthermore, a three-dimensional
version of our halting creeper model has previously been
explored in the context of mean square displacement and local
concentration fluctuations [12]. By contrast, in this work we
focus explicitly on the efficiency with which such two-state
transport distributes organelles throughout a cell and delivers
them to intracellular targets.

Two important quantities which describe the behavior of a
halting creeper particle are the active run length (� = v/λ) and
the equilibrium fraction of particles in the active state (f =

γ

λ+γ
). For much of the subsequent discussion, we nondimen-

sionalize all length units by the run length � and all time units
by the runtime 1/λ. We define the remaining dimensionless
parameters as D̂ = D

�2λ
, γ̂ = γ

λ
, and dimensionless time t̂ = λt .

The Markovian nature of the transitions between active
and passive states allows the calculation of a spatiotemporal
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FIG. 2. Contribution of passive and active motion to spreading of particles at different length and time scales. (a) Mean square displacement
for halting creepers. Black dash-dotted lines show scaling regimes. Vertical dashed lines indicate transition times between the regimes. Horizontal
dashed lines indicate transition length scales. (b) Dimensionless range versus time for a halting creeper particle, with scaling regimes, transition
times, and transition length scales indicated. The dotted curve shows the root mean square displacement for comparison. (c) Range versus time
for typical parameter values for intracellular organelles, showing the increase in long-range transport with increasing run length, above a length
scale indicated by the horizontal dashed line.

propagator function G(x,t) for the halting creeper, which
gives the distribution of positions at time t given the particle
started at the origin at time 0. This propagator is obtained by
convolution in the space and time domain of the individual
propagators for passive and active transport. After a Fourier

transform in space (x̂ → k and G → G̃) and a Laplace trans-
form in time (t̂ → s and G̃ → ˆ̃G), the multimodal propagator
for particles initially in an equilibrium distribution between
passive and active states is given by

ˆ̃G(k,s) = (λ + s)(γ + λ)(γ + λ + s) + (Dγ (λ + s) + v2λ)k2

(γ + λ)[s(λ + s)(γ + λ + s) + (D(λ + s)2 + v2(γ + s))k2 + v2Dk4]
, (1)

as derived in Appendix A. This propagator serves as the basis
for our subsequent calculations on the efficiency of particle
spreading and target site search.

A. Particle spreading: Mean square displacement

The MSD is a commonly used measure of spreading speed
for diffusing particles. For the halting creeper model, it can be
calculated directly from the propagator as

〈x̂(t̂)2〉 = L−1

[
−∂2 ˆ̃G

∂k2

∣∣∣∣∣
k=0

]

= 2(1 − f )D̂t̂ + 2f [t̂ + (e−t̂ − 1)], (2)

where the Laplace inversion L−1 is carried out analytically via
the residue theorem.

This expression for the MSD is composed of a linear super-
position of fraction 1 − f of diffusing particles and fraction
f of particles undergoing active walks that are persistent
over a dimensionless time scale of 1. The latter component
corresponds to an MSD that scales ballistically asf t̂2 for t̂ � 1
and diffusively as 2f t̂ for t̂ � 1. In the case of small diffu-
sivity, there is an additional transition time when the ballistic
motion begins to dominate over the passive diffusion. This
occurs at t̂∗ = 2D̂

γ̂
. When t̂∗ � 1, the MSD transitions from

diffusive to ballistic and back to diffusive scaling [Fig. 2(a)],
as has previously been demonstrated with lattice models of

mixed diffusive and processive transport [13]. The long-time
behavior of the particle is defined by an effective diffusion
coefficient

D̂eff = (1 − f )D̂ + f, (3)

which in the limit of t̂∗ � 1 is dominated by the term
corresponding to bidirectional active walks (D̂eff → f ).

The relative importance of processive versus diffusive trans-
port over a length scale x can be characterized by the Péclet
number [12] Pe(x) = vx/D, which is a dimensionless quantity
often used to compare the contributions from advection and
diffusion for particles in a flowing fluid [43]. A large Péclet
number Pe � 1 corresponds to transport that is dominated by
the processive motion. In the case where active motion remains
processive only up to distances comparable to the run length �,
the relevant Péclet number for long-range transport is Pe(�) =
1/D̂. Our dimensionless diffusion constant thus describes the
relative contribution of diffusion above processive motion over
a length scale comparable to the average run length. For the
remainder of the discussion, we focus on the case where
the transition time t̂∗ = 2D̂

γ̂
< 1 so that a distinct regime of

processive motion appears between the regimes dominated
by passive diffusion and effectively diffusive bidirectional
walks. This is the case for the organelle transport examples
listed in Table I. We note in passing that the presence of a
discernible processive motion is key to identifying active runs
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TABLE I. Estimated values of transport parameters for some biological systems. The run length can be obtained as � = v/λ. Parameters
can be converted to dimensionless units according to D̂ = Dλ/v2, γ̂ = γ /λ, and ρ̂ = ρv/λ.

Transport system

Rate of
switching to

active transport

Rate of
switching to

passive
transport

Velocity of
active

transport Diffusivity
Density of the

population

Approximate
size of cellular

region
γ (s−1) λ (s−1) v (μm s−1) D (μm2 s−1) ρ (μm−1) L (μm)

peroxisomes in fungal hyphae [24] 0.015a 0.29 1.9 0.014 1.5 50
lysosomes in kidney cells [6,44] 0.17 0.15 0.52 0.071 20
mouse neuron transport vesicles in vitro [45] 0.33a 2.7 0.8 0.03 0.14
mitochondria in Drosophila axons [46] 0.17 0.15 0.35 1.3 1000
dense core vesicles in Aplysia neurons
[47,48]

0.22a 2.2b 0.36c 0.002c 1.7 100

PrPC vesicles in mouse axons [45,49] 0.36 0.15 0.85 0.4 100

aEstimated from the equilibrium fraction in the active state.
bEstimated from the single-particle trajectory.
cEstimated from the MSD plot.

in experimental particle-tracking data [24,47,50], so systems
not in this regime are unlikely to be selected for studies of
active transport.

B. Particle spreading: Range

An alternate metric for the efficiency of particle spreading
is the overall range, the average size of the domain that has
been explored by a halting creeper particle after an interval of
time. For a one-dimensional model, the range of each particle
is given by its maximum position minus its minimum position
over the course of its trajectory. As will be discussed further
in Sec. IV, the range is directly related to the rate at which a
dispersed population of particles first encounters a target.

Our model permits calculation of the range over time for
a halting creeper using the renewal equation method [16,51].
Namely, we define the distribution of first passage times to
a target at position x > 0 (for a particle starting in a diffusive
state at the origin) as FD(t ; x) = FD+(t ; x) + FDD(t ; x), where
FD+ gives the distribution of first passage times for the fraction
of particles that arrive at the target while walking in the positive
direction and FDD gives the distribution of times for particles
arriving in the passive diffusive state. Similarly, we consider
the components of the propagator function defined in Appendix
A, where GDW (x; t) gives the spatial distribution at time t

of particles that began in a diffusive state at the origin at
time 0 and are found in the actively walking state at time
t . The other components GDD , GWD , and GWW are defined
analogously, with additional expressions for G+D and G+W

giving the propagator for particles that are initially walking in
the positive direction and end up in either the diffusive or the
actively walking state. One of the renewal equations for this
system is then given by

GDD(x; t) =
∫ t

0
dt ′[FDD(t ′; x)GDD(0; t − t ′)

+FD+(t ′; x)G+D(0; t − t ′)], (4)

A similar expression for purely processive bidirectional
motion appears in [16]. In Eq. (4), the distribution of particles
which start in the diffusive state and remain in the diffusive
state [GDD(x; t)] comprises two terms, the first of which is a
convolution between the probability that the particle first hits
the target x at time t ′ in the diffusive state [FDD(t ′; x)] and the

probability of it returning to position x within the remaining
time t − t ′, also in the diffusive state [GDD(0; t − t ′)]. The
second term includes a convolution between the probability
that the particle first hits the target while walking forward
[FD+(t ′; x)] and the probability that it returns to position
x in the diffusive state [G+D(0; t − t ′)]. Analogous renewal
equations are derived for GDW , GWD , and GWW .

After a Laplace transform in time, this convolution structure
can be expressed as a product, which yields a system of
equations[

ĜDD(0) Ĝ+D(0)

ĜDW (0) Ĝ+W (0+)

][
F̂DD

F̂D+

]
=

[
ĜDD(x)

ĜDW (x)

]
, (5)

where F̂ and Ĝ denote the respective Laplace-transformed
functions. Here G+W (0+; t − t ′) = limε→0+ G+W (ε; t − t ′)
corresponds to the probability density for a particle that starts
at time t ′ just before the origin walking in the positive direction
to be at the origin and in a walking state at time t .

This system can be solved to calculate the first passage
time F̂D = F̂DD + F̂D+ for particles that began in the diffusive
state. Corresponding renewal equations for GWD(x; t) and
GWW (x; t) yield the first passage time for particles that began
in the active state:[

ĜDD(0) Ĝ+D(0)

ĜDW (0) Ĝ+W (0+)

][
F̂WD

F̂W+

]
=

[
ĜWD(x)

ĜWW (x)

]
. (6)

The range of the halting creeper particles over time (Z(t))
can be related to the Laplace transform of the overall first
passage time F̂ (s; x) according to [16]

Z(t) = L−1

[
1

s

∫ ∞

−∞
F̂ (s; x)dx

]
, (7)

where F̂ is a linear combination of F̂D and F̂W , weighted
by the equilibrium probability that the particle starts in an
active or a passive state. To calculate the range function, we
analytically perform the Fourier inversion of the propagators
ĜDD(0), Ĝ+D(0), ĜDW (0), and Ĝ+W (0+) by integrating over
k. The spatial integral over x results in the right-hand side of the
renewal equations being expressed as ˆ̃GDD(k = 0), etc. While
short-time and long-time limits of the range can be obtained
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directly from the large-s and small-s limits of the renewal
equations, the relevant time scales for biological processes
can span across many orders of magnitude, thus making it
desirable to calculate the particle spreading efficiency over
all time scales. To this end, we invert the Laplace transform
numerically using Talbot’s algorithm [52].

As shown in Fig. 2, the range exhibits similar transitions
in scaling as the MSD. However, the transitions between
the different regimes are shifted to longer times. At short
times, the average range of particles with an equilibrium initial
distribution between active and passive states can be calculated
by solving the renewal equations in the limit s → ∞ and
performing the Fourier and Laplace inversions analytically for
the lowest-order terms in 1/s. The expression for the short-time
average range is given (in dimensionless units) by

Z(t̂) → 4(1 − f )

√
D̂

π

√
t̂ + f t̂. (8)

Thus, the ballistic motion dominates over the diffusive motion
above a critical transition time

t̂∗range = 16D̂

πγ̂ 2
. (9)

In the case where particles spend very little time in active
motion (γ̂ � 1), this time scale is substantially longer than
the transition time t̂∗ for the MSD. The corresponding length
scale for the transition from primarily diffusive to primarily
ballistic motion is

x̂∗
range = 16D̂

πγ̂ (1 + γ̂ )
. (10)

At longer times, there is a subsequent transition from the
ballistic scaling of the range to the effectively diffusive long-
time scaling

Z(t̂) → 4

√
D̂eff

π

√
t̂ , t̂ � t̂∗∗

range, (11)

which occurs at a secondary transition time t∗∗
range and corre-

sponding length scale x∗∗
range given by

t̂∗∗
range = 16D̂eff

πf 2
,

x̂∗∗
range = 16

π

(
1 + D̂

γ̂

)
.

(12)

In the case of a small fraction of time spent walking,
this transition time is again shifted substantially above what
would be expected from the MSD behavior, where the corre-
sponding transition occurs at t̂∗∗ = 2. In the limit D̂/γ̂ � 1,
the transition time for the range can also be expressed as
t̂∗∗
range = 16

π
(1 + 1/γ̂ ), comparable to the cycle time required for

a single particle to transition between an active and a passive
state and back again.

This result highlights the fundamental insufficiency of the
MSD in describing the efficiency with which the particles
explore their domain. Specifically, for a very small equilibrium
walking fraction f , the time required for the active walks to
contribute substantially to the average range can be well above

the time scale 1/γ for an individual particle to start walking.
Similarly, in this regime the range will only exhibit diffusive
scaling at time scales long enough for individual particles to
execute multiple starting and stopping transitions. Examples of
particle motion where the pause time substantially exceeds the
processive runtime include organelles (such as peroxisomes)
whose active transport is mediated by hitchhiking on other
organelles [2] and particles whose motion is driven by hydro-
dynamic entrainment due to cytoplasmic flow associated with
nearby passing particles [9]. In such cases, the MSD does not
accurately represent the rate at which these particles explore
their domain.

We note that in the case where D̂ < 1, which corresponds
to most biologically relevant examples, increasing the run
length (e.g., by decreasing the stopping rate λ) raises the
particle range for all length scales above x > 16D

πv
(Fig. 2),

corresponding to the length at which the Péclet number Pe(x)
becomes substantial. The implication is that longer processive
runs improve the ability of particles to explore their domain at
all length scales where active walks move faster than diffusion.

III. PARTICLE DISPERSION THROUGH
BIDIRECTIONAL TRANSPORT

Having established the speed of particle spreading via
multimodal bidirectional transport, we now turn to consider ex-
plicitly the efficiency with which such transport can achieve a
particular cellular goal. Certain metabolic and regulatory needs
of the cell require a well-dispersed distribution of organelles
throughout the cell interior. For instance, mitochondria are
found throughout neuronal axons, providing a locally available
energy source through glucose metabolism [40]. In fungal
hyphae, peroxisome organelles are maintained in a nearly
uniform distribution [24], allowing for rapid neutralization of
toxic metabolic by-products [29].

Establishing a well-mixed distribution relies not only on
the ability of particles to move rapidly through the cell, but
also on the ability of a transport mechanism to disperse and
flatten regions of highly concentrated particles. We focus
specifically on the rate with which a bolus of particles is spread
over a cellular region. Such a process becomes necessary, for
instance, in the case of rapid organelle production in response
to an external signal, where the organelles must then be spread
through long cellular projections such as axons or hyphae.

We use the halting creeper model to explore how different
transport parameters affect the efficiency of such dispersion.
Because we are interested in the initial establishment of an
equilibrium spatial distribution, we consider particles that
originate at x = 0 in the passive state, whose distribution is
given byGD(x,t) = GDD(x,t) + GDW (x,t). This function can
be evaluated by numerical Fourier-Laplace inversion of the
transformed distribution, as described in Appendix A. The time
evolution of the distribution is plotted in Fig. 3(a).

Note that long walk lengths result in little dispersion
of particles, with the distribution splitting into two narrow,
processively moving peaks. Short walk lengths lead to an effec-
tively diffusive motion, with the particle distribution assuming
the form of a slowly spreading Gaussian. An intermediate walk
length combines both the rapid spreading of the distribution
with the flattening of localized peaks to enable more efficient
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B

FIG. 3. Dispersion of particles towards a uniform distribution via bidirectional transport. All length units are nondimensionalized by domain
length L and all time units by L/v. (a) Particle distribution density for different run lengths, at dimensionless time 0.3. (b) Entropy vs time for
different run lengths. The horizontal dash-dotted line denotes the threshold entropy for the system to be considered well mixed. The vertical
(green) dash-dotted line is at dimensionless time 0.3. (c) Time to reach a well-mixed state as a function of run length � and rate of transition to
an active state γ . Points A and B are drawn at corresponding transport parameters for lysosomes in monkey kidney cells and PrPC vesicles in
mouse axons, respectively (Table I).

dispersion. The limits for large and small walk lengths suggest
that there exists an optimal run length � for which the particles
are most efficiently mixed.

A number of different metrics have been developed for
quantifying the rate of mixing driven by stochastic processes
[53–55], including several that track the approach of a bolus
of particles towards uniform spread [56,57]. A commonality
of these measures is their dependence on a particular length
scale of interest [55] over which particles are to be mixed.
For our one-dimensional system, we introduce a length L

corresponding to the size of the domain on which uniform
distribution is desired. This length represents the approximate
extent of the tubular cell region across which particles are being
dispersed. It can range over many orders of magnitude, with
mammalian axons reaching up to a meter in length. Example
values for some cellular systems are listed in Table I. We
calculate the spatial distribution of halting creeper particles
originating in the center of a domain of length L with reflecting
boundary conditions, implemented using the standard image
method [58]. The mixing of the particles is quantified via the
Shannon entropy of the distribution [57,59], defined as

S = −
N∑

i=1

pi log(pi)

log(N )
, (13)

where the domain is broken up into N bins and pi is the
probability of a particle being located in bin i. Optimal mixing
is achieved when the organelles are uniformly distributed, in
which case pi = 1

N
and S = 1. Conversely, a distribution with

all particles in a single section is the least mixed state, with
S = 0. The entropy has an inherent dependence on the number
of bins used for discretizing the probability distribution and
we employ N = 5000 throughout our calculations.

The time evolution of the entropy is dependent on the
dimensionless run length �/L [Fig. 3(b)], with long runs
corresponding to an initially slow rise in entropy as the bolus of
particles evolves into two coherent spatial peaks until sufficient
reversals are achieved to disperse the particles throughout the

domain. Short run lengths limit the rate of entropy increase over
long times, because the particle distribution spreads slowly
as an effectively Gaussian peak. We consider the system to
be well mixed when the entropy crosses a threshold value
St = 0.9 and define the time taken to reach this state as the
mixing time tmix. This mixing time depends in a nonmonotonic
fashion on both the starting rate γ and run length �of processive
walks [Fig. 3(c)]. High values of γ , corresponding to particles
that spend most of their time in the active state, give rise
to an optimum run length to achieve the most rapid mixing.
This effect arises from the need to reverse the direction of
active walks in order to efficiently disperse particles within the
domain. However, each such reversal necessitates a waiting
time of 1/γ during which the particles are in a passive state and
spreading very slowly. Consequently, at low values of γ mixing
is most efficiently achieved by particles that carry out very
long walks. The results shown in Fig. 3 assume a small value
of passive diffusivity ( D

Lv
= 0.01). Increasing this diffusivity

would lead to a monotonic rise in the entropy, as diffusion
enhances the particle mixing.

IV. TARGET SEARCH BY MULTIMODAL TRANSPORT

A. Search by a single particle

In addition to achieving uniform dispersion of particles,
another goal of intracellular transport is to deliver organelles
to specific cellular regions. This transport objective arises, for
instance, when synaptic vesicles must reach the presynaptic
bouton of a neuron [27]. Using our one-dimensional halting
creeper model, we consider the first passage time of a single
particle towards a stationary target located at distance x. For
simplicity, we consider the case where x is much smaller than
the overall extent of the domain so that the distance to the
target x and the processive run length � are the only relevant
length scales in the problem. As in the case of our dispersion
calculations (Sec. III), we consider particles that are initially
in the passive state, as applicable to the distribution of newly
synthesized organelles. The distribution of first passage times
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FIG. 4. Target capture times for a single particle. (a) Cumulative encounter probability for different initial distances to the target x̂. The dotted
and dashed lines denote the encounter probability for diffusive particles with diffusion coefficients D̂ and D̂eff , respectively. The dash-dotted
line denotes the average time required for a particle in the active state to cover a distance of x̂ = 1. All length units are nondimensionalized
by � and all time units by �/v. (b) Time to reach 90% capture probability for different run lengths, assuming a rapid starting rate γ = 1 s−1

and distances appropriate for intracellular organelle transport. The dotted and dashed lines denote t90% for diffusive particles with diffusion
coefficients D̂ and D̂eff , respectively.

can be obtained from the renewal equation (5) by carrying
out analytic Fourier inversion followed by numerical Laplace
inversion of the propagators (see Appendix A).

The cumulative distribution of encounter times to the
target is plotted in Fig. 4(a), showing the transition from a
passively diffusive process at small distances (x̂ < x∗

range) to an

effectively diffusive process (with diffusivity D̂eff) at distances
much longer than the run length (x̂ > 1). For comparison, the
cumulative distribution for a purely diffusive process is given
by

Hdiff(x̂,t̂ ; D̂) = 1 − erf

[
x̂√
4D̂t̂

]
. (14)

By contrast, intermediate distances show a sharp increase in
the cumulative probability of target encounter at time t̂ = x̂,
corresponding to the arrival of the first processively walking
particles.

Because the average first passage time of a random walk
in a semi-infinite domain diverges [58], we focus on the
time required for particles to hit the target with sufficiently
high probability. Analogous to our calculations of particle
dispersion in Sec. III, we define the hitting time t90% as the
time by which there is a 90% chance that the particle has
hit the target. We note that t90% is well defined even on a
semi-infinite domain due to the recurrent nature of random
walks in one dimension, ensuring a finite hitting time for
all particles [58]. For short distances, the time for probable
encounter of the particle scales as expected for purely diffusive
motion with diffusivity D̂ [Fig. 4(b)],

tdiff
90 (x̂; D̂) = x̂2

4D̂[erf−1(0.1)]2
, (15)

where erf is the error function. At long times, a similar scaling
is observed with effective diffusivity D̂eff.

As is the case when the transport objective is to achieve
a uniform distribution of particles, increasing the length of
processive runs does not necessarily result in more efficient
transport. This is true despite the fact that, unlike previous
models of multimodal transport [12,18,19], we consider our
particles capable of accessing their target in both the passive
and active states. A run length that is much longer than
the distance to the target can hinder particle delivery, because
particles have a 50% chance of initiating their motion in the
wrong direction. They then require a long time to stop, turn,
and return towards the target. At the same time, very short
processive runs decrease the overall rate of spread for the
particle distribution and thus slow down the target encounter.
These two effects give rise to an optimum in the efficiency
of target delivery, with minimal values of target hit time t90%

occurring at intermediate run lengths � [Fig. 4(b)]. This effect
is a direct analog to the optimum walk length for achieving
uniform distribution. The existence of this optimum walk
length has also previously been noted for creeper models
without any paused or passive state [16,17].

We additionally provide a calculation of first passage times
in the alternate case where the particle is capable of accessing
its target in the passive state only (see Appendix B). In such
a system, the optimal walk length decreases substantially
compared to the model where both states are functional, as
the rapid processive transport must be counterbalanced by
sufficient time spent in the passive regime in order to capture
the target. This effect is distinct from the disadvantage of
long walks which can lead the particle away from its target,
underlying the nonmonotonic dependence on � in Fig. 4.

B. Search by a population of particles

A closely related objective of intracellular transport is the
capture of a target by any one of many moving particles.
In this case we assume particles that are initially uniformly
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distributed with some density ρ and consider the mean first
passage time (MFPT) for the first of them to hit the target.
Some biological examples include the clearance of toxic
cytoplasmic metabolites by any one of a uniformly scattered
field of peroxisome organelles [29], the influx of peroxisomes
to plug septal holes in damaged fungal hyphae [60], or the
arrival of lysosomes to fuse with a phagosome and digest its
engulfed contents [30]. For simplicity, we assume the target is
itself immobile and must wait for the particles to come to it
via some combination of active and passive transport. In this
situation, the relevant length scale is defined by the typical
initial spacing between the particles (1/ρ). In the limit of a
uniform distribution over a very long domain, the MFPT can
be related directly to the range of the moving particles [16].
Specifically, the mean first passage time is given by

MFPT =
∫ ∞

0
e−ρZ(t)dt, (16)

where Z(t) is the average range of particles over time t .
The behavior of the MFPT is dictated by the dimensionless

length scale for the separation between particles (1/ρ̂ = 1/ρ�).
When this length scale is short enough that active walks remain
processive (1/ρ̂ � x̂∗∗

range), we can approximate the particle
range as a linear combination of a diffusive and a ballistic
process. The MFPT can then be calculated analytically by
plugging Eq. (8) into Eq. (16) and integrating the resulting
exponential

MFPT ≈ 1

f ρ̂
−

√
4D̂

γ̂ 2ρ̂f
exp

[
x̂∗

rangeρ̂

4

]
erfc

[
x̂∗

rangeρ̂

4

]
,

(17)
where erfc is the complementary error function. The limits for
high and low particle concentration are given by

MFPT → π (1 + γ̂ )2

8D̂ρ̂2
,

1

x̂∗
range

� ρ̂ � 1

x̂∗∗
range

,

MFPT → 1

f ρ̂
, ρ̂ � 1

x̂∗
range

, (18)

where the high-density limit corresponds to diffusive scaling
of MFPT with the distance between particles while the low-
density limit corresponds to ballistic scaling. Setting these two
limits equal to each other indicates that a transition in the
encounter times occurs at a critical length scale

1

ρ̂crit
= x̂∗

range

2
, (19)

which can be equivalently expressed as

f Pe

(
1

ρ̂

)
= 8

π (1 + γ̂ )2
. (20)

This transition corresponds to a particle density where proces-
sive walks begin to dominate the ability to rapidly encounter
targets, which occurs when the Péclet number for the distance
between particles, multiplied by the fraction of time spent
walking, is of order unity.

A calculation of the mean first passage time accurate at all
length scales can be carried out by numerical inversion of the
Laplace-transformed range function (Sec. II B), and the results
are plotted in Fig. 5 for two values of particle density. The
black line indicates the transition between behavior dominated
by diffusive versus by processive particle motion [Eq. (19)].
Below this line, active transport dominates the motion of the
particles and the time to reach the target is insensitive to the pas-
sive diffusivity. Above this line, passive diffusion dominates
and the target search is insensitive to the fraction of time that the
particles spend in processive motion. The parameters relevant
to two example biological systems (peroxisome transport in
fungal hyphae and vesicle transport in Aplysia neurons) are
marked with dots.

The parameters for peroxisome transport fall near the transi-
tion region, where both passive diffusion and active processive
walks contribute to the ability of these organelles to reach any
target position within the cell. While previous modeling studies
have indicated that both transport mechanisms are important
to the maintenance of a uniform distribution of peroxisomes in
hyphae [24], we demonstrate here that the particle density falls
in an intermediate regime such that diffusion and active walks
both contribute to efficient target search by the population

FIG. 5. Average time for target capture by a population of uniformly distributed particles, with two different densities ρ̂ = 10 (left) and
ρ̂ = 0.3 (right). All units are nondimensionalized by run length � and run time �/v. Marked points show estimated parameters for two cellular
systems: A, peroxisome transport in fungal hyphae [2], and B, vesicle transport in Aplysia axons [47] (see Table I). Black lines mark the
transition between diffusion-dominated and transport-dominated motion on the length scale of interparticle distance [Eq. (19)].
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of peroxisomes. In the case of vesicle transport in Aplysia
neurons, the lower density of organelles suggests a greater
contribution from the active mode as shown in Fig. 5.

We note that for our model with capture occurring in both
the active and the passive state, the range over the relevant
length scale increases monotonically with the fraction of time
spent walking. Hence, the rate of capture is always increased
by raising the frequency of starting an active walk γ̂ . This
is not the case for particles that can only capture their target
in the passive state (see Appendix B), which could include
encapsulated proteins that must first exit a vesicle to carry out
their function. For such particles, frequent runs decrease the
fraction of time spent in a functional state and thus hinder
target capture (Fig. 7), an effect that has previously been noted
in studies of multimodal search processes [12,19].

V. TRANSPORT IN A TUBE AND THE
BENEFITS OF TETHERING

Active transport in a cell occurs via motor proteins attached
to microtubule tracks. Even very narrow cellular projections
are typically substantially wider than the diameter of a
single microtubule. Consequently, organelles must navigate
transversely through the cytoplasmic environment in order
to encounter a microtubule and engage in active processive
motion. A mechanism to keep organelles located close to
the microtubule can improve transport efficiency by reducing
this search time. In many cases, organelles are believed
to be tethered to the microtubule tracks, preventing them
from dissociating and diffusing even when they pause after
a processive walk. This tethering can be accomplished by
additional inactive motors attached to the organelle [37,61] or
by specific molecular adaptors linking the organelle directly to
the microtubule [39,62].

It has been speculated that tethering can enhance transport
by forcing the organelle to remain in proximity to the
microtubule tracks, thereby effectively increasing the rate at
which processive walks are initiated [7]. At the same time,
tethering can severely limit the intracellular space that can
be explored by an organelle in the passive state, either by
reducing the axial diffusivity in the case where inactive motors
slide diffusively along microtubules [37,38] or by halting it
entirely in the case of organelle docking [39]. The benefits
of tethering thus depend on the relative balance between
active and passive transport, as well as the radial size of the
domain around the microtubule, which determines the delay
associated with encountering the track. The former aspect is
dependent on the length scale over which transport must be
achieved, as discussed in the previous sections.

We extend our halting creeper model to a three-dimensional
cylindrical domain of radius R, wherein active runs can be
initiated only within a radius of size a < R, corresponding
to a small region surrounding a central track. While cellular
projections such as hyphae and axons generally have mul-
tiple microtubule bundles [24,63], this model serves as an
approximation where the size of the cylindrical domain sets
the cross-sectional density of the microtubule bundles. In a
typical fungal hypha, there are on average two microtubule
bundles along the axis [24,64,65]. Assuming the microtubule
bundles to be points distributed uniformly on the transverse

section of the cylinder, the average distance between two
bundles can be calculated as 128r/45π , where r is the radius
of the cross section [66]. The domain radius in our model
can be considered to be half of this distance, which gives
an estimate of R ≈ 0.45 μm for a typical hyphal diameter of
2 μm. This is substantially larger than the peroxisome radius
(approximately equal to 100 nm) [24], so organelles can only
interact with the microtubules over a small fraction of the
available cross-sectional area.

In addition to bidirectional walking and passive diffusion
states, the particles in this extended model can also enter a
tethered state with rate kb while within the encounter radius a.
For simplicity, we assume that particles in the tethered state
are entirely immobilized. The model could be extended in a
straightforward manner to limited but nonzero diffusivity while
in the tethered state. Exit from the tethered state occurs at rate
ku, with the particle unbinding to a uniform radial distribution
within the capture radius a. A dimensionless binding strength
for tethering is defined by Keq = kb/ku.

We note that this model assumes that tethering does not
in any way hinder the initiation of an active run, so particles
transition to the active state with the same rate regardless of
whether they are bound or freely diffusing within the capture
radius. While it is possible for tethering to either speed up
or slow down the association of an organelle with a motor
or a carrier particle, depending on the length, flexibility, and
configuration of the tether, we neglect this effect here. Our
model for transport in a cylindrical tube around a microtubule
track is summarized schematically in Fig. 6(a).

In the limit of rapid transverse diffusivity or small domain
size (D/R2 � γ,kb), diffusive particles remain equilibrated
throughout the cross section of the domain and the effective
rates of starting a walk or binding become α2γ and α2kb,
respectively, where α = a/R. In this limit, the delays asso-
ciated with transverse diffusive transport are eliminated and
the equilibrium fraction of particles in each state can be easily
calculated (Appendix C). For particles starting at equilibrium,
the long-time diffusivity is then given by

D̂eff = D̂fdiff + fwalk,

fwalk = γ̂ α2

γ̂ α2 + ( α2Keq+γ̂ /k̂u+1
Keq+γ̂ /k̂u+1

) ,

fdiff =
(

γ̂ /k̂u+1
Keq+γ̂ /k̂u+1

)
γ̂ α2 + ( α2Keq+γ̂ /k̂u+1

Keq+γ̂ /k̂u+1

) , (21)

where fwalk and fdiff are the fraction of particles in the active
and diffusive state, respectively. We again nondimensionalize
all length units by the run length � and all time units by the
runtime �/v, for consistency with previous calculations.

In the more general case where the delay due to transverse
diffusion is included, it can be shown (see Appendix D) that for
a particle which begins uniformly distributed in the diffusive
state within radius a, the mean waiting time to enter a walking
state is identical to the fast-diffusion limit and is given by

〈t̂w〉 = 1

γ̂

[
α2Keq + 1 + γ̂ /k̂u

α2(Keq + 1 + γ̂ /k̂u)

]
. (22)
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FIG. 6. Effects of tethering on transport. (a) Schematic for the tethering model. The smaller cylinder denotes the region within which
particles can tether to the microtubule or initiate active transport. The transition rates between states are indicated with the arrows. (b) Range vs
time for weak (Keq = 0.1) and strong (Keq = 500) tethering. Dashed black lines show analytical approximations in the limits of no tethering
and infinitely strong tethering, accurate for short to intermediate times [Eq. (24)]. The horizontal dash-dotted line indicates the transition length
scale L̂crit where tethering becomes advantageous. (c) Average time for target capture by a population as a function of the starting rate γ̂ and
binding strength Keq. The solid line indicates the transition from diffusive to active transport as the dominant transport mode at different values
of tethering strength. The dashed line shows the transition where strong tethering becomes advantageous for the target encounter.

This average time ranges from 1/α2γ in the limit of low
binding strength to 1/γ in the limit of strong binding and
is independent of the diffusivity D. In the case of very slow
diffusion, those particles that escape the binding radius a

take a long time to return, but such escape before initiating a
walk becomes concomitantly less likely, with these two effects
canceling each other out in the calculation of the average time
to start walking. Because particles are assumed to distribute
uniformly across radius a when leaving the tethered state, this
equivalence of the average time to initiate a subsequent walk
means that the long-time behavior of particles matches the
fast-diffusivity limit, regardless of the actual value of D.

By contrast, we note that the standard deviation in the time
required to start a walk, for a particle that starts diffusive and
uniformly distributed within a, is dependent on the diffusivity
(see Appendix D). Slow diffusion and strong binding can
greatly increase the variance in the time required for a particle
to start a walk, leading to large variability in the amount of time
individual particles remain in a passive or tethered state over
a particular time interval of observation. This extreme case
may contribute to the identification of apparently immobile
populations of particles observed in some in vivo organelle
tracking studies [25].

The effectiveness of tethering in improving transport over
a long time can be inferred from the derivative of the effective
diffusivity D̂eff with respect to the binding strength Keq.
A positive derivative signifies that long-range transport is
accelerated by tethering, whereas a negative value indicates
that tethering hinders transport. Tethering is advantageous in
the long-time limit when the following criterion is satisfied:

(1 − α2)

(
γ̂

γ̂ + 1

)
Pe(�) > 1. (23)

This expression summarizes the idea that tethering is helpful
for long-range transport in situations where the domain is wide
(α2 � 1), where the rate of walking is substantial compared
to the pausing rate (γ̂ � 1) and where active runs move the

particles faster than diffusion over the longest processive length
scale [Pe(�) � 1].

Below the long-time diffusive limit, the extent to which
tethering aids transport depends on the length scale of interest.
In particular, at times much shorter than the cycle time to
initiate and stop an active walk, the dimensionless particle
range can be approximated by

Z(t̂) ≈ 4fdiff

√
D̂t̂

π
+ fwalk t̂ ,

(24)

in a manner analogous to Eq. (8). This expression can be
inverted to calculate the time at which a particular range is
reached. Comparing the low-Keq and high-Keq limits indicates
that the ability of particles to tether to the track allows them to
explore more rapidly over length scales above

L̂crit = x∗
range

(1 + γ̂ )2

(1 − α2)2
. (25)

For large domains (α � 1) and low propensity for active
walking (γ̂ � 1), tethering is helpful over all length scales
where processive active motion is the dominant form of
transport, as defined by the critical length x̂∗

range [Eq. (10)].
We use kinetic Monte Carlo methods to simulate the spread-

ing of particles within our cylindrical model. The simulations
are accelerated with the use of analytically calculated Green’s
functions to propagate the particles within homogeneous
cylindrical domains (see Appendix E), allowing for efficient
sampling of particle behavior over a broad set of parameters.

The average axial range for a population of particles can
be obtained as a function of time from the simulations.
Figure 6(b) shows the time evolution of the range for weak
and strong tethering. The transport parameters used are relevant
for peroxisomes in fungal hyphae (Table I), with the domain
width assumed to be R = 1 μm and a central region of
width a = 0.1 μm. For consistency with previous calculations,
results are reported in dimensionless units, using the run length
(� ≈ 7 μm) and processive walking time (1/λ ≈ 3 s) as the
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length and time units. The critical length scale for this system
is L̂crit ≈ 0.12, below which the average range for strongly
tethered particles is lower than the weakly tethered ones. For
length scales above L̂crit, strongly tethered particles explore
over a greater range. The full extent of a hyphal growth tip
(L̂ ≈ 8) is several times longer than this critical length scale,
highlighting the potential benefit of tethering for distributing
peroxisome particles over the entire growth tip.

Having established the length scales over which tethering
is advantageous, we now calculate explicitly the effect of
tethering on the average search time by a population of particles
with dimensionless density ρ̂. The capture time is defined as the
first passage time to an arbitrary cross section of the cylinder,
by a population of particles equilibrated between states and
uniformly distributed along the axis of the cylinder. We note
that in the case of a target that is located off the central axis
where active motion and tethering take place, this target could
only be reached if the particle passes through the appropriate
axial location in the passively diffusing state. The capture time
should then be calculated using the distribution of first passive
passage times, as discussed in Appendix B. In the limit of very
rapid transverse diffusivity, capture times for an off-axis target
could be derived directly from the first passive passage to a
cross section. For slow transverse diffusivity, multiple passages
through the cross section in the passive state would be required
to hit a target that is much smaller than the cross-sectional
area. Because the relationship between particle range and
first passage times [Eq. (16)] breaks down in the case where
only passive passage is considered, extracting target capture
times in our full three-dimensional model would require direct
simulation of first passage by individual particles. While this
case would make a promising extension for future work, for
the sake of simplicity we focus here on targets localized at the
central axis.

A surface plot of the average capture times versus binding
strength Keq and walking rate γ̂ is shown in Fig. 6(c). The
effect of tethering on the average time to target capture varies
depending on γ̂ . For particles with a very small probability
of engaging in active runs, tethering hinders target search by
limiting mobility in the passive state. For particles with a high
propensity for active motion, tethering can aid their ability to
encounter targets by increasing the amount of time spent in the
region where active runs can be initiated. We approximate the
parameter regime where this transition occurs by analytically
calculating the integral for the MFPT [Eq. (16)], using the
short-time approximation of the particle range [Eq. (24)].
Comparing the low-Keq and high-Keq limits yields a transition
at a critical particle density

ρ̂tether =
(

2

L̂crit

)(
1 + α2γ̂

1 − α2

)2

. (26)

For small values of α and γ̂ , this transition is equivalent in
form to the critical length scale where processive walks first
begin to play an important role, as calculated in Eq. (19). For
parameters relevant to the motion of peroxisomes in fungal
hyphae, we compare the critical particle density (ρ̂tether ≈ 17)
with the observed density of peroxisomes (ρ̂ ≈ 10). Because
the observed density is comparable to the critical density, we
expect that tethering would not substantially hinder the ability

of the peroxisomes to patrol the cytoplasm and encounter
targets within the cell.

For a given finite binding strength Keq, the MFPT to the
target will be dominated by either diffusive or processive
motion, depending on the fraction of particles in each state. The
transition to the regime where encounter times are sensitive to
the initiation of active walks occurs when the spacing between
particles hits a critical length scale where such walks between
to dominate. This length can be obtained analogously to the
expression for x̂∗

range [Eq. (10)] by replacing the starting rate
γ̂ with an effective starting rate based on the average time to
initiate a walk: γ̂eff = 1/〈tw〉. In the case of rapid binding or
unbinding (k̂u � γ̂ ), this rate is approximated as

γ̂eff ≈ γ̂

[
α2(Keq + 1)

α2Keq + 1

]
. (27)

The critical particle density is then given by

ρ̂
(cyl)
crit = 2

x̂
∗(cyl)
range

= πγ̂eff

8D̂
, (28)

where x̂
∗(cyl)
range is the length scale for transition between diffusive

and processive motion in the model of a halting creeper within
a cylindrical domain. This transition is shown with a solid black
line in Fig. 6(c).

VI. SUMMARY

We have employed a simplified halting creeper model,
consisting of stochastic interchange between passive diffusion
and active processive walks, to investigate the efficiency of
transport within an extended cylindrical domain. Specifically,
this model is applicable to the transport of organelles within
long narrow cellular processes such as neural axons and
fungal hyphae. We explored the space of relevant parameters,
including the rates of transition between passive and active
states and the relative speed of diffusion versus active transport,
as characterized by the Péclet number over different length
scales. Our results highlight the importance of the relevant
length scale in determining the contributions of the different
transport modes and we identified simple expressions for the
time (t∗range = 16Dλ2

πv2γ 2 ) and length [x∗
range = 16Dλ2

πvγ (λ+γ ) ] at which
processive motion dominates particle spreading. We empha-
sized the use of the average range as a metric for the ability
of particles to explore their domain via multimodal transport,
demonstrating that passive diffusion can play an important role
over longer length scales than expected based on the classic
analysis of the mean square displacement.

We focused specifically on the contributions of active and
passive transport to several key objectives relevant to the
cell. First, we considered the establishment of a uniform
distribution from a bolus of particles, demonstrating that
efficient dispersion is achieved at intermediate run lengths that
can be substantially smaller than the domain size. This result
indicates the importance of bidirectional active transport with
frequent reversals in the movement of particles that must be
spread broadly throughout a large domain, as is the case with
metabolic organelles such as peroxisomes and mitochondria.
Second, we quantified the rate at which a single particle first
encounters a stationary target, showing again an advantage
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to intermediate run lengths that minimize the time wasted
pursuing a long processive walk in the wrong direction. Third,
we considered the rate of encounter to a target by the first
of a population of halting creeper particles, identifying the
parameter regime where active transport or diffusion dominate
the motion, and showing that examples of biological interest
fall in the intermediate regime where both modes of transport
contribute substantially to target encounter.

Finally, we investigated an extension of the one-
dimensional model to a cylindrical domain, where active
transport can only occur in a narrow region along the axis
and where particles can enter a halted tethered state that both
enhances the effective rate of initiating an active run and limits
their ability to explore the domain while in the passive state.
The advantages of tethering to microtubule tracks have been
a topic of much speculation in the literature on intracellular
transport [7,37,38]. We delineated the parameter regime in
which tethering is expected to aid the long-time dispersion
of particles [Eq. (23)] and identified a critical length scale
Lcrit [Eq. (25)] below which tethering hinders the ability of
the particles to explore their domain. For several example
intracellular transport systems (Table I), this critical length
is on the order of a few hundred nanometers, confirming the
advantages of tethering for transport over micron length scales.

The results derived in this work highlight the complemen-
tary role of diffusion and processive transport in fulfilling cellu-
lar goals for delivering and distributing cytoplasmic organelles.
The derived expressions can be employed for analyzing data on
measured transport parameters to determine the length scales
and transport objectives where active motor-driven motion
is expected to dominate, where bidirectional transport with
limited processivity is advantageous, and where tethering to
cytoskeletal tracks can aid overall organelle dispersion.
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APPENDIX A: PROPAGATOR FOR A ONE-DIMENSIONAL
HALTING CREEPER

We calculate the position distribution of a particle switching
between diffusive transport with diffusivity D and processive
motion with speed v. Switching between states is a Poisson
process with rate γ for entering an active state and rate λ

for leaving an active state (see Fig. 1). The overall spatial
distribution can be obtained by a convolution of propagators
for individual states, summed over all possible state transitions.

Starting at an initial position x = 0, the spatial distribution
of a diffusive particle at a time t is

RD(x,t) = 1√
4πDt

e−x2/4Dt . (A1)

We define the joint distribution that the particle first switches
to an active state at time t while at position x by

HD(x,t) = γ e−γ tRD(x,t). (A2)

A Fourier transform in space (x → k), followed by a Laplace
transform in time (t → s), gives

ˆ̃HD(k,s) = γ

(γ + Dk2 + s)
. (A3)

The position distribution of particles starting at x = 0 in the
active state, moving with a velocity v at time t , is given by

R±(x,t) = δ(x ∓ vt). (A4)

The corresponding joint distribution for the time and location
of switching from the active to the passive state is

H±(x,t) = λe−λt δ(x ∓ vt). (A5)

The Fourier- and Laplace-transformed distribution is given by

ˆ̃H±(k,s) = λ

(λ + s ∓ ikv)
. (A6)

We define a step in the particle’s trajectory as a switch from
the passive to the active state and back to the passive state
again. If the particle starts in the passive state at zero time, the
position and time distribution at the end of one such step can
be expressed as

M(x,t) =
∫ ∞

−∞
dx ′

∫ t

0
dt ′HD(x ′,t ′)

×
[
H+(x − x ′,t − t ′) + H−(x − x ′,t − t ′)

2

]
,

(A7)

where the first term denotes a particle reaching x ′ at time
t ′ via diffusion and the second term denotes the particle
covering a distance x − x ′ in the remaining time t − t ′ by
walking, integrated over all values of x ′ and t ′. The Fourier-
and Laplace-transformed function for the propagation of the
particle after a full step of active and passive motion is given
by

ˆ̃M(k,s) = ˆ̃HD(k,s)

(
ˆ̃H+(k,s) + ˆ̃H−(k,s)

2

)
. (A8)

To get the spatial propagator of a halting creeper particle that
both starts and ends in a passive state, we sum over all possible
paths between the active and passive states, convolved with
the probability that the particle does not leave the passive state
in the final time interval [given by HD(x,t)/γ ]. The resulting
expression for the propagator can then be expressed as

GDD(x,t) = HD

γ
+ M ∗x,t

(
HD

γ

)

+M ∗x,t M ∗x,t

(
HD

γ

)
+ · · · , (A9)

where ∗x,t denotes convolution with respect to x and t . The first
term in the summation corresponds to a particle that never left
the passive state, the second term to a particle that performs
a single active step before returning to the passive state, the
third term includes two active steps, and so forth. Applying
a Fourier transform in space and a Laplace transform in time
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transforms the convolutions into a geometric series, leading to

ˆ̃GDD(k,s) =
( ˆ̃HD(k,s)

γ

)
1 − ˆ̃M(k,s)

= (s + λ)2 + k2v2

(s + γ + Dk2)[(s + λ)2 + k2v2] − γ λ(s + λ)
,

(A10)

where the second line follows by substituting expressions from
Eqs. (A3) and (A8).

The distributions for the other quantities appearing in
Eqs. (5) and (6) can be derived similarly. The transformed
distributions are

ˆ̃GDW = γ (s + λ)

(s + γ + Dk2)[(s + λ)2 + k2v2] − γ λ(s + λ)
,

ˆ̃GWW = (s + γ + Dk2)(s + λ)

(s + γ + Dk2)[(s + λ)2 + k2v2] − γ λ(s + λ)
,

ˆ̃GWD = λ(s + λ)

(s + γ + Dk2)[(s + λ)2 + k2v2] − γ λ(s + λ)
,

ˆ̃G±D = λ(s + λ ± ikv)

(s + γ + Dk2)[(s + λ)2 + k2v2] − γ λ(s + λ)
,

ˆ̃G±W = (s + γ + Dk2)(s + λ ± ikv)

(s + γ + Dk2)[(s + λ)2 + k2v2] − γ λ(s + λ)
.

(A11)

A linear combination of these distributions, weighted by the
equilibrium fraction of particles in each state, is used to derive
the overall propagator in Eq. (1):

ˆ̃G = γ

γ + λ
( ˆ̃GWD + ˆ̃GWW ) + λ

γ + λ
( ˆ̃GDD + ˆ̃GDW ).

(A12)
The expressions obtained can be transformed back to real
space and real time by a combination of analytical and
numerical methods. To calculate the Laplace-transformed ex-
pressions (5)–(7) we invert the Fourier transform analytically
as Ĝ(x,s) = 1

2π

∫ ∞
−∞ eikx ˆ̃G(k,s)dk. The Laplace transform of

the range and first passage time distribution can then be inverted
numerically using Talbot’s algorithm [52].

APPENDIX B: FIRST PASSIVE PASSAGE TIME

For certain intracellular particles such as mRNAs [67]
and proteins encapsulated within transport vesicles, we would
expect that the particles are unable to perform their target-
capture functions while in the processively moving state. Under
this restriction, it is desirable to know how much time is
required for an organelle to reach its target in the correct state
while undergoing multimodal transport. An important quantity
in this context is the passive first passage time distribution
FP (x,t), which is the overall probability density for the time
t at which the particle first passes position x in a diffusive
state. While the renewal equations (5) and (6) can be used to
obtain the probability of first passage occurring in the diffusive
state, in order to obtain the required distribution we must also
consider particles that achieve first passage in the processive

state and after subsequent state transitions eventually return to
the target in the diffusive state.

The halting creeper model allows for the calculation of
FP (x,t) by summing over all trajectories that first pass the
target in the diffusive state at the specified time. For particles
that pass in the processive state, the turning events required to
return to the target can be expressed as a series of convolutions
over time. A Laplace transform FP (x,t) → F̂P (x,s) converts
these convolutions to multiplication, leading to an expression
for the first passive passage time distribution

F̂P (x,s) = F̂∗D(x,s) + F̂∗+(x,s)

× [F̂+D(0−,s) + F̂+−(0−,s)F̂−D(0+,s)]

×
∞∑

m=0

[F̂+−(0−,s)F̂−+(0+,s)]m, (B1)

where F̂ij (x,s) denotes the Laplace-transformed first passage
time distribution of a particle starting in the state i and reaching
the target position x in the state j . The possible states are
the passive state (D), walking in the forward or backward
direction (±), and walking in any direction (W ). An asterisk
denotes a sum over all possible starting states, weighted by
the respective steady-state probabilities for each state. The first
term in the expression denotes the particles that reach the target
in the diffusive state for the first time. Subsequent terms in
the infinite sum include particles which need to change states
and return to the target position, with each term denoting an
additional return to the target in a nonfunctional state.

Under the assumption of symmetric starting rates, we can
write F̂+−(0−,s) = F̂−+(0+,s) and F̂+D(0−,s) = F̂−D(0+,s),
which reduces Eq. (B1) to

F̂P (x,s) = F̂∗D(x,s) + F̂∗+(x,s)F̂−D(0+,s)

1 − F̂−+(0+,s)
. (B2)

Equations (5) and (6) allow us to calculate the probability
density of a particle that starts at equilibrium executing first
passage at a particular time while in the passive state [F̂∗D(x,s)]
or while actively walking forward [F̂∗+(x,s)]. Other quantities
appearing in Eq. (B2) can be calculated from the renewal
equations for particles starting in the active state walking
backward,

G−D(x; t) =
∫ t

0
dt ′[F−D(t ′; x)GDD(0; t − t ′)

+F−+(t ′; x)G+D(0; t − t ′)],

G−W (x; t) =
∫ t

0
dt ′[F−D(t ′; x)GDW (0; t − t ′)

+F−+(t ′; x)G+W (0+; t − t ′)]. (B3)

After a Laplace transform, Eq. (B3) reduces to a system of
linear equations[

ĜDD(0) Ĝ+D(0)
ĜDW (0) Ĝ+W (0+)

][
F̂−D(x)
F̂−+(x)

]
=

[
Ĝ−D(x)
Ĝ−W (x)

]
, (B4)

where the argument t → s is implied. The right-hand side can
be evaluated at x = 0+ by carrying out the Fourier inversion
of ˆ̃G−D and ˆ̃G−W through direct integration of the expressions
(A11) over k. The Laplace-transformed first passive passage
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FIG. 7. Effects of state-dependent activity: (a) Time to reach 90% capture probability t90% for different run lengths and biologically relevant
transport parameter values. Solid lines denote t90% for particles that can capture their target only in the passive state. Dashed lines denote t90%

for particles that capture their target in either state. The ◦, ∗, and † denote run lengths of 0.1, 1, and 10 μm, respectively. Plots for � = 0.1 μm
overlap. (b) Average time for target capture by a uniformly distributed population as a function of the starting rate γ̂ for different values of
diffusivity D̂. The particle density ρ̂ = 0.3 and other parameter ranges include the observed parameters for peroxisome transport in fungal
hyphae.

time distributions F̂−D and F̂−+ are then inverted numerically
using Talbot’s algorithm [52].

We study the implications of this search process, where
particles are functional only in the passive state, by first
calculating the time required for a single particle to reach
its target with 90% probability [Fig. 7(a)]. As in the case
where both active and passive states allow capture, we see
that an intermediate run length can optimize the capture time.
However, when only passive capture is allowed, this optimal
run length is shifted to much shorter values, as would be
expected since long run lengths result in the particle spending
less time in a functional state.

Additionally, we calculate the average time required by any
particle within a uniformly distributed population (of density
ρ̂ = 0.3) to reach a stationary target [Fig. 7(b)]. As compared
to a particle that is functional in both states (Fig. 5), the
diffusivity has a much bigger role to play for a particle that
can only capture while passive. Because increasing diffusivity
allows a particle to search a wider region during each sojourn
in a functional state, the diffusion coefficient substantially
modulates the capture time even at very large values of γ̂ .
Furthermore, in the case of passive capture, increasing the
fraction of processively moving particles does not necessarily
speed up capture. An optimum starting rate γ̂ arises from two
competing effects. On the one hand, the faster transport in
the processive state allows particles to reach the region near
the target more rapidly. On the other hand, a large value of the
starting rate proves detrimental, as particles reaching the target
are less likely to be in the functional state. This optimization
in terms of the fraction of time spent moving processively has
previously been noted by several studies on two-dimensional
multimodal search processes [12,19,68].

A search process where the particle is functional only in
the passive state is applicable to components, such as neuro-
transmitters, that are encapsulated within vesicles but must be
released in order to carry out their function. Additionally, in

the case of a tubular cell region (see Sec. V), a target that is
located away from the microtubule track could only be reached
when the organelle is in the diffusive state.

APPENDIX C: EQUILIBRIUM FRACTION OF PARTICLES

For narrow tubular cells or a rapid transverse diffusivity
(D/R2 � γ,kb), binding and walking events take much longer
than the time required for particles to equilibrate throughout
the cross section. In this limit, the effective rates of starting a
walk or binding to a tether become α2γ and α2kb, respectively,
where α = a/R. The governing equations for the fraction of
particles in each state are then given by

dfwalk

dt
= γfbound + α2γfdiff − λfwalk,

dfbound

dt
= α2kbfdiff − (ku + γ )fbound,

dfdiff

dt
= kufbound + λfwalk − α2(kb + γ )fdiff ,

fdiff + fwalk + fbound = 1. (C1)

The time derivatives vanish in the steady state, reducing
Eq. (C1) to a system of linear equations which can be solved
to obtain

fwalk = γα2

γα2 + λ
(

α2kb+γ+ku

kb+γ+ku

) ,

fdiff =
λ
(

γ+ku

kb+γ+ku

)
γα2 + λ

(
α2kb+γ+ku

kb+γ+ku

) ,

fbound =
λ
(

α2kb

kb+γ+ku

)
γα2 + λ

(
α2kb+γ+ku

kb+γ+ku

) .

(C2)
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FIG. 8. Schematic state diagram illustrating the particle states
used to develop the analytical model for multimodal transport in a
cylinder. Allowed transitions are labeled with arrows and the rates
for the constant-rate transition processes (to and from the tethered or
actively walking state) are indicated. The transitions between diffusive
states occur with a time-varying rate that can be derived by evaluating
the matrix components in Eq. (D2) at k = 0.

APPENDIX D: ANALYTICAL MODEL FOR MULTIMODAL
TRANSPORT IN A CYLINDER, WITH TETHERING

In this Appendix we develop the full analytical model for
axial transport in a cylinder of radius R = 1 for particles
capable of passive diffusion with diffusivity D, of initiating
active processive walks with a rate γ while within a region
of radius α of the central axis, and of entering a stationary
tethered state with binding rate kb while in the same region.
The rate constant for unbinding from a tethered state is ku and
for transitioning between an active walk and passive diffusion
is λ [see Fig. 6(a) for illustration of the model]. For ease of
the derivation, all length units in this Appendix as well as
Appendix E are nondimensionalized by the cylinder radius
R and all time units are nondimensionalized by R/v, where
v is the processive velocity of actively walking particles. We
give our final results in fully dimensional units to facilitate
comparison with other sections of the paper.

Our model is developed in a manner analogous to the
approach previously used for modeling facilitated diffusion
by DNA-binding proteins that occurs via a combination of
three-dimensional diffusion and one-dimensional sliding along
a filament [69]. We describe the particle motion by a system
of individual states with Markovian transitions between them.
The rates of transition between the states are time varying,
depending specifically on the time interval since the particle
first entered the state. These states (Fig. 8) consist of a tethered
state h, a walking state w, a state n wherein the particle started
at radius α − ε and has remained within a radius α, a state nu

where the particle started uniformly distributed within radius
α and has remained within that inner region, a state f where
the particle started at radius α + ε and has remained outside
the inner region at a radius greater than α, and a state fu

where the particle started uniformly distributed in the outer
region and has remained in the outer region. When computing
statistics for the overall motion of the particle, we take the limit
ε → 0. The axial propagation of a particle in states n, nu, f ,
and fu is given by the propagator function for diffusive motion
RD(x,t) [Eq. (A1)]. The axial propagation in state w is given
by 1

2 [R+(x,t) + R−(x,t)] [Eq. (A4)].

We construct a transition matrix of propagators H, where
Ha,b(x,t) is the joint probability density for the time and
position of a particle initially at the origin in state a making its
first transition out of that state, into state b. A Fourier transform
in space x → k and a Laplace transform in time t → s is
carried out to yield the transformed propagator ˆ̃H(k,s). The
components of this propagator matrix are derived from the
Laplace-transformed solutions for first passage times to an
inner or outer absorbing boundary for a particle diffusing in a
cylindrical domain [70]. For instance, the transition propagator
from the n state to the f state is given by

Hnf (x,t) = e−(kb+γ )t Jnf (t)RD(x,t),

H̃nf (k,t) = e−(kb+γ−Dk2)t Jnf (t),

ˆ̃Hnf (k,s) = Ĵnf (s + kb + γ + Dk2), (D1)

where J (t) is the distribution of times for a diffusive particle
starting at radius α − ε to exit to an absorbing cylindrical
boundary at radius α. The full matrix of components is listed
below:

ˆ̃Hfu,n = 2α

(1 − α2)σD

I1(σD)K1(ασD) − I1(ασD)K1(σD)

I0(ασD)K1(σD) + K0(ασD)I1(σD)
,

ˆ̃Hf,n = I0[(α + ε)σD]K1(σD) + K0[(α + ε)σD]I1(σD)

I0(ασD)K1(σD) + K0(ασD)I1(σD)
,

ˆ̃Hnu,f = 2

ασb

I1(ασb)

I0(ασb)
, ˆ̃Hn,f = I0[(α − ε)σb]

I0(ασb)
,

ˆ̃Hnu,w = γ

Dσ 2
b

(1 − ˆ̃Hnu,f ), ˆ̃Hn,w = γ

Dσ 2
b

(1 − ˆ̃Hn,f ),

ˆ̃Hnu,h = kb

Dσ 2
b

(1 − ˆ̃Hnu,f ), ˆ̃Hn,h = kb

Dσ 2
b

(1 − ˆ̃Hn,f ),

ˆ̃Hh,w = γ

s + γ + ku

, ˆ̃Hh,nu
= ku

s + γ + ku

,

ˆ̃Hw,nu
= λ(s + λ)

(s + λ)2 + k2
, (D2)

where σD =
√

(s + Dk2)/D, σb =
√

(s + γ + kb + Dk2)/D,
and Iν and Kν are the modified Bessel functions of order ν of
the first and the second kind, respectively. All other compo-
nents of ˆ̃H not listed in Eq. (D2) correspond to transitions not
allowed in the model and are equal to 0. To calculate the overall
distribution of particles, we additionally define a vector of
propagators ˆ̃F. Each component ˆ̃Fa corresponds to the Fourier-
Laplace-transformed spatial distribution of particles that first
reached state a at time 0 and have moved a displacement x at
time t , without having left that state. These components can
be expressed in terms of the transition propagators Ha,b by
calculating the overall probability that the particle has not left
its current state. For instance,

Fn(x,t) =
[

1 −
∫ t

0
Jnf (t ′)dt ′

]
e−(kb+γ )tRD(x,t),

ˆ̃Fn(k,s) = 1

s + Dk2 + kb + γ
[1 − ˆ̃Jnf (k,s + Dk2 + kb + γ )]

= 1

s + Dk2 + kb + γ
(1 − ˆ̃Hnf ). (D3)
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FIG. 9. Fano factor σ/〈tw〉 quantifying the variability in the time
required for a particle to first begin a processive walk. The particle
is assumed to start uniformly distributed within the inner radius
α. Results shown are for the parameters α = 0.1, ku = 100, and
γ = 10−2.

The other components can be derived analogously, to give

ˆ̃Ffu
= 1

Dσ 2
D

(1 − ˆ̃Hfu,n), ˆ̃Ff = 1

Dσ 2
D

(1 − ˆ̃Hf,n),

ˆ̃Fnu
= 1

Dσ 2
b

(1 − ˆ̃Hnu,f ), ˆ̃Fn = 1

Dσ 2
b

(1 − ˆ̃Hn,f ),

ˆ̃Fw = s + λ

(s + λ)2 + k2
, ˆ̃Fh = 1

s + γ + ku

. (D4)

The overall propagator for a particle moving through this
system of states can be found by a convolution over all possible
transition paths, analogous to the discrete path sampling
technique used for calculating kinetics on potential energy
surfaces [71]. Specifically, the spatial density of a particle that
started at the origin in state i at time 0 and is in state j at time
t is given by

Gi,j (x,t)

= δi,jFi +
∞∑

n=1

∑
k1,k2,...,kn

Hi,k1 ∗ · · · ∗ Hkn−1,kn
∗ Hkn,j ∗ Fj ,

(D5)

where n is the number of intermediate states over which the
particle transitions and kl is the identity of the lth intermediate
state. Replacing the convolutions with multiplication of the
Fourier-Laplace-transformed propagators, we find the overall

spatial distribution for a particle that started in a linear combi-
nation of initial states described by the vector P,

ˆ̃G(k,s; P) = lim
ε→0

P ·
( ∞∑

n=0

ˆ̃Hn

)
· ˆ̃F

= lim
ε→0

P · (I − ˆ̃H)−1 · ˆ̃F, (D6)

where I is the identity matrix.
The Laplace-transformed mean square displacement can be

found directly from the propagator by taking derivatives with
respect to k. Its long-time limit is found by expanding to lowest
order in s and taking the coefficient of the 1/s2 term

lim
t→0

MSD =
[
− lim

s→0
s2

(
∂2

∂k2
ˆ̃G(k,s)

∣∣∣∣
k=0

)]
t = 2Defft,

(D7)

where the effective long-time diffusivity Deff is given in
Eq. (21).

The average time for a particle with initial distribution P
among the different states to first initiate a walk can be found
as the time integral of the probability that no walk has yet
occurred,

〈tw(P)〉 =
∫ ∞

0
dt

∫ ∞

0
dx G∗(x,t ; P), (D8)

where G∗ is obtained from Eq. (D6) with alternate transition
matrices ˆ̃H∗ and ˆ̃F∗ defined by removing the rows and columns
of ˆ̃H and ˆ̃F corresponding to the walking state w. The
average time to start walking for a particle initially uniformly
distributed within the inner radius α can be evaluated as

〈tw〉 = [(I − ˆ̃H∗)−1]nu,· · ˆ̃F∗∣∣
k=0,s=0, (D9)

where the subscript nu,· indicates the corresponding row of the
inverse matrix. The resulting expression is given in Eq. (22).

We similarly calculate the mean square time to initiate a
walk, using

〈
t2
w

〉 = −2
∂

∂s
[(I − ˆ̃H∗)−1]nu,. · ˆ̃F∗∣∣

k=0,s=0. (D10)

The variance in the time to start walking is given by σ 2 =
〈t2

w〉 − 〈tw〉2. While the full closed-form expression is too
cumbersome to include here, in the limit of rapid unbinding
from the tethered state (ku � γ and ku � D/a2), the variance
in the walking time is

lim
ku→∞

σ 2 = 4D(1 + α2Keq)2 − α2γ (3 − 4α2 + α4 + 4 log α)(1 + Keq)

4α4Dγ 2(1 + Keq)2
. (D11)

Figure 9 shows the Fano factor, a measure of the variability
in a stochastic process defined as the standard deviation in
the time to start walking, relative to the average time. Large

variability in how long it takes a passively diffusing particle to
start walking is seen in the case of slow diffusion and strong
binding.
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APPENDIX E: SIMULATION DETAILS

We simulate moving particles within a cylindrical domain
of unit radius and unbounded length. The axial position of each
particle is tracked to determine the range and the mean square
displacement. We also track the radial position to determine
the probability of state transitions for the particles.

Each particle is assigned to a walking, diffusive, or tethered
state at initialization. The fraction of particles in each state is
determined by the equilibrium distribution given in Eq. (C2).
Unbound particles in the diffusive state start uniformly dis-
tributed radially throughout the cross section.

We divide the cylindrical domain in two concentric sections
[Fig. 6(a)]. The inner domain of radius α denotes the region
within which particles can transition from the diffusive state
to the walking or tethered state. Particles execute explicit
Brownian dynamics with a time step t when their radial
position is smaller than 3α/2. This includes the inner domain
along with a buffer region of radius α/2. The time step is
chosen to be smaller than all relevant time scales in the model:
t � min(1/kb,1/γ,α2/2D). Note that this choice of time
step prevents multiple events occurring within a single step.

Particles outside the capture domain can spend a long time
diffusing before reaching the region of interest. To accelerate
the simulation, we make use of the first passage time distribu-
tion for diffusive particles between two cylindrical boundaries.
The cumulative encounter probability to an absorbing inner
boundary of radius α with a reflective outer boundary of unit
radius is given by

�(t) = 1 − π2

2

∞∑
n=1

[
J 2

0 (βnα)βnα

J 2
0 (βnα) − J 2

1 (βn)

]

×[J0(βnr)Y1(βn) − Y0(βnr)J1(βn)]

×[Y1(βnα)J1(βn) − J1(βnα)Y1(βn)]e−β2
nDt , (E1)

where Jν and Yν are the Bessel functions of the first and the
second kind, respectively, with order ν [70]. The βn are eigen-
values of the equation J1(βn)Y0(βnα) − J0(βnα)Y1(βn) = 0.
The time required to reach the inner domain starting from an
initial radial position r is drawn from the above distribution
and the particles are propagated along the axis according to
the diffusive propagator RD [Eq. (A1)] over this time interval.

The simulation is run using a hybrid Brownian dynamics–
kinetic Monte Carlo algorithm where the probability of a
state transition depends on the radial position of the particle.
Particles in the diffusive state within the inner domain (r < α)
can transition to the tethered or walking states at a combined
rate kb + γ . A transition is attempted at every diffusion time
step based on the relative probabilities for tethering and
walking. Transitions leading away from the tethered state occur
with a rate ku to the diffusive state and with a rate γ to the
walking state. Particles in the walking state transition to the
diffusive state a rate λ. Each time particles reenter the diffusive
state they are uniformly distributed in the radial dimension
within the inner region (of radius α), ensuring symmetry
between the binding and unbinding positions. A schematic
of these transitions is shown in Fig. 6(a). For each transition
out of a tethered or walking state, the waiting time is drawn
from an exponential distribution with the mean equal to the
corresponding transition rate. The particles are propagated in
space according to the distribution for the given state over the
duration of the waiting time. The simulation continues until all
particles have covered a predetermined time interval.

[1] M.-M. Fu and E. L. Holzbaur, Trends Cell Biol. 24, 564 (2014).
[2] J. Salogiannis, M. J. Egan, and S. L. Reck-Peterson, J. Cell Biol.

212, 289 (2016).
[3] C. Kural, A. S. Serpinskaya, Y.-H. Chou, R. D. Goldman, V. I.

Gelfand, and P. R. Selvin, Proc. Natl. Acad. Sci. USA 104, 5378
(2007).

[4] J. L. Ross, M. Y. Ali, and D. M. Warshaw, Curr. Opin. Cell. Biol.
20, 41 (2008).

[5] H. V. Mudrakola, K. Zhang, and B. Cui, Structure 17, 1433
(2009).

[6] Š. Bálint, I. V. Vilanova, Á. S. Álvarez, and M. Lakadamyali,
Proc. Natl. Acad. Sci. USA 110, 3375 (2013).

[7] W. O. Hancock, Nat. Rev. Mol. Cell Biol. 15, 615 (2014).
[8] C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and

D. A. Weitz, Trends Cell Biol. 19, 423 (2009).
[9] M. Mussel, K. Zeevy, H. Diamant, and U. Nevo, Biophys. J.

106, 2710 (2014).
[10] K. Jaqaman, H. Kuwata, N. Touret, R. Collins, W. S. Trimble,

G. Danuser, and S. Grinstein, Cell 146, 593 (2011).
[11] V. Ananthanarayanan, M. Schattat, S. K. Vogel, A. Krull, N.

Pavin, and I. M. Tolić-Nørrelykke, Cell 153, 1526 (2013).
[12] A. Godec and R. Metzler, Phys. Rev. E 92, 010701 (2015).
[13] S. Klumpp and R. Lipowsky, Phys. Rev. Lett. 95, 268102 (2005).
[14] M. J. Müller, S. Klumpp, and R. Lipowsky, Biophys. J. 98, 2610

(2010).

[15] L. Bruno, V. Levi, M. Brunstein, and M. A. Desposito, Phys.
Rev. E 80, 011912 (2009).

[16] D. Campos, E. Abad, V. Mendez, S. B. Yuste, and K. Lindenberg,
Phys. Rev. E 91, 052115 (2015).

[17] A. Kahana, G. Kenan, M. Feingold, M. Elbaum, and R. Granek,
Phys. Rev. E 78, 051912 (2008).

[18] C. Loverdo, O. Bénichou, M. Moreau, and R. Voituriez, Nat.
Phys. 4, 134 (2008).

[19] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev.
Mod. Phys. 83, 81 (2011).

[20] Y. Tanaka, Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada,
and N. Hirokawa, Cell 93, 1147 (1998).

[21] C. Kural, H. Kim, S. Syed, G. Goshima, V. I. Gelfand, and P. R.
Selvin, Science 308, 1469 (2005).

[22] M. Schuster, R. Lipowsky, M.-A. Assmann, P. Lenz, and G.
Steinberg, Proc. Natl. Acad. Sci. USA 108, 3618 (2011).

[23] P. Targett-Adams et al., J. Biol. Chem. 278, 15998 (2003).
[24] C. Lin, M. Schuster, S. C. Guimaraes, P. Ashwin, M. Schrader,

J. Metz, C. Hacker, S. J. Gurr, and G. Steinberg, Nat. Commun.
7, 11814 (2016).

[25] D. T. Chang, A. S. Honick, and I. J. Reynolds, J. Neurosci. 26,
7035 (2006).

[26] A. M. Valm, S. Cohen, W. R. Legant, J. Melunis, U. Hershberg, E.
Wait, A. R. Cohen, M. W. Davidson, E. Betzig, and J. Lippincott-
Schwartz, Nature (London) 546, 162 (2017).

042402-17

https://doi.org/10.1016/j.tcb.2014.05.002
https://doi.org/10.1016/j.tcb.2014.05.002
https://doi.org/10.1016/j.tcb.2014.05.002
https://doi.org/10.1016/j.tcb.2014.05.002
https://doi.org/10.1083/jcb.201512020
https://doi.org/10.1083/jcb.201512020
https://doi.org/10.1083/jcb.201512020
https://doi.org/10.1083/jcb.201512020
https://doi.org/10.1073/pnas.0700145104
https://doi.org/10.1073/pnas.0700145104
https://doi.org/10.1073/pnas.0700145104
https://doi.org/10.1073/pnas.0700145104
https://doi.org/10.1016/j.ceb.2007.11.006
https://doi.org/10.1016/j.ceb.2007.11.006
https://doi.org/10.1016/j.ceb.2007.11.006
https://doi.org/10.1016/j.ceb.2007.11.006
https://doi.org/10.1016/j.str.2009.09.008
https://doi.org/10.1016/j.str.2009.09.008
https://doi.org/10.1016/j.str.2009.09.008
https://doi.org/10.1016/j.str.2009.09.008
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1038/nrm3853
https://doi.org/10.1038/nrm3853
https://doi.org/10.1038/nrm3853
https://doi.org/10.1038/nrm3853
https://doi.org/10.1016/j.tcb.2009.04.004
https://doi.org/10.1016/j.tcb.2009.04.004
https://doi.org/10.1016/j.tcb.2009.04.004
https://doi.org/10.1016/j.tcb.2009.04.004
https://doi.org/10.1016/j.bpj.2014.04.037
https://doi.org/10.1016/j.bpj.2014.04.037
https://doi.org/10.1016/j.bpj.2014.04.037
https://doi.org/10.1016/j.bpj.2014.04.037
https://doi.org/10.1016/j.cell.2011.06.049
https://doi.org/10.1016/j.cell.2011.06.049
https://doi.org/10.1016/j.cell.2011.06.049
https://doi.org/10.1016/j.cell.2011.06.049
https://doi.org/10.1016/j.cell.2013.05.020
https://doi.org/10.1016/j.cell.2013.05.020
https://doi.org/10.1016/j.cell.2013.05.020
https://doi.org/10.1016/j.cell.2013.05.020
https://doi.org/10.1103/PhysRevE.92.010701
https://doi.org/10.1103/PhysRevE.92.010701
https://doi.org/10.1103/PhysRevE.92.010701
https://doi.org/10.1103/PhysRevE.92.010701
https://doi.org/10.1103/PhysRevLett.95.268102
https://doi.org/10.1103/PhysRevLett.95.268102
https://doi.org/10.1103/PhysRevLett.95.268102
https://doi.org/10.1103/PhysRevLett.95.268102
https://doi.org/10.1016/j.bpj.2010.02.037
https://doi.org/10.1016/j.bpj.2010.02.037
https://doi.org/10.1016/j.bpj.2010.02.037
https://doi.org/10.1016/j.bpj.2010.02.037
https://doi.org/10.1103/PhysRevE.80.011912
https://doi.org/10.1103/PhysRevE.80.011912
https://doi.org/10.1103/PhysRevE.80.011912
https://doi.org/10.1103/PhysRevE.80.011912
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/PhysRevE.78.051912
https://doi.org/10.1103/PhysRevE.78.051912
https://doi.org/10.1103/PhysRevE.78.051912
https://doi.org/10.1103/PhysRevE.78.051912
https://doi.org/10.1038/nphys830
https://doi.org/10.1038/nphys830
https://doi.org/10.1038/nphys830
https://doi.org/10.1038/nphys830
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1016/S0092-8674(00)81459-2
https://doi.org/10.1016/S0092-8674(00)81459-2
https://doi.org/10.1016/S0092-8674(00)81459-2
https://doi.org/10.1016/S0092-8674(00)81459-2
https://doi.org/10.1126/science.1108408
https://doi.org/10.1126/science.1108408
https://doi.org/10.1126/science.1108408
https://doi.org/10.1126/science.1108408
https://doi.org/10.1073/pnas.1015839108
https://doi.org/10.1073/pnas.1015839108
https://doi.org/10.1073/pnas.1015839108
https://doi.org/10.1073/pnas.1015839108
https://doi.org/10.1074/jbc.M211289200
https://doi.org/10.1074/jbc.M211289200
https://doi.org/10.1074/jbc.M211289200
https://doi.org/10.1074/jbc.M211289200
https://doi.org/10.1038/ncomms11814
https://doi.org/10.1038/ncomms11814
https://doi.org/10.1038/ncomms11814
https://doi.org/10.1038/ncomms11814
https://doi.org/10.1523/JNEUROSCI.1012-06.2006
https://doi.org/10.1523/JNEUROSCI.1012-06.2006
https://doi.org/10.1523/JNEUROSCI.1012-06.2006
https://doi.org/10.1523/JNEUROSCI.1012-06.2006
https://doi.org/10.1038/nature22369
https://doi.org/10.1038/nature22369
https://doi.org/10.1038/nature22369
https://doi.org/10.1038/nature22369


SAURABH S. MOGRE AND ELENA F. KOSLOVER PHYSICAL REVIEW E 97, 042402 (2018)

[27] N. Hirokawa and R. Takemura, Nat. Rev. Neurosci. 6, 201
(2005).

[28] M. A. De Matteis and A. Luini, Nat. Rev. Mol. Cell Biol. 9, 273
(2008).

[29] I. Singh, Mol. Cell. Biochem. 167, 1 (1997).
[30] N. A. Bright, M. J. Gratian, and J. P. Luzio, Curr. Biol. 15, 360

(2005).
[31] P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85, 135 (2013).
[32] J. Gou, L. Edelstein-Keshet, and J. Allard, Mol. Biol. Cell. 25,

2408 (2014).
[33] D. Ando, N. Korabel, K. C. Huang, and A. Gopinathan, Biophys.

J. 109, 1574 (2015).
[34] L. S. Goldstein and Z. Yang, Annu. Rev. Neurosci. 23, 39 (2000).
[35] M. J. Egan, M. A. McClintock, and S. L. Reck-Peterson, Curr.

Opin. Microbiol. 15, 637 (2012).
[36] X.-A. Liu, V. Rizzo, and S. Puthanveettil, J. Transl. Neurosci. 3,

355 (2012).
[37] J. R. Cooper and L. Wordeman, Curr. Opin. Cell Biol. 21, 68

(2009).
[38] T. L. Culver-Hanlon, S. A. Lex, A. D. Stephens, N. J. Quintyne,

and S. J. King, Nat. Cell Biol. 8, 264 (2006).
[39] J.-S. Kang, J.-H. Tian, P.-Y. Pan, P. Zald, C. Li, C. Deng, and

Z.-H. Sheng, Cell 132, 137 (2008).
[40] G. Pekkurnaz, J. C. Trinidad, X. Wang, D. Kong, and T. L.

Schwarz, Cell 158, 54 (2014).
[41] R. L. Frederick and J. M. Shaw, Traffic 8, 1668 (2007).
[42] M. J. Müller, S. Klumpp, and R. Lipowsky, Proc. Natl. Acad.

Sci. USA 105, 4609 (2008).
[43] L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics

and Convective Transport Processes (Cambridge University
Press, Cambridge, 2007).

[44] D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim,
and C. K. Payne, PLoS One 9, e86847 (2014).

[45] A. G. Hendricks, E. Perlson, J. L. Ross, H. W. Schroeder III, M.
Tokito, and E. L. Holzbaur, Curr. Biol. 20, 697 (2010).

[46] A. D. Pilling, D. Horiuchi, C. M. Lively, and W. M. Saxton, Mol.
Biol. Cell. 17, 2057 (2006).

[47] W. W. Ahmed and T. A. Saif, Sci. Rep. 4, 4481 (2014).
[48] E. V. Romanova, S. P. Oxley, S. S. Rubakhin, P. W. Bohn, and

J. V. Sweedler, Biomaterials 27, 1665 (2006).
[49] S. E. Encalada, L. Szpankowski, C.-H. Xia, and L. S. Goldstein,

Cell 144, 551 (2011).
[50] K. Chen, B. Wang, J. Guan, and S. Granick, ACS Nano 7, 8634

(2013).
[51] W. Feller, Ann. Math. Statist. 12, 243 (1941).
[52] A. Talbot, IMA J. Appl. Math. 23, 97 (1979).
[53] P. Danckwerts, Appl. Sci. Res. A 3, 279 (1952).
[54] Z. Stone and H. Stone, Phys. Fluids 17, 063103 (2005).
[55] J.-L. Thiffeault, Nonlinearity 25, R1 (2012).
[56] P. Ashwin, M. Nicol, and N. Kirkby, Physica A 310, 347

(2002).
[57] M. Camesasca, M. Kaufman, and I. Manas-Zloczower, Macro-

mol. Theor. Simul. 15, 595 (2006).
[58] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, 2001).
[59] K. Ogawa and S. Ito, J. Chem. Eng. Jpn. 8, 148 (1975).
[60] G. Jedd and N.-H. Chua, Nat. Cell Biol. 2, 226 (2000).
[61] J. L. Ross, H. Shuman, E. L. Holzbaur, and Y. E. Goldman,

Biophys. J. 94, 3115 (2008).
[62] S. R. Chada and P. J. Hollenbeck, Curr. Biol. 14, 1272 (2004).
[63] S. J. Peter and M. R. Mofrad, Biophys. J. 102, 749 (2012).
[64] A. Straube, G. Hause, G. Fink, and G. Steinberg, Mol. Biol. Cell.

17, 907 (2006).
[65] M. Schuster, S. Kilaru, G. Fink, J. Collemare, Y. Roger, and G.

Steinberg, Mol. Biol. Cell. 22, 3645 (2011).
[66] R. García-Pelayo, J. Phys. A 38, 3475 (2005).
[67] D. St Johnston, Nat. Rev. Mol. Cell Biol. 6, 363 (2005).
[68] C. Loverdo, O. Bénichou, M. Moreau, and R. Voituriez, J. Stat.

Mech. (2009) P02045.
[69] E. F. Koslover, M. A. D. de la Rosa, and A. J. Spakowitz,

Biophys. J. 101, 856 (2011).
[70] M. N. Ozisik, Heat Transfer: A Basic Approach (McGraw-Hill,

New York, 1985).
[71] D. J. Wales, Mol. Phys. 100, 3285 (2002).

042402-18

https://doi.org/10.1038/nrn1624
https://doi.org/10.1038/nrn1624
https://doi.org/10.1038/nrn1624
https://doi.org/10.1038/nrn1624
https://doi.org/10.1038/nrm2378
https://doi.org/10.1038/nrm2378
https://doi.org/10.1038/nrm2378
https://doi.org/10.1038/nrm2378
https://doi.org/10.1023/A:1006883229684
https://doi.org/10.1023/A:1006883229684
https://doi.org/10.1023/A:1006883229684
https://doi.org/10.1023/A:1006883229684
https://doi.org/10.1016/j.cub.2005.01.049
https://doi.org/10.1016/j.cub.2005.01.049
https://doi.org/10.1016/j.cub.2005.01.049
https://doi.org/10.1016/j.cub.2005.01.049
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1091/mbc.E14-03-0826
https://doi.org/10.1091/mbc.E14-03-0826
https://doi.org/10.1091/mbc.E14-03-0826
https://doi.org/10.1091/mbc.E14-03-0826
https://doi.org/10.1016/j.bpj.2015.08.034
https://doi.org/10.1016/j.bpj.2015.08.034
https://doi.org/10.1016/j.bpj.2015.08.034
https://doi.org/10.1016/j.bpj.2015.08.034
https://doi.org/10.1146/annurev.neuro.23.1.39
https://doi.org/10.1146/annurev.neuro.23.1.39
https://doi.org/10.1146/annurev.neuro.23.1.39
https://doi.org/10.1146/annurev.neuro.23.1.39
https://doi.org/10.1016/j.mib.2012.10.003
https://doi.org/10.1016/j.mib.2012.10.003
https://doi.org/10.1016/j.mib.2012.10.003
https://doi.org/10.1016/j.mib.2012.10.003
https://doi.org/10.2478/s13380-012-0044-7
https://doi.org/10.2478/s13380-012-0044-7
https://doi.org/10.2478/s13380-012-0044-7
https://doi.org/10.2478/s13380-012-0044-7
https://doi.org/10.1016/j.ceb.2009.01.005
https://doi.org/10.1016/j.ceb.2009.01.005
https://doi.org/10.1016/j.ceb.2009.01.005
https://doi.org/10.1016/j.ceb.2009.01.005
https://doi.org/10.1038/ncb1370
https://doi.org/10.1038/ncb1370
https://doi.org/10.1038/ncb1370
https://doi.org/10.1038/ncb1370
https://doi.org/10.1016/j.cell.2007.11.024
https://doi.org/10.1016/j.cell.2007.11.024
https://doi.org/10.1016/j.cell.2007.11.024
https://doi.org/10.1016/j.cell.2007.11.024
https://doi.org/10.1016/j.cell.2014.06.007
https://doi.org/10.1016/j.cell.2014.06.007
https://doi.org/10.1016/j.cell.2014.06.007
https://doi.org/10.1016/j.cell.2014.06.007
https://doi.org/10.1111/j.1600-0854.2007.00644.x
https://doi.org/10.1111/j.1600-0854.2007.00644.x
https://doi.org/10.1111/j.1600-0854.2007.00644.x
https://doi.org/10.1111/j.1600-0854.2007.00644.x
https://doi.org/10.1073/pnas.0706825105
https://doi.org/10.1073/pnas.0706825105
https://doi.org/10.1073/pnas.0706825105
https://doi.org/10.1073/pnas.0706825105
https://doi.org/10.1371/journal.pone.0086847
https://doi.org/10.1371/journal.pone.0086847
https://doi.org/10.1371/journal.pone.0086847
https://doi.org/10.1371/journal.pone.0086847
https://doi.org/10.1016/j.cub.2010.02.058
https://doi.org/10.1016/j.cub.2010.02.058
https://doi.org/10.1016/j.cub.2010.02.058
https://doi.org/10.1016/j.cub.2010.02.058
https://doi.org/10.1091/mbc.E05-06-0526
https://doi.org/10.1091/mbc.E05-06-0526
https://doi.org/10.1091/mbc.E05-06-0526
https://doi.org/10.1091/mbc.E05-06-0526
https://doi.org/10.1038/srep04481
https://doi.org/10.1038/srep04481
https://doi.org/10.1038/srep04481
https://doi.org/10.1038/srep04481
https://doi.org/10.1016/j.biomaterials.2005.09.016
https://doi.org/10.1016/j.biomaterials.2005.09.016
https://doi.org/10.1016/j.biomaterials.2005.09.016
https://doi.org/10.1016/j.biomaterials.2005.09.016
https://doi.org/10.1016/j.cell.2011.01.021
https://doi.org/10.1016/j.cell.2011.01.021
https://doi.org/10.1016/j.cell.2011.01.021
https://doi.org/10.1016/j.cell.2011.01.021
https://doi.org/10.1021/nn402787a
https://doi.org/10.1021/nn402787a
https://doi.org/10.1021/nn402787a
https://doi.org/10.1021/nn402787a
https://doi.org/10.1214/aoms/1177731708
https://doi.org/10.1214/aoms/1177731708
https://doi.org/10.1214/aoms/1177731708
https://doi.org/10.1214/aoms/1177731708
https://doi.org/10.1093/imamat/23.1.97
https://doi.org/10.1093/imamat/23.1.97
https://doi.org/10.1093/imamat/23.1.97
https://doi.org/10.1093/imamat/23.1.97
https://doi.org/10.1007/BF03184936
https://doi.org/10.1007/BF03184936
https://doi.org/10.1007/BF03184936
https://doi.org/10.1007/BF03184936
https://doi.org/10.1063/1.1929547
https://doi.org/10.1063/1.1929547
https://doi.org/10.1063/1.1929547
https://doi.org/10.1063/1.1929547
https://doi.org/10.1088/0951-7715/25/2/R1
https://doi.org/10.1088/0951-7715/25/2/R1
https://doi.org/10.1088/0951-7715/25/2/R1
https://doi.org/10.1088/0951-7715/25/2/R1
https://doi.org/10.1016/S0378-4371(02)00774-4
https://doi.org/10.1016/S0378-4371(02)00774-4
https://doi.org/10.1016/S0378-4371(02)00774-4
https://doi.org/10.1016/S0378-4371(02)00774-4
https://doi.org/10.1002/mats.200600037
https://doi.org/10.1002/mats.200600037
https://doi.org/10.1002/mats.200600037
https://doi.org/10.1002/mats.200600037
https://doi.org/10.1252/jcej.8.148
https://doi.org/10.1252/jcej.8.148
https://doi.org/10.1252/jcej.8.148
https://doi.org/10.1252/jcej.8.148
https://doi.org/10.1038/35008652
https://doi.org/10.1038/35008652
https://doi.org/10.1038/35008652
https://doi.org/10.1038/35008652
https://doi.org/10.1529/biophysj.107.120014
https://doi.org/10.1529/biophysj.107.120014
https://doi.org/10.1529/biophysj.107.120014
https://doi.org/10.1529/biophysj.107.120014
https://doi.org/10.1016/j.cub.2004.07.027
https://doi.org/10.1016/j.cub.2004.07.027
https://doi.org/10.1016/j.cub.2004.07.027
https://doi.org/10.1016/j.cub.2004.07.027
https://doi.org/10.1016/j.bpj.2011.11.4024
https://doi.org/10.1016/j.bpj.2011.11.4024
https://doi.org/10.1016/j.bpj.2011.11.4024
https://doi.org/10.1016/j.bpj.2011.11.4024
https://doi.org/10.1091/mbc.E05-06-0542
https://doi.org/10.1091/mbc.E05-06-0542
https://doi.org/10.1091/mbc.E05-06-0542
https://doi.org/10.1091/mbc.E05-06-0542
https://doi.org/10.1091/mbc.E11-03-0217
https://doi.org/10.1091/mbc.E11-03-0217
https://doi.org/10.1091/mbc.E11-03-0217
https://doi.org/10.1091/mbc.E11-03-0217
https://doi.org/10.1088/0305-4470/38/16/001
https://doi.org/10.1088/0305-4470/38/16/001
https://doi.org/10.1088/0305-4470/38/16/001
https://doi.org/10.1088/0305-4470/38/16/001
https://doi.org/10.1038/nrm1643
https://doi.org/10.1038/nrm1643
https://doi.org/10.1038/nrm1643
https://doi.org/10.1038/nrm1643
https://doi.org/10.1088/1742-5468/2009/02/P02045
https://doi.org/10.1088/1742-5468/2009/02/P02045
https://doi.org/10.1088/1742-5468/2009/02/P02045
https://doi.org/10.1016/j.bpj.2011.06.066
https://doi.org/10.1016/j.bpj.2011.06.066
https://doi.org/10.1016/j.bpj.2011.06.066
https://doi.org/10.1016/j.bpj.2011.06.066
https://doi.org/10.1080/00268970210162691
https://doi.org/10.1080/00268970210162691
https://doi.org/10.1080/00268970210162691
https://doi.org/10.1080/00268970210162691



