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Diffusion-advection within dynamic biological gaps driven by structural motion
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To study the significance of advection in the transport of solutes, or particles, within thin biological gaps
(channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal
structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the
synaptic cleft; this choice is motivated by the cleft’s readily modeled structure, which allows for well-defined
mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number,
AD , that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM , is also defined
by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters
provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical
properties vis-à-vis the advection versus diffusion process. For example, it is found that AD ∼ 1/R2, where R

is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the
dependence of structural motion that drives fluid flow on R. AM , on the other hand, is directly related (essentially
proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical
stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of
competition of advection versus diffusion within biological gaplike structures. The importance of the random,
versus a regular, nature of structural motion and of the resulting transient nature of advection under random
motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on
the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic
energy (ATP) plays in this competitive process.
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I. INTRODUCTION

Examples are legion of biological systems in which an
exchange of solute and/or solvent across or along the walls
of channels or thin gaps, through which fluid solution flows,
occurs. This, of course, suggests that advection coupled to
diffusion may play an important role in the overall transport.
Indeed, this underlies a basis of Starling’s hypothesis [1],
of over a century ago, that fluid is filtered at the arterial
end of a vessel such as a lymphatic vessel, and reabsorbed
at the venous end through fluid flow. Advection influences
have been assessed within the framework of the standard
gradient model for water transport, inter alia [2,3]. Other
examples are found within the Golgi complex, within channels
of epithelial cells, and in the thin gaps between cells during
their adhesion. Advective flow of potentially toxic metabolic
byproducts within the brain has been recently discussed [4]; the
concepts proposed there are similar in part to Starling’s idea. In
the brain, this is thought to occur via the interstitial space and
fluid, and although detailed models for this and the energetic
sources that drive the process may be yet unknown, evidence
for advection versus diffusion is compelling [4]. Combined
diffusion and advection occurring within the interstitial space
of tissue has been experimentally explored since at least 1989.
For example, Chary and Jain [5] measured the transport of
bovine serum albumin within chambers implanted in the ears
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of rabbits. In such cases of larger molecules, experimentally
measured diffusion coefficients of order D ∼ 10−11 m2 s−1

indeed showed that advection contributed a vital role in the
overall transport. For later reference, we note that Chary
and Jain [5] reported measured fluid velocities in the range
v ∼ 0.5−0.6 μm s−1; such velocity range will be referred to
below and quite favorably compared to our model’s forecasted
ranges, say v ∼ 0.5−1.0 μm s−1 [see Sec. III C, Eq. (34) and
then Sec. III A, Eq. (13)].

These combinations of diffusion coefficient and fluid veloc-
ity values demonstrate a definite contribution of advection. To
explore this, we consider the example of possible advection
coupled to diffusion in the transport of neurotransporters
within a synaptic cleftlike geometry (also known as a gap)
of nerve dendrites [6,7]. Advection within the synaptic cleft
might not be thought of as a major contribution to molecular
transport due to its restricted transport distances, 200 � R �
1000 nm, yet it provides a quite clear geometry (Fig. 1) to
explain the effects of structural motion that reveals an inverse
effect of length scale on transport. For example, with D ∼
10−11 m2 s−1, R ∼ 1 μm, and v ∼ 5 μm s−1 we find a Peclet
number Pe ∼ Ru/D ∼ 0.5 that about brings advection about
competitive with diffusion. We explore, however, a vital link
between length scale with Pe within our models via predicted
fluid-solid interaction; this links length scale with v in an
inverse relation. In fact, we introduce a number, AD , that
compares timescales for advection versus diffusion and find
AD ∼ 1/R2. This unexpected result for the effect of diffusion
distance is due to the strong R4 dependence of hydrodynamic
resistance of our model rigid disk.
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FIG. 1. Schematic of pre- and postsynapses separated by a synap-
tic cleft (also known as a “gap”) of width h. Also indicated are synaptic
vesicles that release glutamate into the cleft. Note that the synapse has
a glial cell sheath that is not explicitly included in our model.

Of course, the fluid flow considered herein does not compare
with that found in cytoplasmic streaming in plants discovered
over 240 years ago [8,9]. Recent reviews [10,11] discuss fluid
velocities well in the range of v ∼ 1−10 μm s−1, and even
as high as 40−60 μm s−1 [12,13]. The flow is driven by the
motion of myosin motor proteins along actin filaments that
carry “cargo” consisting, inter alia, of vesicles, organelles,
and molecular complexes. This, in turn, provides a velocity
boundary condition that sets fluid flow patterns throughout the
bulk of the cytosol and vacuoles of the plant cell. As Pickard [9]
pointed out, however, it may not be the advection of fluid flow
per se that is responsible for the more critical transport but the
“towing” via the myosin carriers of vital entities. Two aspects
of cytoplasmic streaming in plants are worth noting here,
however. First, the ranges of fluid velocities involved suggest a
clear potential for significant contributions of advection vis-à-
vis diffusion for molecular transport, especially over distances
L � 1μ; indeed this has provided perspective on the limits to
animal cell size, as opposed to larger plant cell sizes, if it is
assumed that diffusion per se is the most viable mode of ion and
molecular transport in animal cells [10]. Secondly, is the role
of ATP hydrolysis that powers cytoplasmic streaming [10,11].
We will likewise assume that ATP hydrolysis is necessary
to achieve sufficient hydrodynamic flow to render advection
significant.

As it happens, in biological systems fluid flow is often
described as random flow since it is driven by thermal
fluctuations; hence the advection flow of solutes within the
fluid solutions is a stochastic process. Advection-diffusion
precesses have been the subject of various studies in a general
context, and it has been shown that under certain circumstances
advection can indeed have a significant role as compared to
diffusion per se [14,15]. Recent experimental evidence has,
in fact, been analyzed and reported for stochastic advective
transport lysomes in motile neutrophil-like cells coupled to
diffusion [16]. In this interesting case, the contributions of dif-
fusion versus stochastically driven advection were separately
identified via the characteristically different time dependence
of particle trajectories. Advection due to the stochastic fluid
motion driven by the shape changes that occurred during the
cell’s crawling motion was indeed notable with fitted diffusion

coefficients of the order of D ∼ 10−14 m2 s−1. This result
is consistent with our forecasted results as noted in Sec. V.
We indeed explore the advection-diffusion coupling during
random flow within the basic structure of the synapse cleft.
This is to serve as a prototypical case study whose insights
should pertain to a wide range of scenarios.

Transport has been analyzed within the synaptic gap [7–17];
such studies have focused on events such as spillover [18,19].
For a complete description of the transient distribution of
neurotransmitters after release within a geometry such as
the synaptic gap, account must be taken of the glial cell
coverage around the synapse that may impede extracellular
diffusion. Such refinement is not included here where we
use a simple boundary condition at the synapse perimeter.
Direct observation of the transient transmitter concentration
profile has proved elusive, and hence reliance on theoretical
modeling has been used for forecasts. To date, modeling has
been concerned with analyzing diffusion as the only transport
mechanism—clearly this is reasonable since published values
for the diffusion coefficients [6,17] would argue for such
diffusion’s general dominance. However, the influence of
advection coupled to diffusion has yet to be explored.

The aim here is to formulate a simple, credible, model
for the advection-diffusion process of transport of glutamate
or other molecules within the synaptic cleft, or a cleftlike
geometry, wherein the various physical features, and individual
subprocesses, are well defined and such that each displays a
clear role in controlling the overall process. As it happens,
there are parameters linked to particular features that control
the timescales of advection versus diffusion, and on the other
hand parameters that determine the potential magnitude of the
advection contribution. The latter parameter is dependent on
the energetics driving synaptic motion that causes fluid motion
either due to thermal fluctuations and possible metabolic
energy sources, e.g., ATP hydrolysis. This is discussed in some
detail in Sec. IV A. Thus a main purpose of the model analysis
presented herein is to provide a clear model scenario for what
determines the role of advection driven by structural motion.

II. PROBLEM DESCRIPTION

The essential geometry of the model, and the boundary-
value problem, is illustrated in Fig. 2. A neuron (nu) is located
above a dendrite (den) at the instantaneous height h(t). The
neuron is modeled as a rigid disk of radius R and of mass m.
The neuron is in thermal motion, in the z direction, relative
to the dendrite as modeled in the next section. The motion
is random, composed of white noise via thermal fluctuations
and possible additional metabolic energy input. However,
for comparison we shall also consider deterministic motions
including harmonic motion. So much for the geometry. We will
assume, as detailed below, that the geometry in whichh/R � 1
allows for a thin-film approximation so that concentrations as
well as fluid flow can be thought of as z-averaged, or resultant
quantities.

At time t = 0, a flood of neurotransmitters is ejected into
the synapse gap creating an initial concentration, c(r,0) = c0;
the concentration of neurotransmitters outside the gap is zero.
One simple boundary condition to account for this is to set
c(R,t) = 0. For the synapse, such a boundary condition may
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FIG. 2. The synapse is modeled as a disk (nu) oscillating above a
fixed half-plane (den) and restrained by a linear spring (k) and subject
to a linear viscous drag (c). See also Fig. 3 and its associated discussion
for additional details. Figure 5 shows an alternative model involving
two opposing disks; the associated discussion explains that these two
models are essentially equivalent.

arise via the absorption of neurotransmitters by the glial cells
located at the periphery of the cleft (Fig. 1 and [18]). This sort
of model does require further discussion, however, as given
below.

To model the motion of the disk above its substrate, we
couple it via a linear spring representing a harmonic potential
and a damper that is meant to account for viscous frictional
resistance of the surrounding fluid. This is depicted in Fig. 2(a),
the side view of the system.

The idea is this: the motion of the disk induces a Stokes fluid
flow field whose through thickness average radial component
takes the form

v̄r = − 1

2h

dh

dt
r. (1)

As dh/dt oscillates in sign, fluid flows out of and into the
gap carrying solute via both diffusion and advection. When
fluid flows out of the gap, which is at a higher concentration,
the concentration outside is increased, whereas when fluid
flows into the gap its concentration is lower than c0. One may
expect that the net effect is to reduce the gap concentration
via advection. Of course, diffusion will also have the effect of
reducing the gap concentration as well. The effect of advection
may then be an enhancement of solute transport. However,
this will be dependent on the temporal pattern of the fluid
flow as created by the disk’s motion. For example, recall
that the assumed well-ordered Stoke’s flow is reversible (e.g.,
[20–22]). Hence, if the disk’s motion is, say, harmonic, then the
advection effects will vanish since the same volume elements
of fluid with their solute will be reversibly transferred into
and out of the gap over a period of motion. In such cases,
mixing of solute occurs only via diffusion. Indeed, this is
similar to a simple particle random walk or to Brownian particle
motion whereby unbiased random jumps lead to a time-average
distance, r , traveled 〈r〉 = 0 (hereby 〈 〉 refers to an average
in time) yet to a mean-square distance 〈r2〉 ∝ t . As shown in
Secs. III B and III C, if h(t) = h0 + η(t), where η(t) is a random
motion about a mean gap width h0, the time average 〈dη2/dt〉
controls the time average of advective flow. Hence our case
of a stochastically driven flow field is not a case of a smooth
reversible flow. As particles in a stochastic Brownian motion
are subject to randomly imposed forces, solute particles here
are subject to a randomly imposed fluid flow field that results

in net diffusivelike transport [23] (see especially Chap. VIII,
Sec. 3).

The above considerations suggest that to observe an advec-
tion effect, the motion must somehow be biased and irregular.
In fact, the motion of biological membranes is commonly
driven by thermal fluctuations and hence is random. We explore
this using a familiar mechanical model for such motion. We
also confirm our comments concerning regular motion by
setting

h(t) = h0 + a sin ωt with h0 > 0, |a| < h0. (2)

We note that a similar model has been proposed by Pan-
nuzzo et al. [24], and here we carry such analysis further. Our
mathematical development is, however, quite different, as are
our conclusions.

III. MATHEMATICAL FORMULATIONS

A. Fluid flow field

The relevant equations for Stokes flow are

0 = −∇p + μ∇2v with ∇ · v = 0, (3)

with v being the fluid velocity and μ the fluid viscosity.
Geometry suggests that v is of the form

v = vrer + vzez, (4)

with er and ez unit base vectors, and vθ = ∂( )/∂θ = 0 by radial
symmetry. Dimensional analysis, noting that h/R � 1, leads
to the typical thin-film approximation [20] of Eq. (3), viz.,

∂p

∂r
= μ

∂2vr

∂z2
. (5)

Integrating Eq. (5) yields

vr = 1

2μ

∂p

∂r
z(z − h), (6)

since no-slip conditions demand, even within the thin-film
approximation, that vr = 0 for z = 0,h [20,22,25]. Now use
∇ · v = 0 in cylindrical coordinates to obtain

1

r

∂

∂r
(rvr ) + ∂vz

∂z
= 0, (7)

and then

vz = − 1

2μr

∂

∂r

(
r
∂p

∂r

) {
z3

3
− z2

2

}
. (8)

Since vz(z = h) = dh/dt , we find from Eq. (7)

∂

∂r

(
r
∂p

∂r

)
= 12μr

h3

dh

dt
, (9)

which when substituted back into Eq. (8) yields

vz = −6
dh

dt

{
1

3

( z

h

)3
− 1

2

( z

h

)2
}
. (10)

Now from Eq. (9) we find, upon integration,

∂p

∂r
= 6μr

h3

dh

dt
+ y(t)

r
, (11)
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whence, using Eq. (6),

vr = −3
1

h

dh

dt
r

{( z

h

)
−

( z

h

)2
}
. (12)

In Eq. (11), y(t) = 0 since no singularity is allowed.
At this point, we again appeal to a thin-film approximation

[20,22] and define a through thickness average radial velocity
component,

v̄r = 1

h

∫ h

0
vrdz = − 1

2h

dh

dt
r. (13)

We also note from Eqs. (10) and (12) that vr/vz scales
as Rh−1 and thus the thin-film approximation would justify
ignoring vz as compared to vr [20,22].

Incidently, the synapse can be alternatively modeled as two
opposing identical disks. Details about the fluid dynamics of
this system are included in Appendix A.

For later reference, we also compute the pressure within the
gap by integrating Eq. (11) to obtain

p = 3μ

h3

dh

dt
r2 + f (t), (14)

whereupon we note that at r = R, p = p0, the outside pres-
sure. Hence

p(r) = p0 + 3μ

h3

dh

dt
(r2 − R2). (15)

Then form the area integrated pressure difference p − p0, i.e.,

f =
∫ 2π

0

∫ R

0
{p(r) − p0} r dr dθ

= −3πμ

2

R4

h3

dh

dt
= −ξ

dh

dt
. (16)

The force f is a resistive force, or adhesive force, resisting disk
motion. For later use we note that

ξ = 3πμ

2

R4

h3
(17)

serves as a friction coefficient. We note that this result for the
drag coefficient may be extracted from Davis’ analysis [26] of
sedimentation of disklike particles approaching a rigid plane in
the limit where h/R � 1. The fluid velocity field is not readily
extracted as hence is developed here.

B. Random vibration of the membrane disk

As described in Fig. 2(a), our model for the disk is the
all too familiar damped oscillator attached to a linear spring,
k, and damper, c. We dub ω2

0 = k/m and γ = c/m, where
m is the disk’s mass. We assume, as our numerics for the
physical parameters later describes, that γ 2/4 � ω2

0, i.e., an
overdamped regime. We let h(t) = h0 + η(t), where h0 is the
average and rest elevation of the disk. Let the disk be driven
by a random force, F(t), caused by thermal fluctuations. This
random force can be quantified by coupling the disk system
to a heat bath. Hence one model for F(t), or η(t), is as a
Gaussian white noise variable with a δ correlation satisfying
〈F(t1)F(t2)〉 = 
δ(t2 − t1), with 
 the strength of the force.

However, we note that the mechanical model for our
structural system shown in Fig. 2 presents constraints on

h(t). For example, we require |η(t)| < h0, as clearly h(t) >

0. To handle such constraints, we may postulate that F(t),
and later η(t), be described as random telegraph noise [27]
where, for example, η(t) transitions between η = −s to s and
η = s to − s, 0 � s < h0, with rates ν1 and ν2, respectively.
This means that the fractions of time spent in gap compression
and opening modes are ν2/(ν1 + ν2) and ν1/(ν1 + ν2), respec-
tively. The telegraph noise fluctuations of η(t) are correlated
as

〈η(t1)η(t2)〉 = 4s2ν1ν2

ν2
e−ν|t1−t2|, (18)

with ν = ν1 + ν2, a smoother transition than the δ correlation
of Gaussian white noise. For straightforward connection of our
system to a thermal heat bath, as we do below, we will take
�ν = ν2 − ν1 = 0, which yields

〈η(t1)η(t2)〉 = s2e−ν|t1−t2| � 〈η2(t)〉 = s2. (19)

We also note that, as with Gaussian white noise, we will have
with �ν = 0

〈η(t)〉 = −s
�ν

ν
= 0. (20)

For future reference, and study, we observe that with
nonzero �ν, say �ν > 0, we would be describing scenarios
in which the gap spends more time in compression than in an
opening mode; the opposite will be true if �ν < 0. For now,
we emphasize that with the view just presented above, we will
have |η(t)| < h0 and hence h(t) > 0. This is important for the
development of Sec. III C to follow.

With either view for the stochastic description, the equation
of motion is

d2η

dt2
+ γ

dη

dt
+ ω2

0η = F(t)

m
. (21)

Recall that γ is from the previous section, i.e., Eq. (17),

γ = ξ

m
= 3πμ

2m

R4

h3
� γ ≈ 3π

2m

R4

h3
0

μ. (22)

The second of Eq. (22) aims to linearize Eq. (21) in the range
where |η| � h0. As η(t) is a random motion, driven by F(t),
its average is 〈η(t)〉 = 0.

The resolution of Eq. (21) follows standard lines as in
Brownian motion [28], e.g., begin by multiplying through by
η to obtain

η
d2η

dt2
+ γ η

dη

dt
+ ω2

0η
2 = η

F(t)

m
, (23)

and note that

η dη/dt = 1/2 dη2/dt and

η d2η/dt = 1/2 d2η2/dt2 − (dη/dt)2. (24)

This leads to

d2η2

dt2
+ γ

dη2

dt
+ ω2

0η
2 = 2

(
dη

dt

)2

+ η
F(t)

m
. (25)
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Now take time-average values across Eq. (25) to obtain

d2〈η2〉
dt2

+ γ
d〈η2〉
dt

+ ω2
0〈η2〉

= 2

〈(
dη

dt

)2〉
+

〈
η
F(t)

m

〉
. (26)

Note that as η and F are uncorrelated, the last term is zero
since 〈η〉 = 0. To connect our disk to a heat bath, invoke the
equipartition theorem [28,29] to obtain

d2〈η2〉
dt2

+ γ
d〈η2〉
dt

+ ω2
0〈η2〉 = 2

kT

m
. (27)

The next step is to make a change of variables and set 〈η2〉 =
q(t)e−γ t/2, which leads to

d2q

dt2
+ (

ω2
0 − γ 2/4

)
q = 2kT

m
eγ t/2. (28)

We choose a simple and convenient set of initial conditions that
ensure that q > 0, viz., 〈η2(0)〉 = 2kT /ω2

0 and d〈η(0)〉dt = 0.
The solution is

〈η2〉(t) = 2kT

mω2
0

{
cosh(ζ t) + γ

2ζ
sinh(ζ t)

}
e−γ t/2 + 2kT

mω2
0

,

(29)

with ζ = (γ 2/4 − ω2
0)1/2.

The trailing constant in Eq. (29) is a long time, i.e.,
stationary, solution in that if, as we assume, γ 2/4 � ω2

0,

〈η2〉(t → ∞) → 2kT

mω2
0

. (30)

To obtain this required analytic solution, we have not
constrained the amplitudes of motion of our mechanical model
of Fig. 2. We nonetheless note that within the entire range of
values for physical parameters described later, we indeed find
that 〈|η2(t)|〉 < h2

0.

C. The random flow field

For the flow field of Eq. (13) we need the following quantity,
and we note that

1

h

dh

dt
= 1

2h2

dh2

dt
= 1

h

dη

dt
. (31)

On the other hand, we also note that h2 = h2
0 + 2h0η + η2

leads to

dh2

dt
= 2h0

dη

dt
+ dη2

dt
, whereby

dη

dt
= h0

1

h

dη

dt
+ 1

2h

dη2

dt
. (32)

Now realizing that both 〈n(t)〉 = 0 and 〈dη/dt〉 = 0, when
average values are taken across the second of Eq. (32) we find
that 〈

1

h

dη

dt

〉
= − 1

2h0

〈
1

h

dη2

dt

〉
≈ − 1

2h2
0

〈
dη2

dt

〉
. (33)

Recall that we have set things up so that h(t) = h0 + η(t) > 0,
which helps justify the above approximation. Using Eq. (29),

we find 〈
1

h

dη

dt

〉
≈ kT

mγh2
0

e−ω2
0 t/γ . (34)

We note that when this is used with Eq. (13) we find that the
forecasted radial fluid velocities are of order 0.5−1.0 μm s−1

as was coincidentally found to be representative in the exper-
imental study of Chary and Jain [5], and as was mentioned in
the first paragraph of Sec. I.

D. Diffusion-advection equation and its solution

The diffusion-advection equation reads as follows:

∂c

∂t
= D∇2c − ∇ · (cv), (35)

where c is the concentration, D is the diffusion coefficient,
and v again is the fluid velocity. We will transform this to a
purely radial equation as follows. To begin, we note that we
have assumed radial symmetry, hence c = c(r,z), v = v(r,z).
Recall the definition within the thin-film approximation of v̄r

in Eq. (13). The diffusion term involving ∇2c will be clear
enough, but attention to the advective term requires comment.

In cylindrical coordinates, and in component form,

∇ · (cv) = 1

r

∂

∂r
(rvrc) + 1

r

∂(cvθ )

∂θ
+ ∂(cvz)

∂z
. (36)

Carrying out the operations and grouping terms into two
groups, we find

∇ · (cv) = c
1

r

∂

∂r
(rvr ) + c

1

r

∂vθ

∂θ
+ c

∂vz

∂z
(= 0)

+ vr

∂c

∂r
+ vθ

r

∂c

∂θ
+ vz

∂c

∂z
( �= 0). (37)

The first group is zero since, in this case, ∇ · v = 0. The second
term in the second group is zero due to radial symmetry. Hence

∇ · (cv) = vr

∂c

∂r
+ vz

∂c

∂z
. (38)

Now again in the spirit of our thin-film approximation, we
define c̄ as

c̄(r) =
∫ h

0
c(r,z)dz; (39)

hence ∂c̄/∂z = 0. Thus

∇ · (c̄v) = v̄r

∂c̄

∂r
. (40)

The diffusion-advection equation thus reads

∂c̄

∂t
= D∇2

r c̄ − v̄r

∂c̄

∂r
with ∇2

r = ∂2

∂r2
+ 1

r

∂

∂r
. (41)

Recalling Eq. (13), Eq. (41) reads, with Eq. (34), as

∂c̄

∂t
= D∇2

r c̄ + 1

2

(
1

h

dh

dt

)
r
∂c̄

∂r
, (42a)

∂c̄

∂t
= D∇2

r c̄ + 1

2

kT

mγh2
0

e−ω2
0 t/γ r

∂c̄

∂r
. (42b)
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E. Resolution of Eq. (42)

The boundary condition c(R,t) = 0, now c̄(R,t) = 0, sug-
gests a separated solution of the form

c̄(r,t) =
∞∑

m=1

Am(t)J0(λmr), (43)

where the λm are chosen such that λmR are the
zeros of the Bessel function J0(x), that is, λmR =
2.404 83, 5.520 08, . . . (m − 1/4)π for m � 1. With this,
there is the orthogonality condition∫ R

0
J0(λmr)J0(λnr) r dr =

{
1/2R2J 2

1 (λnR), m = n,

0, m �= n.

(44)

Equation (42b) is rewritten as

∂c̄

∂t
− D∇2

r c̄ − 1

2

kT

mγh2
0

e−ω2
0 t/γ r

∂c̄

∂r
= 0. (45)

The procedure is standard, namely multiply through Eq. (45)
by rJ0(λnr) and integrate over the range [0,R] using Eq. (44);
we note, however, that the third term in Eq. (45) would be
handled by first using the fact that

r
∂

∂r
J0(λmr) = λm

∂

∂λm

J0(λmr). (46)

This brings us to a critical step in which

∂

∂λn

J 2
1 (λnR) = 2J1(λnR) {RJ0(λnR) − R/(λnR)J1(λnR)},

(47)

where, of course, the first term in the curly brackets is zero
since J0(λnR) = 0.

When the terms are assembled, we arrive at the ODE for
An(t), viz.,

A′
n(t) +

{
λ2

nD + kT

mγh2
0

e−ω2
0 t/γ

}
An(t) = 0 or (48a)

A′
n(t) + {

λ2
nD + βe−st

}
An(t) = 0 with (48b)

β = kT

mγh2
0

and s = ω2
0/γ. (48c)

The solution to Eq. (48b) is

An(t) = A◦
n exp

( − λ2
nDt + β/se−st

)
(49a)

with A◦
n = An(0)e−β/s (49b)

An(t) = An(0)e−β/s exp
( − λ2

nDt + β/se−st
)
. (49c)

The coefficients An(0) are determined from the initial
condition

c0 =
∞∑

n=1

An(0)J0(λnr), (50)

which leads to

An(0) = 2c0

(λnR)J1(λnR)
. (51)

Thus we find

c̄

c0
=

∞∑
n=1

2

(λnR)J1(λnR)
e−β/s exp

( − λ2
nDt + β/se−st

)

× J0(λnr), (52a)

c̃ = c̄

c0
= e−β/s exp(β/se−st )

∞∑
n=1

2e−λ2
nDt

(λnR)J1(λnR)

× J0(λnr). (52b)

A simple yet informative way to visualize this solution is to
compute an area average of c̃; for this we need

1

πR2

∫ 2π

0

∫ R

0
J0(λnr)dθ r dr = 2

λnR
J1(λnR), (53)

which when used with Eq. (52b) yields

〈c̃〉 = e−β/s exp(β/se−st )
∞∑

n=1

4

(λnR)2
e−λ2

nDt , (54)

where here the averaging 〈 〉 denotes that average taken in
Eq. (53). Indeed, when t = 0, we find 〈c̃〉 = 1 since

4
∞∑

n=1

1

(λnR)2
= 1, (55)

and recalling that the λnR are the zeros of J0(x).
It is of interest to explore a few limits of Eq. (54). For

example, and obviously, when t → ∞ and D �= 0, 〈c̃〉 → 0
since diffusion guarantees this given the boundary condition
c(R,t) = 0. More revealing, however, is the case in which we
set D = 0 and thus suppress diffusion, leaving only advection
to transport solute. In this case, Eq. (54) reads

〈c̃〉 = e−β/s exp(β/se−st ) �
t→∞ 〈c̃〉 = e−β/s, (56)

given Eq. (55). Since β/s > 0, we see that advection indeed
leads to a reduction in average solute concentration. Moreover,
we note that the effects of advection are transient, and they are
focused on the initial time of the transport event.

Inspection of the simple results in Eqs. (54) and (56) reveals
some key aspects of the advection-diffusion coupling. Clearly
the time scales for the two processes can be quite different. For
advection, s determines the time scale, whereas for diffusion
the exponents λ2

nD determine timescales. If advection is to
couple to, i.e., compete, diffusion s should be comparable to
the λ2

nD, or at least to λ2
1D, where λ1 = 2.404 83/R is the first

eigenvalue of J0(x). Thereby we define AD ≡ s/λ2
1D as a sort

of Peclet number.
We note here that the “inverse problem” is of value and

is readily generated from the above solution; the inverse is
defined so that the initial concentration is zero within the
gap and c0 outside. Detailed formulations are included in
Appendix B.

F. Regular disk motion: e.g., harmonic motion

Recall, even before exploring more detailed results, that
Eq. (54) is based on a model that describes random motion
of the disk and its induced fluid flow field. It is important to
note this with respect to the reversibility of Stokes flow as
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discussed in connection with Eq. (2). Specifically, consider
such harmonic motion that would specify

h(t) = h0 + a sin ωt with (57a)

1

h

dh

dt
= d ln h

dt
= aω cos ωt

h0 + a sin ωt
. (57b)

When Eq. (57b) is used in Eq. (48b) instead of βe−st , we find
the following. Consider the ODE,

A′
n(t) + p(t)An(t) = 0, (58)

and its solution,

An(t) = A◦
n exp

{
−

∫ t

p(t)dt

}
. (59)

In our case,

p(t) = λ2
nD + 1

h

dh

dt
= λ2

nD + d ln h

dt
. (60)

The solution to Eq. (59) with Eq. (60) is

An(t) = A◦
n

(
1

h0 + a sin ωt

)
e−λ2

nDt . (61)

Dimensional consistency is attained when we realize that
An(0) = A◦

n/h0, hence

An(t) = An(0)

(
h0

h0 + a sin ωt

)
e−λ2

nDt , (62)

where An(0) is obtained via the initial condition as in Eqs. (50)
and (51).

Within the context of the simple model posed herein, the
result of Eq. (62) concerning the advection would go something
like this: what goes out, comes back in. This arises due to the
reversibility of Stokes flow [20,21] when dealing with smooth
reversible fluid flow. We recall, however, that the time average
of the advection flow field is driven by the average quantity
〈h−1dη/dt〉 that we have shown in Secs. III B and III C to
be nonzero, yet decaying exponentially in time. Fluid flow
in this case is not a smooth reversible flow but is stochas-
tic in nature, and hence such simple reversibility does not
apply [15].

IV. RESULTS

A. Numerics for parameters

Figures 1 and 3 illustrate key structural features of the
synapse cleft (i.e., gap) and the release of neurotransmitters.
From Savtchenko and Rusakov [6] we note the following
dimensions (see also Fig. 2): 150 � R � 300 nm and 12.5 �
h0 � 20 nm. We take the viscosity, μ, to be in the range
∼10−3 Ns m−2 [18]. For the mass, m, we use the range
10−15 � m � 10−15 kg. This places γ , as per Eq. (22),
in the approximate range 108 � γ � 109 s−1. For D we
use values in the range 10−12 � D � 10−9 m2 s−1; this in-
cludes the range identified for glutamate within the synaptic
cleft [6,17].

h(t)

z R

c0
H(t)

k ξ

preglia glia
v

n

la

a

(a)

(b)

FIG. 3. The synapse is modeled with more detail as a disk attached
to a segment of axon that acts as a linear spring with constant k =
EπR2

a/�a . The motion of the disk is also resisted by a viscous drag
coefficient, ξ , given by Eq. (17) and a damping coefficient, γ , given
in Eq. (22).

The key parameters within Eqs. (52a), (52b), (54), and (56)
can be summarized as

β = αkT

mγh2
0

, s = ω2
0

γ
, β/s = αkT

m ω2
0h

2
0

,

ω2
0 = EπR2

a

�am
, γ = 3π

2m

R4

h3
0

μ. (63)

We note that the scaling parameter α equals unity for thermal
fluctuations alone, as was originally envisioned in Eq. (27).
However, suppose that we allow for the inclusion of additional
energy input, e.g., from ATP hydrolysis that is known to occur
in the process of vesicle release and recycling in the synapse
[30,31]. For perspective, recall that the standard free energy
of ATP hydrolysis is �G = −30.5 kJ mol−1. This translates
to �g ≈ −12kT per molecule. Moreover, with typical cell
concentrations cATP = 3 mM, cADP = 0.8 mM, cPi

= 4 mM
[32], a simple calculation, for the reaction ATP + H2O �
ADP + Pi , shows that �G = −48.1 kJ mol−1, i.e., �g ≈
−19kT per molecule. Indeed, for some time now vibrations
of microtubules and actin filaments have been suspected to be
driven by hydrolysis of ATP and/or GTP [33]. More recently,
ATP powered nonequilibrium fluctuations of the human red
blood cell membrane have been analyzed [34] and are thought
to be an important influence on cell shape. Hence metabolic
energy release per se could justify α in the range 5 � α � 10,
for instance. From the experimental results of Park et al. [34]
one would estimate α = 2.

The parameters contained in Eqs. (63) have been explained
via the above developments with the exception of ω2

0, which is
now explained with reference to Fig. 3.

Figure 3 again illustrates our synapse model but now
attached to an elastic axon, with spring constant k [Fig. 3(a)],
whose segment is of length �a [Fig. 3(b)] and radius Ra (not
shown to scale). The radius is taken in the range 0.5μ � Ra �
1μ, and its length in the range �a ∼ 100μ. The linear spring
constant would then be formed as k = πR2

aE/�a and hence
the expression for ω2

0 in Eq. (63). Again, the disklike synapse
is resisted by a viscous drag ξ as given in Eq. (17) that then
prescribes γ in Eq. (63).
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As for the elastic modulus, E, we note recent measurements
of chick nerve cell elasticity obtained via AFM imaging
[35,36]. For chick neurons E was reported in the range 1 �
E � 10 kPa in vivo [35], whereas in vitro E was reported
in the higher range 30 � E � 90 kPa with a strong peak at
E ≈ 70 kPa. In what follows we use a value of E = 7 kPa for
numerical examples.

The relations in Eq. (63) can be usefully combined, for use
in Eqs. (52a), (52b), (54), and (56), to yield

s = 2

3
E

1

�a

R2
a

R4

h3
0

μ
, AM = β/s = αkT �a

πER2
ah

2
0

,

AD = s

λ2
1D

= 2

15

E

�a

{
Ra

R

}2
h3

0

Dμ
. (64)

We recall that Eqs. (52a), (52b), (54), and (56) demonstrate
that the parameters s and β/s are pivotal for yielding an influ-
ence of advection on solute transport. Equation (56) shows that
β/s, as in the term e−β/s , defines the prospective “magnitude”
of the net advection contribution, but s controls the timescale,
τa = 1/s, on which advection occurs. Advection is in compe-
tition with diffusion occurring with timescales τd = 1/(λ2

nD).
Hence for advection to contribute to solute transport, AD

should be on the order of unity. The numerical factor in the last
of Eqs. (64) is obtained by noting that λ1R = 2.404 68, i.e., the
first zero of J0(x). Since both s and β/s must be large enough
for advection to have a noticeable influence, Eqs. (64) are seen
to form a “tight box” in that varying individual parameters can-
not produce arbitrarily optimal values. That is, there is indeed
very little wiggle room and this feature provides additional
credence to the model. Particular case examples of results from
Eqs. (52a), (52b), (54), and (56) provide further insight.

B. Results for case examples

For most of our cases we set E = 7 kPa, �a =
100 μm, R = 200 nm, Ra = 1 μm, μ = 10−3 Ns m−2, kT =
4 × 10−21, h0 = 20−30 nm, and D = 10−14−10−10 m2 s−1.
Finally, we set α = 1−10 assuming a modest additional
random force input. These values specify the ranges s ≈ 250
and β/s ≈ 0.25. Also, with these values and for the values of
D listed, AD and AM fall in the ranges AD = 0.063−0.630
and AM = 0.0202−0.2021.

Figure 4 shows 〈c̃〉 versus t for the parameters listed in each
subfigure; the following observations can be made. Note that
in each set of cases we show results with D = 0; this illustrates
the potential effect of advection alone as described by Eq. (56).
In this case the concentration approaches a nonzero steady-
state value as time increases. This is because the randomness-
related drift depends on the detailed configuration and on the
particular stochastic variable that drives the process. In our
problem, the specific initial conditions used in the resolution
of Eq. (23) lead to the decay of randomness effect over time
as measured by the stochastic variable (1/h)dh/dt . Varying
those initial conditions will not change the essential structure
or conclusions of our solution.

Clearly when diffusion is relatively fast, i.e., D �
10−10 m2 s−1,AD is too small to allow advection to contribute
to solute egress from the cleftlike geometry, yet when D is
as low as D = 10−11 m2 s−1, advection has a definite effect.
This can also be appreciated by observing the timescales

FIG. 4. 〈c̃〉 vs t for the parameters listed on each of the six panels
in the figure. Note that the effective diffusion coefficient ranges from
10−14 to 10−11 m2 s−1. For the cases (a)–(c) and (e), we plot the result
with D = 0 to more clearly reveal the effect of advection.

for measurable solute transport; with D � 10−10 m2 s−1 the
timescale is on the order of 1 ms, whereas if D � 10−11 m2 s−1

timescales grow to order 10 ms. On the other hand, if D �
10−12 m2 s−1 advection is seen to have a quite noticeable effect.
This is seen by the trends shown in Fig. 4(b). Thus it may be
inferred that at least within the range of structural and physical
properties used here, advection would contribute to transport
of only larger molecules with such low diffusion coefficients.

It should be noticed, however, that additional energy input,
i.e., other than via thermal fluctuations, can have the significant
effect of enhancing advective flow. This is clear from the trends
shown in Figs. 4(d)–4(f).

Another feature of these results is that when advection does
contribute, i.e., competes with diffusion, it happens at early
times. This should be clear and anticipated from the transient
nature of Eq. (34). It can also be visualized by the larger slopes
at short times for the cases shown in Figs. 4(c)–4(f).

V. DISCUSSION AND CONCLUSIONS

The findings of Chary and Jain in 1989 [5] should have
spurred a line of further inquiry into coupled effects of
advection and diffusion in biological vessels, cells, and tissue,
especially given Starling’s hypothesis [1] made in the 19th
century. Indeed, earlier Swabb et al. [37] studied such effects
in normal and neoplastic tissue and found that advection can
dominate the flow, especially for higher molecular weight
molecules. Further note the ideas put forth by Nedergaard
regarding advective flow in the brain [4]. We have commented
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on the fact that the fluid velocity range reported by Chary and
Jain is quite comparable to what we forecast and that indeed
when D ∼ 10−11 m2 s−1, we predict measurable advection
contributions versus diffusion. It is informative to explore
the respective forecasted pressure gradients as well. Chary
and Jain report gradients of order ∂p/∂x ∼ 4 mm Hg/μm ≈
5 × 108 Pa m−1, where this was based on assumed values
for hydraulic conductivity, K , extracted from other literature.
The initial value they used was K = 10−12 cm4(dyn s)−1 =
10−15 m4(Ns)−1. They rightly questioned if such high gradients
were sustainable in vivo and hence proposed that the hydraulic
conductivity could be two to three orders of magnitude higher
so as to correctly lead to measured fluid velocities at more
reasonable pressure gradients. If our Eq. (6) is used, as in
Eq. (13), we find

v̄r = − h2

12μ

∂p

∂r
= −K

∂p

∂r
. (65)

If we take h = 20 nm and μ = 10−3 Ns m−2 we find K ∼
10−13 m4(Ns)−1, i.e., some two orders of magnitude larger
that Chary and Jain’s original estimate and that help verify
their proposal of using larger hydraulic conductance. In fact,
if we take h ∼ 60 nm, i.e., midrange of Chary and Jain’s
range 30−100 nm, we find K ∼ 10−12 m4(Ns)−1, which is
precisely what they proposed was possible. Thus our analysis
indeed provides a pathway to explain, even quantitatively,
experimental observations such as theirs.

We also note that our analysis shows that the effect of
advection becomes significant when D � 10−13 m2 s−1 with
fluid velocities of order v ∼ 0.5 μm s−1 as found in Sec. III C.
This forecast is consistent with the analysis of the experimental
results of Koslover et al. [16], who report that advection
effects become important for particle transport with diffusion
coefficients with extracted (via their analysis) values of order
D ∼ 2 × 10−14 m2 s−1; their measured fluid velocities were,
indeed, in the range v ∼ 0.5 μm s−1. This again demonstrates a
consistency of our model analysis with experiment in terms of
observed phenomenology and the numerology regarding key
parameters such as fluid velocity and diffusion, whose values
determine the competition between advection and diffusion.

Reviewing again Eqs. (64), we see that simultaneously
optimizing s, β/s, andAD is quite difficult. With slightly larger
cleft widths, certainly verified for many types of biological
channels, the timescale of advection can be shortened (i.e.,
quickened) so it competes more effectively with diffusion.
However, this alone would reduce β/s, the magnitude of the
eventual advection effect. To obtain an optimal set of values,
α, i.e., additional energy input, is required. This then poses
a fundamental question: How does possible metabolic energy
enter into such mechanical phenomena? Is it direct or indirect,
such as by participating in molecular restructuring? And, how
much energy is involved and how is it triggered? Thus our
model analysis indeed clearly points to the potential vital role
of energetic input into biological transport processes.

Our analysis demonstrates that when advection is driven by
structural motion, there are a rather rigid set of criteria that
are required for it to compete with diffusion. It may be that
our modeling of the synapticlike body as a rigid disk is too
restraining, and explicit account should be taken of the flexible

h(t)
z

c0
H(t)

FIG. 5. Here the pre- and postsynapses are modeled as two
identical opposing disks separated by H (t) = 2h(t).

synaptic membranes. This would lead to enhanced structural
motion, driving fluid motion, and increased advective solute
current. This remains to be explored, especially in the context
of other biological gaplike channels such as exist within the
brain [4], for instance. But even here care must be taken to
identify the energetic sources that drive fluid flow. Aspects of
such scenarios have been addressed by Bickel [38], who has
argued that random motion of opposing membranes indeed
affects particle transport in viscous media.

We also note that our finding that AD ∼ 1/R2 is due to the
fact that structural motion that drives fluid flow is resisted by a
drag coefficient that scales as ξ ∼ R4. Péclet numbers are often
defined via dimensional analysis leading to Pe = UL/D, with
U being fluid velocity and L diffusion distance. In our case,
however, U is strongly decreasing with L, and it is this that
leads to our AD ∼ 1/R2.

Finally, we comment that our choice of random telegraph
noise used to describe either F(t) or η(t) was based on
geometric constraints discussed in Sec. III B and that this
choice provided a simple connection to thermal fluctuations
via the equipartition theorem. Recall that our goal was a
model scenario that would allow a clear assessment of the
contributions of advection versus diffusion and its link to
a set of well-defined physical parameters that mediate the
system’s response. As noted, however, in Sec. III B the choice
of telegraph noise provides an opportunity to explore cases in
which the physical system is biased in that 〈η(t)〉 �= 0, i.e., ν1 �=
ν2. Such may well be the case when the stimulus for motion
is in the form of energetic bursts or pulses such as exist in the
synapse, for example. This is, indeed, a topic of future research.

APPENDIX A: OPPOSING DISKS MODEL OF A SYNAPSE

Still another model for the synapse is that shown in Fig. 5, in
which we envision the pre- and postsynapses as two opposing
identical disks. Here we describe the disks lying at elevations
z = ±h(t); hence the total gap is H (t) = 2h(t). Note that now
the no-slip boundary condition reads as vz(r,z = ±h) = 0. The
solution to Eq. (5) is then

vr = 1

2μ

∂p

∂r
(z2 − h2). (A1)

Incompressibility, via Eq. (7), now leads to

vz = − 1

2μr

∂

∂r

(
r
∂p

∂r

) {
z3

3
− h2z

}
. (A2)

Following the procedure outlined above, we find that

[p]in
out = p(r) − p0 = 3μ

4h3

dh

dt
(r2 − R2)

= 3μ

H 3

dH

dt
(r2 − R2). (A3)
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h(t)
z

c
θ

0

c(r,0)    0=
FIG. 6. The inverse problem assumes that the initial cleft concen-

tration is c(r,0) = 0 and c(R,t) = c0.

Comparing this to the pressure difference in Eq. (15), we
find that the friction coefficient, ξ , in Eq. (17) is recovered.
Moreover, the through thickness radial fluid velocity is

v̄r = − 1

H

dH

dt
r, (A4)

and thereby of the same form as in Eq. (13) as per the total
cleft width of either h(t) or H (t).

APPENDIX B: THE INVERSE PROBLEM

The inverse problem is one in which the initial and boundary
conditions are c(r,0) = 0 within the gap and c(R,t) = c0 on
the perimeter of the disk, as depicted in Fig. 6.

In such a case we write the solution in the form

c̄(r,t) = c0 +
∞∑

m=1

Am(t)J0(λmr), (B1)

but as opposed to Eqs. (50) and (51), invoking the initial
conditions leads to

−c0 =
∞∑

n=1

An(0)J0(λnr) and (B2)

An(0) = − 2c0

(λnR)J1(λnR)
. (B3)

Other details are as worked out above for our original problem.
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