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Extreme learning machine for reduced order modeling of turbulent geophysical flows
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We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based
reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is
introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes.
We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance
of the proposed data-driven approach. Our framework provides a significant reduction in computational time and
effectively retains the dynamics of the full-order model during the forward simulation period beyond the training
data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an
efficient and reliable tool for long time integration of general circulation models.
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I. INTRODUCTION

The spatiotemporal complexity of many applications in the
computational sciences leads to very large-scale dynamical
systems whose simulations make overwhelming and unman-
ageable demands on computational resources. Indeed, many
problems remain intractable when multiple forward full-order
numerical simulations are required. Since the computational
cost of these high-fidelity simulations is prohibitive, model
order reduction approaches, also known as reduced order mod-
els (ROMs), are commonly used to reduce this computational
burden in many applications (e.g., see Ref. [1] for a review
of closed-loop control applications in fluid turbulence and
Refs. [2–4] for a discussion of variational data assimilation
applications in weather and climate modeling). A number of
recent review articles have addressed the strengths of several
modal analysis, reduced basis, and model reduction techniques
[5–7]. In their survey, dedicated primarily to the reduced order
modeling for fluid analysis and control, Rowley and Dawson
[6] have discussed several techniques, including proper orthog-
onal decomposition (POD), balanced truncation and balanced
POD, eigensystem realization algorithms (ERA), dynamic
mode decomposition (DMD), and Koopman operator theory
with attention devoted to the similarities and analogies between
these methods. An excellent overview and introduction to such
techniques can also be found in Ref. [7].

In this study, we consider the POD framework in combi-
nation with the Galerkin projection procedure [8], which is a
prominent approach for generating ROMs for nonlinear sys-
tems [9–11]. The POD procedure identifies the most energetic
modes (usually from high-fidelity experimental or numerical
data), which are expected to contain the dominant statistical
characteristics of these systems. It is therefore possible to
provide accurate approximations to the high-fidelity data with
a few POD modes in which fine-scale details are embedded.
The resulting dynamical systems are low dimensional (due to
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truncation) but dense and provide robust surrogate models for
forward simulations. It has been widely used in various disci-
plines under a variety of different names (e.g., see Ref. [12]
for an excellent historical discussion).

Although the standard Galerkin projection provides a stan-
dardized way to build ROMs, its applicability to complex
systems is limited primarily due to modeling errors associated
with the truncation of POD modes. The limitation is more
prominent in turbulent flow systems where an intense scale
separation leads to insufficient embedding of dynamics within
a feasibly small number of modes. To take into account
the effects of the discarded modes, several closure modeling
approaches are devised (see for instance, Refs. [13–18]),
which serve a dual purpose: that of numerical stabilization
as well as statistical fidelity preservation. Following large
eddy simulation (LES) ideas, it has been shown that the eddy
viscosity concept provides an efficient framework to account
for the effect of the truncated modes [19–21]. In this study, we
put forth a robust dynamic procedure for computing the modal
eddy viscosities in order to stabilize the ROMs. Our approach
focuses on the design of an artificial neural network (ANN)
architecture to predict the magnitude of the mode-dependent
eddy viscosity dynamically, thus removing the need for an a
priori specification of an arbitrary value.

ANNs and other machine learning (ML) strategies have
engendered a revolution in data-driven prediction applications
and are seeing widespread investigation in the computational
physics community. Previous studies into the feasibility of
similar ML techniques for ROMs of various nonlinear systems
can be found in Refs. [22–25]. In particular, we have recently
illustrated the ANN concept for model order reduction of
the one-dimensional Burgers’ equation, and the performance
of several training algorithms has been documented [25]. In
the present study, however, we put forth a modified ANN
architecture since it is more appropriate to turbulent flows.
ML approaches have also been developed for use in feedback
flow control where they generate a direct mapping of flow
measurements to actuator control systems [26–29]. In our
investigation, information from the high-fidelity evolution of
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governing laws is leveraged to provide a supervised learning
framework for a single-layer ANN to stabilize ROMs of the
mesoscale forced-dissipative geophysical turbulence system.
In brief, an ANN estimates a nonlinear relationship between
a desired set of inputs and targets provided viable benchmark
data for their underlying statistical relationship is available.
This subset of the ML field has seen wide application in
function approximation, data classification, pattern recogni-
tion, and dynamic systems control applications [30,31] and is
generating great interest for its utility in the reproduction of
systems with pronounced nonlinear interactions [32].

Before its deployment as a prediction or regression tool, an
ANN is trained to accurately capture the nonlinear relationship
between its inputs and outputs through some classical loss
function (such as mean squared error). A regularized training
ensures that the framework avoids overfitting any noise that
may have been present in the training data. For our supervised
learning framework, we utilize the extreme learning machine
(ELM) [33] training procedure, which stands out from other
machine learning methods with a direct (i.e., non-iterative)
fast training capability. ELM is a kind of regularized neural
network where the weights connecting inputs and hidden nodes
are randomly assigned and never updated. The output weights
of hidden nodes are then learned in a single step using a
pseudoinverse approach, which provides an extremely fast
learning mechanism, in the least squares sense, compared
to the networks trained using traditional back-propagation
approaches [34]. For our investigation it is seen that a single
hidden layer feed-forward neural networks (SLFN) ELM
algorithm satisfies generalized training requirements with ex-
tremely reduced computational cost yet substantially accurate
reproductions of training statistics.

For assessing our proposed framework, we utilize the
governing laws given by the barotropic vorticity equation
(BVE) model. It is a simplified two-dimensional framework,
also known as the one-layer quasigeostrophic (QG) model
[35], commonly used to study mesoscale ocean circulation
problems. While the POD model reduction framework has
been used to derive ROMs of the BVE (see, e.g., Refs. [36,37]),
the present work represents an attempt to model the unrep-
resented scales of the QG dynamics, mesoscale turbulence,
and their effect on mean circulation using an ANN-based
supervised machine learning framework. Our approach is
therefore notable for adding modal dissipation that is correlated
to modal amplitude via a neural net. Our method can be
considered as a hybrid modeling paradigm combining machine
learning principles and physics-based simulation tools for QG
dynamics. The decision to choice the ELM training approach
is to ensure robust generalization for such noisy data.

II. FULL ORDER MODELING

Oceanic and atmospheric flows display an enormous range
of spatial and temporal scales, from seconds to decades and
from centimeters to thousands of kilometers. Thus, a model
incorporating all the relevant physics of the ocean and atmo-
sphere would be impractical for numerical simulations. During
the last few decades, significant advancements have been made
in developing simplified models for geophysical fluid dynam-
ics [38], which have been instrumental in providing relatively

accurate numerical results at a reasonable computational price.
Although these models have continued to produce increasingly
accurate results and therefore improved weather forecasting,
their use in long time integrations such as those required by
climate modeling remains challenging [39,40]. To illustrate our
surrogote proposed framework, we consider the BVE model,
which has been extensively used to study forced-dissipative
QG dynamics [35]. The dimensionless BVE can be given by
[41,42]

∂ω

∂t
+ J (ω,ψ) − 1

Ro

∂ψ

∂x
= 1

Re
∇2ω + 1

Ro
sin(πy), (1)

where ω is the kinematic vorticity and ψ is the stream function.
The nonlinear advection term is defined by the Jacobian

J (ω,ψ) = ∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
, (2)

since we define the flow velocity components by

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (3)

and the following kinematic relationship holds for satisfying
the incompressibility constraint:

∇2ψ = −ω, (4)

where ∇2 is the standard Laplacian operator. The dimension-
less BVE given in Eq. (1) has two nondimensional parameters,
the Reynolds and Rossby numbers, which are related to the
characteristic length and velocity scales in the following way:

Re = V L

ν
, Ro = V

βL2
, (5)

where ν is the horizontal eddy viscosity of the BVE model and
β is the Rossby parameter. We note that Eq. (1) uses the β-plane
approximation, valid for most large-scale ocean basins, which
accounts for the earth’s rotational effects by approximating the
Coriolis parameter. For the purpose of nondimensionalization,
L represents a characteristic horizontal length scale given by
the basin dimension in the x direction, and V is a reference
velocity scale (also known as the Sverdrup velocity) given by

V = τ0

ρH

π

βL
, (6)

where τ0 is the maximum amplitude of the sinusoidal double-
gyre wind stress, ρ is the reference fluid density, and H is the
reference depth of the ocean basin. Following Refs. [41–43],
we consider a four-gyre circulation problem, a benchmark
oceanic flow problem whose behavior is difficult to capture
correctly in coarse-grained models [42]. Indeed, as shown
in Ref. [21], the standard model order reduction approaches
without stabilization are incapable of resolving the correct
physics. In our full order model (FOM) simulations we
use a second-order accurate kinetic energy- and enstrophy-
conserving Arakawa finite difference scheme [44]. The deriva-
tives in the linear terms are also approximated using the stan-
dard second-order finite differences. Our time advancement
scheme is given by the classical total variation diminishing
third-order accurate Runge-Kutta scheme. Details of the Pois-
son solver, numerical schemes, and boundary conditions used
for this study can be found in Ref. [42].
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III. REDUCED ORDER MODELING

We build our reduced order modeling framework based
on a standard projection methodology using the method of
snapshots [45]. Solving the FOM given by Eq. (1), the nth
record of the prognostic variable (vorticity field) is denoted
ω(x,y,tn) for n = 1,2, . . . ,N , where N is the number of
snapshots recorded for basis construction. Then we decompose
the solution field into a time-invariant averaged ω̄(x,y) and a
fluctuating component ω′(x,y,t) through [8,11]

ω(x,y,t) = ω̄(x,y) + ω′(x,y,t) x,y ∈ 
, (7)

where 
 is the two-dimensional domain and the mean of the
snapshot data is

ω̄(x,y) = 1

N

N∑
n=1

ω(x,y,tn). (8)

In order to obtain the POD basis functions, a correlation matrix
of the fluctuating part is constructed by

aij =
∫




ω′(x,y,ti)ω
′(x,y,tj ) dx dy, (9)

where the subscripts i and j refer to snapshot indexes. We must
note that the data correlation matrix A = [aij ] is a non-negative
Hermitian matrix. We further define the inner product of two
functions f and g as

〈f,g〉 =
∫




fg dx dy, (10)

such that Eq. (9) yields aij = 〈ω′(x,y,ti),ω′(x,y,tj )〉. The
optimal POD basis functions can then be obtained by solving
the following eigenvalue problem [46]:

A� = ��, (11)

where � = diag[λ1, . . . ,λN ] is the diagonal eigenvalue matrix
and � = [γ 1, . . . ,γ N ] refers to a right eigenvector matrix
whose columns are eigenvectors of the correlation matrix
A. The eigenvalues are usually stored in descending order
for practical purposes, i.e., λ1 � λ2 � · · · � λN . Then the
orthogonal POD basis functions of the vorticity field can be
obtained as

φk(x,y) = 1√
λk

N∑
n=1

γnkω
′(x,y,tn), (12)

where λk is the kth eigenvalue, γnk is the nth component of the
kth eigenvector, and φk(x,y) is the kth POD mode. The linear
dependence between stream function and vorticity given by
Eq. (4) can be utilized to obtain the kth basis function for the
stream function, ϕk(x,y), by solving a Poisson equation

∇2ϕk = −φk. (13)

Now we can span our field variables into the POD modes
as

ω(x,y,t) = ω̄(x,y) +
M∑

k=1

αk(t)φk(x,y), (14)

ψ(x,y,t) = ψ̄(x,y) +
M∑

k=1

αk(t)ϕk(x,y), (15)

where we have decomposed ω′(x,y,t) using time-dependent
modal coefficient αk and the POD modes φk(x,y). We note
that the kinematic relationship given by Eq. (13) implies that
the same αk accounts for the stream function as well. A ROM
can be generated by a truncation of the N total bases to
only M retained modes where M � N . These largest energy-
containing modes correspond to the M largest eigenvalues,
λ1, λ2,..., λM . To obtain our standard ROM, an orthogonal
Galerkin projection is performed by multiplying Eq. (1) with
the POD basis functions and integrating over the domain 
.
The resulting dynamical system for αk can be written as

dαk

dt
= Bk +

M∑
i=1

Li
kαi +

M∑
i=1

M∑
j=1

N
ij

k αiαj , (16)

where

Bk =
〈

1

Re
∇2ω̄ + 1

Ro
sin(πy) + 1

Ro

∂ψ̄

∂x
− J (ω̄,ψ̄),φk

〉
,

Li
k =

〈
1

Re
∇2φi + 1

Ro

∂ϕi

∂x
− J (ω̄,ϕi) − J (φi,ψ̄),φk

〉
,

N
ij

k = 〈−J (φi,ϕj ),φk〉. (17)

The ROM given by Eq. (16) consists of M coupled ordinary
differential equations (ODEs) for modal coefficients, which
are solved numerically by a third-order Runge-Kutta scheme.
We note that the resulting ROM is highly efficient since both
the POD basis functions and the coefficients of ODEs given
by Eq. (17) can be precomputed from the data provided by
snapshots. A complete specification of the dynamical system
given by Eq. (16) can be obtained by the following projection
of the initial condition:

αk(t0) = 〈ω(x,y,t0) − ω̄(x,y),φk〉, (18)

where ω(x,y,t0) is the vorticity field specified at time t0.
The standard ROM given by Eq. (16) usually works well for

a periodic or quasiperiodic system for which the first few POD
modes can capture the system’s dynamics. However, one of the
main sources of inaccuracy in a truncated ROM framework is
the potential for instability due to neglecting the contributions
of the higher POD modes. Therefore, many stabilization
schemes are utilized in order to improve the performance of
the ROMs [13–18]). Using an eddy viscosity approach, the
stabilization of the ROM can be achieved by [20,21]

dαk

dt
= Bk + B̃k +

M∑
i=1

(Li
k + L̃

i

k)αi +
M∑
i=1

M∑
j=1

N
ij

k αiαj ,

(19)

where, using the Smagorinsky model and the analogy between
ROM and LES, two additional terms can be written as

B̃k = 〈
νe

k∇2ω̄,φk

〉
,

L̃
i

k = 〈
νe

k∇2φi,φk

〉
, (20)

where νe
k is the modal eddy viscosity parameter. This free

stabilization parameter can be simply considered as a global
constant for all the modes [16,47]. The global constant eddy
viscosity idea can be improved by supposing that the amount
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FIG. 1. A schematic of the SLFN utilized for the stabilization
framework in this study. Our inputs are resolved ROM variables (P =
3), and our prediction is a mode-dependent eddy viscosity (J = 1).

of dissipation is not identical for all the POD modes. It has
been shown that finding an optimal value for this parameter
significantly improves the predictive performance of ROMs
[20,21]. Therefore, a main feature of the present study is
the utilization of a novel ML framework to estimate these
modal eddy viscosity coefficients to stabilize and overcome
errors due to the finite truncation in ROMs. We determine νe

k

dynamically from our ML framework during the evolution of
each temporal mode αk at each time step.

IV. ARTIFICIAL NEURAL NETWORK ARCHITECTURE

In this section, we introduce an SLFN architecture for
predicting modal eddy viscosity coefficients for stabilization
of ROMs. Figure 1 illustrates our ANN architecture, which
consists of an input layer, a hidden layer, and an output layer.
Each layer possesses a predefined number of nodes called
neurons. Except for the input neurons, each neuron has an
associated bias and activation function. The main goal in any
supervised learning framework is to find a mapping between
input nodes and output nodes. Mathematically, we are looking
for a mapping M to establish a relationship between input
nodes xp and output nodes yj as follows:

M : {x1,x2, . . . ,xP } ∈ RP → {y1,y2, . . . ,yJ } ∈ RJ , (21)

where P is the number of input neurons and J is the number
of output neurons. If Q refers to the number of hidden layer
neurons, the j th output node can be computed as

yj = G

⎡
⎣dj +

Q∑
q=1

wjqF

⎛
⎝bq +

P∑
p=1

cqpxp

⎞
⎠

⎤
⎦, (22)

where cqp ∈ RQ×P are the connection weights between the
neurons in input and hidden layers, and wjq ∈ RJ×Q are the
weights between the neurons in hidden and output layers.
Here F and G are neurons’ activation functions, and bq ∈ RQ

and dj ∈ RJ are called biases operating as thresholds for
hidden and output layers, respectively. In this study, we have
utilized the tan-sigmoid activation function for the hidden layer
neurons, which can be expressed as

F (s) = 2

1 + exp(−2s)
− 1, (23)

FIG. 2. POD analysis by the snapshot data for Re = 450 and
Ro = 3.6 × 10−3. (a) The distribution of eigenvalues; (b) their energy
levels with k denoting the modal index.

and a linear activation function for the output layer neurons,
given by

G[s] = s. (24)

While it has been reported that sigmoidal activation functions
saturate across a large portion of their domain [48], our
reasoning behind the use of the classical tan-sigmoid activation
was to leverage the benefit of the saturation behavior to obtain
a bounded prediction from the network.

A. Extreme learning machine

Introducing N sample training data examples (i.e., input-
output pairs), the weights and biases can be computed in a
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FIG. 3. Mean stream function and vorticity fields retrieved from the standard Galerkin projection method. (a) ψ with M = 10 modes; (b)
ψ with M = 20 modes; (c) ψ with M = 30 modes; (d) ω with M = 10 modes; (e) ω with M = 20 modes; (f) ω with M = 30 modes.

supervised learning framework using either well-established
iterative back-propagation methods [49] or pseudoinverse ap-
proaches [34]. As mentioned previously, the ANN architecture
is trained by utilizing an ELM approach proposed in Ref. [33]
for extremely fast training of an SLFN. The ELM approach
requires no biases in the output layer (dj = 0). In the ELM
method, the weights cqp and biases bq are initialized randomly
from a uniform distribution (i.e., between −1 and 1 in our
study) and no longer modified. Therefore the only unknowns
to be determined are wjq weights. Using the linear activation
function for the output layer, Eq. (22) can be written for N

sample examples

yjn =
Q∑

q=1

wjqF

⎛
⎝bq +

P∑
p=1

cqpxpn

⎞
⎠, (25)

where xpn ∈ RP×N and yjn ∈ RJ×N refer to the training input-
output data pairs. Using a more convenient matrix notation

(X = [xpn], Y = [yjn], C = [cqp], W = [wjq], and b = [bq]),
our learning problem can be written as

Y = WHᵀ, (26)

where Hᵀ ∈ RQ×N is given by

Hᵀ = F (B + CX), (27)

where the vector b is repeated across N columns as shown in
Eq. (25) (B = [b,b, . . . ,b] ∈ RQ×N ). By taking the transpose
of both side of Eq. (26) we can write

HWᵀ = Yᵀ, (28)

and the solution for the weights can be computed by

Wᵀ = H†Yᵀ, (29)

where H† ∈ RQ×N is the pseudoinverse of H ∈ RN×Q. In order
to compute the pseudoinverse, we apply the following singular
value decomposition (SVD) to the matrix H since its number
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FIG. 4. A comparison of the standard Galerkin approach (ROM) and the proposed ANN-based stabilized approach (ROM-ANN) for M = 10
modes. (a) ψ by FOM; (b) ψ by ROM; (c) ψ by ROM-ANN; (d) ω by FOM; (e) ω by ROM; (f) ω by ROM-ANN.

of rows is greater than its number of columns in typical ML
applications (N � Q)

H = U�Vᵀ, (30)

where U ∈ RN×Q and V ∈ RQ×Q are column-orthogonal and
orthogonal matrices, and � ∈ RQ×Q is a diagonal matrix
whose elements (σqq = σq) are non-negative and called sin-
gular values. Using the SVD, the pseudoinverse of H becomes

H† = V�†Uᵀ, (31)

where �† can be computed from � by taking the reciprocal of
each nonzero element (σ †

q = 1/σq). However, the presence of
tiny singular values can cause numerical instability. Therefore,
a well-known Tikhonov-type regularization is often introduced
by

σ †
q = σq

σ 2
q + ε

, (32)

where ε controls the trade-off between the least-squares error
and the penalty term for regularization (e.g., see Ref. [34]). In
the present study we set ε = 10−12. Finally, using Eq. (29), the
unknown weights can be computed by

W = YU�†Vᵀ. (33)

B. Training data

Our architecture is devised to take inputs accessible to
us during the time integration of the ROM and estimate the
modal eddy viscosity coefficient. Our high-fidelity snapshot
data (from which POD bases are constructed) are also used to
train our architecture. First, we denote the right-hand side of
Eq. (16) as

RGP
k = Bk +

M∑
i=1

Li
kαi +

M∑
i=1

M∑
j=1

N
ij

k αiαj , (34)
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FIG. 5. A sensitivity analysis with respect to the number of neurons in ELM using M = 10 modes. (a) ψ with Q = 20 nodes; (b) ψ with
Q = 40 nodes; (c) ψ with Q = 60 nodes; (d) ω with Q = 20 nodes; (e) ω with Q = 40 nodes; (f) ω with Q = 60 nodes.

and then apply the Galerkin projection to FOM given by
Eq. (1), which yields the true solution:

RFOM
k =

〈
1

Re
∇2ω + 1

Ro

[
sin(πy) + ∂ψ

∂x

]
− J (ω,ψ),φk

〉
.

(35)

The ideal stabilization would thus conform to the differences
between these quantities:

R̃k = RFOM
k − RGP

k . (36)

We know from Eq. (20) that

R̃k = νe
k

(
〈∇2ω̄,φk〉 +

M∑
i=1

〈∇2φi,φk〉αi

)
, (37)

where we redefine

RSTAB
k = 〈∇2ω̄,φk〉 +

M∑
i=1

〈∇2φi,φk〉αi, (38)

and therefore we compare Eq. (36) and Eq. (37) to obtain the
modal eddy viscosity coefficients

νe
k = RFOM

k − RGP
k

RSTAB
k

, (39)

as the eddy viscosity stabilization for each mode within the
training data set. Although Eq. (39) is an exact relationship, we
use a clipping procedure for numerical stability by discarding
negative entries of νe

k in our training data set. Therefore, our
training data are generated by considering the bounds

ε = 10−12 � νe
k � c

Re
= c

ν

V L
, (40)
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TABLE I. L2-norm errors of the reduced order models (with
respect to FOM) for the mean vorticity and stream function fields.
Note that the ROM-ANN retains only M = 10 modes.

Stream
Vorticity function

No stabilization
ROM (M = 10) 6.89 × 107 1.50 × 105

ROM (M = 20) 2.85 × 105 5.69 × 102

ROM (M = 30) 1.07 × 103 1.14 × 100

With stabilization
ROM-ANN (Q = 20) 1.20 × 103 9.45 × 10−1

ROM-ANN (Q = 40) 6.54 × 102 1.22 × 10−1

ROM-ANN (Q = 60) 4.31 × 102 3.09 × 10−1

where c is the upper bound of the relative ratio between
the stabilized viscosity and physical model viscosity. In the
present study, we set c = 6, which provides six times larger
stabilization viscosity than the specified ν of the original
model. We have also verified that the proposed ROM-ANN
approach is robust to the selection of c (i.e., similar statistical
results have been observed for c = 4 and c = 10 sets). The
clipping approach presented by Eq. (40) can be considered as
a physical realizability bounds of ROM training data. With
this realizable calculation of the stabilization viscosity, we
hypothesize that a mode-dependent nonlinear (but unknown)
relationship exists between the resolved modes in the ROM that
estimates νe

k dynamically. To conclude, our ANN framework is
trained between inputs given by the modal index k, RGP

k , and
αk (i.e., they are all available during the ROM time stepping)
and to predict an approximation for νe

k . We thus have three
inputs to our network with Q hidden layer neurons to obtain
one output (which is the modal eddy viscosity coefficient). The
architecture of our ANN is shown in Fig. 1. We emphasize that
this simplified ANN is basically a nonlinear regression or a
curve fitting between input and target states. As we will show

FIG. 6. Time series for the first temporal coefficient α1(t).

FIG. 7. Time series for the CFL criterion assuming a fixed time
step of �t = 2.5 × 10−5 for the FOM simulation.

in next section, however, its generalization is quite remarkable
for both in-sample data and out-of-sample data predictions.

V. RESULTS

To validate our proposed ANN framework, we consider
the four-gyre barotropic circulation problem [41–43]). This
test problem yields four gyres circulation patterns in the time
mean in a shallow ocean basin and represents an ideal test
for the viability of the proposed ROM. Indeed it was shown
that ROMs without stabilization are incapable of resolving the
mean dynamics [21].

The dimensionless form of the BVE describing the QG
problem is evolved from t = 0 to t = 100 using a fixed time
step �t = 2.5 × 10−5 on a Munk layer resolving 256 × 512
computational grid resolution. The dimensionless parameters
of the BVE system are chosen as Re = 450 and Ro = 3.6 ×
10−3. We must note that t = 10 to t = 100 is our data collection
window (for the purpose of POD basis generation as well
as ANN training) due to a statistically steady state reached
after the initial transient period. Nine hundred snapshots are
collected during this period which are equally distributed
in time. The ideal eddy viscosity is also computed at these
snapshots for training our machine learning framework. We
note here that our ROM (whether purely truncated or stabilized
by ANN) is utilized for predictions up to t = 200 utilizing
the POD modes obtained from our previously mentioned data
collection window. This can be considered to be a challenging
validation of our dual data-driven methodology for the QG
problem. For both our standard ROM and stabilized ROM-
ANN computations, the same time step with �t = 2.5 × 10−5

is used for time integration of the dynamical system. Sensitivity
studies for varying time steps also will be presented later.

Figure 2 shows the accumulation of energies in the form
of eigenvalue magnitudes where it can be seen that a large
majority (close to 75%) of the energies are accumulated in the
first 30 modes of the transformed space. Figure 3 shows the
gradual convergence of the ROM (i.e., without stabilization) to
the four-gyre circulation pattern with increasing M . Indeed, a
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FIG. 8. Mean stream function and vorticity contours obtained by the proposed ROM-ANN with various time steps. (a) ψ with �t =
5 × 10−4; (b) ψ with �t = 2.5 × 10−3; (c) ψ with �t = 10−2; (d) ω with �t = 5 × 10−4; (e) ω with �t = 2.5 × 10−3; (f) ω with �t = 10−2.
Note that our ROM-ANN implementation uses M = 10 and Q = 40.

nonphysical two-gyre pattern is observed for the case of M =
10 and M = 20.

Figure 4 shows the performance of the proposed framework
(ROM-ANN) against the standard Galerkin projection based
ROM with M = 10. Full order model (FOM) projections to
reduced space are also shown for the purpose of comparison.
It can easily be seen that the ELM stabilization reproduces
the four-gyre pattern accurately as against the standard imple-
mentation of the ROM, which fails to capture the pattern. This
is observed for both stream function and vorticity contours.
Figure 5 shows a qualitative comparison of the effect of the
number of neurons Q where similar performance improve-
ments are obtained for our choice of Q = 20,40,60 neurons.
Table I shows a quantitative comparison of the improvement
obtained by the proposed stabilization (for different neurons as
well) against the standard ROM implementations with different

number of modes. It is easily observed that the stabilization acts
adequately in reproducing excellent agreement with full-order
statistics at a very low number of retained modes. Note that
these plots and tabulated statistics are all for the statistically
steady state behavior of the QG problem in our assessment
window (t = 10 to t = 200), which is beyond the training data
window.

Figure 6 shows a comparison for the evolution of α1

through nondimensional time for both ROM and ROM-ANN
implementations in comparison to the FOM projection. The
ROM-ANN has a default Q = 40 neurons in this example. It
can clearly be seen that the use of the stabilization prevents
the explosion of numerical instability in the coarse truncated
ROMs with M = 10 and M = 20. At M = 30, however, the
first modal evolution shows a stable statistical steady state for
the ROM.
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FIG. 9. Temporal mode evolution of α1 for various time steps.

Another benefit of the ROM-ANN mechanism over the
standard ROM implementation is the possibility of using large
time steps in the ordinary differential equation integrator. In
the present study, a time step of �t = 2.5 × 10−5 was chosen
for the FOM simulation to ensure a CFL criterion of less than
1.0 was always respected (as observed in the time series plot in
Fig. 7) due to the numerical stability of the numerical schemes.
Figure 8 shows the vorticity and stream function contours when
our stabilized method (i.e., the ROM-ANN with M = 10 and
Q = 40) is used with different time steps. It can be seen that
a much larger time step of �t = 10−2 can be effectively used
to obtain statistically accurate results without any divergence.
Thus our proposed ANN-based eddy viscosity stabilization is
ideally suited to a fast prediction of the underlying dynamics.
Figure 9 shows the evolution of the first temporal coefficient
α1(t) for the aforementioned ROM-ANN framework, where
it is seen that very high values of the time step do not affect
the statistical viability of the stabilized ROM and leads to an
excellent reduction in computational expense (the largest time
step provides excellent results at a CPU time of 1.61 sec in
comparison to approximately 700 sec for the default time step

FIG. 10. A comparison of the standard Galerkin approach (ROM) and the proposed ANN-based stabilized approach (ROM-ANN) for M =
10 modes at Re = 200 and Ro = 1.6 × 10−3 where the training data have been extracted from the snapshots at Re = 450 and Ro = 3.6 × 10−3.
(a) ψ by FOM; (b) ψ by ROM; (c) ψ by ROM-ANN; (d) ω by FOM; (e) ω by ROM; (f) ω by ROM-ANN. Note that the ROM-ANN uses
Q = 40 hidden nodes.
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FIG. 11. Time series for of first temporal coefficient α1(t) for the
out-of-sample forecast. Predictive performance is shown for Re =
200 and Ro = 1.6 × 10−3, while the training has been performed
using the data generated at Re = 450 and Ro = 3.6 × 10−3.

which is required for the FOM). We also note that the FOM
required 195.4 h CPU time to complete the forward simulation
between t = 10 and t = 100.

Finally, we perform an out-of-sample a posteriori analysis
considering different physical parameters than those used in
the training data. As explained earlier, the physical model
parameters are Re = 450 and Ro = 3.6 × 10−3 to gener-
ate our data snapshots (therefore POD basis functions) and
the supervised training data set for ELM. Using the same
ELM network and POD basis functions, Fig. 10 compares
the predictive performance of the models at Re = 200 and
Ro = 1.6 × 10−3, a distinct test setup from the training data.
A new FOM simulation is performed for our assessments
(i.e., required about 200.6 h CPU time). It is clear that
the ROM-ANN captures the main dynamics requiring only
the order of seconds CPU time for the simulation. Time
series of α1 are also illustrated in Fig. 11. Similar to the in-
sample case, the standard Galerkin ROM approach cannot cap-

ture the correct dynamics for M = 10 or M = 20 modes. On
the other hand, the proposed stabilized ROM-ANN approach
captures the underlying four-gyre dynamics and provides
significantly accurate results for using M = 10 modes. Our
assessments conclude that the proposed architecture is robust
in providing a reliable mode-dependent damping coefficient
for the out-of-sample forecasting.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the feasibility of using
a machine learning framework to stabilize projection-based
ROMs for solving a forced-dissipative general circulation
problem. We construct an SLFN to predict modal eddy viscos-
ity coefficients dynamically. Our approach can be considered
partially nonintrusive (without the need for an online access to
the FOM for the ROM prediction), since the ANN architecture
only requires reduced order space quantities to predict the
stabilization term. A regularized ELM approach is used for
training where we use the same data snapshots as we used
for generating the POD basis functions. In that sense, there
are two data-driven components to this research: high-fidelity
snapshots of data from DNS are utilized not just for POD
basis synthesis but also for training our machine learning
framework utilized for a posteriori stabilization of the ROM-
ANN. Both in-sample and out-of-sample simulation results
indicate that the utilization of the proposed framework lets
the user deploy an extremely truncated system without losing
any statistical fidelity. Also, time steps much larger than those
necessary for FOM forward simulations can be utilized in
the ROM-ANN, thus leading to exceptional computational
performance. We conclude that the method presented in this
paper is robust enough to stabilize ROMs dynamically and
satisfies the dual demands of statistical accuracy as well as
low computational expense in surrogate forward predictions
in long-term evolution of geophysical turbulent flows.
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