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Cooperation is central to the success of human societies as it is crucial for overcoming some of the most pressing
social challenges of our time; still, how human cooperation is achieved and may persist is a main puzzle in the
social and biological sciences. Recently, scholars have recognized the importance of social norms as solutions to
major local and large-scale collective action problems, from the management of water resources to the reduction
of smoking in public places to the change in fertility practices. Yet a well-founded model of the effect of social
norms on human cooperation is still lacking. Using statistical-physics techniques and integrating findings from
cognitive and behavioral sciences, we present an analytically tractable model in which individuals base their
decisions to cooperate both on the economic rewards they obtain and on the degree to which their action complies
with social norms. Results from this parsimonious model are in agreement with observations in recent large-scale
experiments with humans. We also find the phase diagram of the model and show that the experimental human
group is poised near a critical point, a regime where recent work suggests living systems respond to changing

external conditions in an efficient and coordinated manner.
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I. INTRODUCTION

Cooperation is crucial to human social life, from friend-
ship and professional relationships to political participation
and global level issues such as ecological conservation and
international relations. Yet cooperation is often individually
costly, making it inherently fragile. Many scholars have thus
concentrated on understanding how to sustain it. Mechanisms
such as reputation [1], communication and sanction [2], and
social identity-related factors [3] have been found to play a key
role in promoting human cooperative behavior.

Solid empirical and fieldwork evidence has been mounting
to suggest that social norms are successful in the provision
and maintenance of cooperation in everyday life [4-8]. Social
norms are informal rules that prescribe what individuals ought
or ought not to do and are typically enforced through informal
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sanctions, such as ostracism, negative gossip, shame, or dis-
approval [9-11]. They sustain behavior through shared beliefs
and reciprocal expectations regarding the appropriate actions
to perform in specific circumstances. Indispensable to social
life, they are referred to as the cement [11] or the grammar of
society [9].

Despite their importance, a rigorous and well-grounded
model of how social norms affect human cooperative behavior
is still lacking (see Sec. IT). Using statistical-physics techniques
and consistent with findings from the cognitive and behavioral
sciences [5,9,12,13], we develop here an analytically tractable
model in which the decision makers’ utility is based on a
balancing between the material rewards they obtain and the
degree to which their action is in agreement with social
norms. We explicitly incorporate the human ability to be
sensitive to social norms, their so-called norm psychology [12],
into the experience weighted attraction (EWA) [14] frame-
work. Experience weighted attraction is a modeling approach
that combines both reinforcement learning [15] and belief
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learning [16] that has been extensively explored in the field
of behavioral economics and has been rather successful in
explaining the interactive learning of humans in games [17,18].

Results from our cognitively inspired model are in agree-
ment with observations from recent large-scale experiments
with humans (625 subjects) playing simultaneously large-scale
prisoner’s dilemma (PD) games [19]. The model quantitatively
reproduces both the global cooperation level (i.e., a decay from
an initial value of 60% to around 35%) and the final distribution
of agents according to their probability of cooperation. Other
attempts we know of are reported in Refs. [20-24] but, except
for Ref. [24], the focus of these works is on a qualitative
rather than a quantitative understanding. The experiments
studied in Ref. [24] have some differences from the type of
experiments we analyze here, rendering a careful comparison
more difficult (see Sec. II for a discussion of the main
differences). Furthermore, the models presented in these works
are not necessarily based on empirically grounded cognitively
motivated assumptions, like the one that we introduce here.

Our model is also parsimonious enough to allow for
a detailed characterization of its long-term dynamics. We
identify three parameter regimes where the system can be
monostable, bistable, or remain out of equilibrium. Such
regimes are separated by surfaces that terminate on a line
of critical points, where it is well known that systems can
develop long-range correlations and become highly responsive
to external stimuli [25-36].

Our findings suggest that groups of individuals who base
their choice to cooperate on a balance between selfishness and
compliance with social norms are poised near a critical point,
where their capacity to respond efficiently to changing and
widely diverse external conditions can be enhanced [26]. This
experimental evidence that human cooperative groups may
operate near criticality (see, e.g., Sec. IV of the recent review
in Ref. [25] for a detailed description of relevant works)
points to an unexplored feature of human cooperation that
may suggest a way in which social norms, besides promoting
cooperation, can also enhance the ability of human groups to
adapt to external variability. Similar results have been found
in experiments with ants [28].

This work is outlined as follows. In Sec. II we discuss
previous research and provide an overview of the different
components and assumptions of our agent-based model. In
Sec. III we describe the learning component of the model. In
Sec. IV we describe how agents make decisions on whether
to cooperate or not by balancing individual and normative
considerations. In Sec. V we make use of two further as-
sumptions consistent with experiments, i.e., slow adaptation
and the absence of network reciprocity. These assumptions
allow us to turn the stochastic agent-based model on networks
presented in Sec. IV into a four-parameter deterministic model
of a single representative agent. In Sec. VI we determine the
phase diagram of the effective single-agent model obtained in
Sec. V and show that the model can display critical phenomena.
In Sec. VII we extract the parameters of the effective single-
agent model from experimental data and show that human
groups playing in the experiments are posed near criticality.
In Sec. VIII we summarize and present the conclusions of
the work. In the Appendixes we present further technical
details.

II. PREVIOUS WORK AND MODEL OVERVIEW

While there is a great deal of literature on physics-based
models of human cooperation (see, e.g., Ref. [37] for a recent
review), most of these models are theoretical works that do
not take into account experimental evidence. Almost a decade
ago arelevant review article [38] noted that the “contribution of
physicists in establishing social dynamics as a sound discipline
grounded on empirical evidence has been so far insufficient.” In
arecent perspective review [39], one of the leading researchers
in the field remarked that “there are many relevant experimental
results on cooperation on structured populations published in
widely read journals while, unfortunately, many models are
introduced in the literature without taking into account [such
experimental] facts.”

As summarized by Sdnchez [39], some of the most relevant
experimental findings are that (i) lattices or networks do not
support cooperation; (ii) individuals display moody condi-
tional cooperation (MCC), i.e., when deciding to cooperate
subjects are responsive to the behavior of others, but only
if they have cooperated themselves; (iii) individuals do not
take into account the earnings of their neighbors; and (iv)
cooperation can be sustained in dynamic networks. Indeed,
as pointed out in the Introduction, we have identified only a
few references [20—24] that have attempted to build empirically
grounded models to explain the type of experiments we analyze
here. However, except for Ref. [24], the focus of these works
was on obtaining a qualitative understanding of the phenomena
observed in this type of experiments.

In contrast, our work, as well as that by Horita et al. [24], is
a quantitative study. Horita et al. [24] compare the explanatory
power of models of conditional cooperation [40,41] and their
moody variant (MCC) [19] to reinforcement learning models
in explaining cooperation under multiplayer social dilemma
games. They fit these models to empirical data obtained
from behavioral experiments, namely, prisoner’s dilemma and
public goods games. However, because their experiments have
some differences from the type of experiments we analyze
here, a careful comparison is difficult. For instance, while we
analyze experiments with 625 subjects interacting on a network
during 52 rounds, Horita et al. study experiments in which
100 individuals interact during 20 rounds either within fixed
groups of four people or with groups of four individuals chosen
at random. The authors then aggregate the decisions made by
individuals of all groups during all the rounds into a single
data set [see, e.g., Eq. (13) in Ref. [24]]. It is not clear to us
whether some relevant dynamical information is not lost in this
aggregation process. In contrast, we extract our model param-
eters from relevant statistical features of individual large-scale
experiments, using techniques that explicitly acknowledge the
dynamical nature of our model [see, e.g., Eq. (E1)].

Horita et al. [24] provide evidence that (model-free) rein-
forcement learning algorithms where agents have no access
to information about decisions made by their neighbors can
account for the observed human behavior roughly as accurately
as algorithms where agents can directly encode the MCC rule.
This result is particularly evident in those treatments in which
subjects interact with different people at every stage, i.e., where
norms and expectations about the actions of others are more
difficult to emerge. This finding is consistent with evidence
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TABLE I. Summary of assumptions underlying the model presented here. The first block of assumptions corresponds to the EWA model
introduced in Ref. [14], restricted to the special case discussed in the Supplemental Material of Ref. [44] (see Sec. I therein; cf. Ref. [45]).
More specifically, (i) while EWA allows for belief and reinforcement learning to have different weights, here they have the same weight [see
Eq. (2)]; (ii) while EWA allows for the interpolation between average and cumulative reinforcement learning, here the focus is exclusively on
cumulative reinforcement learning [see Eq. (2)]. These lead to a model characterized by the drive [see Eq. (2)] and two parameters: (i) parameter
o, which captures the exponential decrease of the relevance of past events, i.e., if « = 1 agents only remember what happened in the previous
round, while if « = 0 agents have cumulative information of the full history of play, and (ii) parameter 8, which captures the success of agents
in choosing the optimal strategy, i.e., if 8 3> 1 agents usually choose the optimal strategy, while if 8 = 0 agents choose strategies at random.
The EWA model is based exclusively on self-regarding considerations. The second block of assumptions extends the EWA model to include
norm-based considerations. The importance agents give to normative considerations is characterized by the parameter 4;if h =0 (if 7 > 1)
only individual (normative) considerations matter. The normative component implements three processes characterized by the parameters wc,
wo, and w;. The more the norm is perceived as salient, i.e., relevant, to the agent the higher its impact on the agent’s decision. These parameters
determine how the norm salience is updated. The parameter w¢, however, can be absorbed in the parameter /, so we take we = 1. These two
blocks of assumptions lead to a stochastic agent-based model where interactions take place on a given network. The third block of assumptions
transforms the model into a deterministic analytically tractable model of a single representative agent characterized by the parameter o and
three effective parameters [see Eqs. (12)—(17)]; these three effective parameters fully specify the long-term dynamics of the model (see Sec. IV).

Assumption Description Representation Reference
First block
bounded rationality agents do not always play the optimal strategy B in Eq. (1) [14,44,45]
belief learning agents learn from what could have potentially Eq. (2) [14,44,45]
happened
reinforcement learning agents learn from what actually happened Eq. (2) [14,44,45]
memory decay agents give more relevance to recent events a in Eq. (2) [14,44,45]
selfishness agents base their decisions on self-regarding Alc,Alp, Eqgs. (3) and (4) [14,44,45]
considerations
Second block
norm conformity agents base their decisions also on social norms h in Egs. (3) and (5) [46,47]
—self-consistency agents are consistent with own beliefs and wc in Eq. (5) [48-50]
self-ascribed norms
—social influence norm compliance increases with the number of wo in Eq. (5) [40,51]
compliant peers
—moody conditional cooperation social influence is stronger if aligned with w; in Eq. (5) [52]
self-consistency
Third block
slow adaptation adaptation happens over several individual Egs. (10) and (11) [19,53]

strategic choices
interaction structure does not significantly
influence behavior

no network reciprocity Egs. (12) and (13) [19,51,53-55]

from the cognitive and behavioral sciences that inspired our
model [5,40], showing that, although reinforcement learning
plays an important role in governing human behavior, when
involved in repeated and long-term interactions with the same
people, individuals’ choices are not independent of other
people’s behavior, but highly conditional on what they believe
others will do.

In the experiments analyzed by Horita ef al. and those we
analyze here, the information about a neighbor’s decisions nec-
essary to compute the normative reasoning (see Sec. IV C) can
in principle be extracted from the material payoffs. So it is not
unreasonable to expect that in these experiments subjects can
indirectly infer normative information from material payoffs
only, as suggested by Horita et al. A possible way to resolve
this ambiguity in the future could be to design experiments
where this peculiar situation does not hold.

However, theoretical and empirical evidence suggests that
human strategic behavior is based not only on model-free
reinforcement learning, but also on model-based reinforcement

learning (i.e., belief learning) [14,42,43]. These two types of
algorithms are related to habits that subjects acquired from past
experiences and goals that they expect to achieve in the future,
respectively. In contrast to Horita et al., our EWA-inspired
model is a hybrid between these two learning algorithms.
Although we assume an equal weight for both model-free
and model-based reinforcement to simplify the analysis, the
EWA component of our model can be easily generalized to
incorporate the desired weight to each of these two algorithms.
In future studies, this could be used to investigate which of the
two approximations is more accurate, i.e., assuming all weight
on model-free reinforcement learning, as done in Ref. [24], or
assuming equal weight for both model-free and model-based
reinforcement learning, as we do here.

Additionally, the model we present here encodes empir-
ically grounded cognitive assumptions, as summarized in
Table I. The first block of assumptions in Table I is specific to
the EWA learning algorithm (see Sec. III). While Refs. [20-22]
implement a heuristic evolutionary dynamics, none actually
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implements the EWA learning dynamics [14], which is based
on empirically sounder cognitive assumptions. Indeed, in
Ref. [20] the authors recognize that “the original formulation
of EWA cannot be trivially generalized to our MCC scenario”
and aim to reproduce key features of the EWA updating by a
linear combination of belief and reinforcement learning (see
Supplemental Material of Ref. [20] under the section titled “SI
EWA”). Experience weighted attraction, however, is known to
be a better model than such a mixture (see, e.g., item 3 on
p. 323 of Ref. [56]). Furthermore, in EWA agents learn solely
from what they earned or could have earned, in agreement with
experimental finding (iii) above.

The second block of assumptions in Table I is specific to the
normative component. These assumptions rely on theoretical
and empirical studies showing that human decisions are not
only driven by selfish considerations but also influenced by
social norms (i.e., informal social rules prescribing what
individuals ought or ought not to do [12,13,46]). Moreover,
those postulations are also aimed to account for the fact that
the more salient, i.e., relevant, the norm is perceived to be, the
stronger its impact on the individual’s motivation to comply
with it. Vilone et al. [22] point out that the interplay of
social and strategic motivations in human interactions is a
largely unexplored topic in collective social phenomena. They
implement a heuristic algorithm where, at each iteration, agents
choose with a certain probability either to update their strategy
by imitating a neighbor picked at random or to update their
strategy based on strategic considerations. In addition to being
heuristic, i.e., not necessarily based on empirical evidence, in
the strategic component of their update rule agents take into
account the earning of their neighbors in contrast with the
experimental finding (iii) above.

In addition to respecting experimental findings (iii), our
model incorporates empirically grounded normative assump-
tions into the EWA framework while still conserving its general
structure (see Sec. IV). Apart from being affected by the
expectations and actions of their peers, individuals’ decision
to cooperate depends also on their mood. Consistently with
experimental finding (ii) above, when deciding to cooperate
the agents are responsive to the behavior of others, but only if
they have cooperated themselves.

The first two blocks of assumptions lead to a stochastic
agent-based model in which agents interact on a given (static)
network and balance individual and normative considerations
in their decision-making. It should not be difficult to extend
this model to incorporate dynamical networks that can also
take into account experimental finding (iv) above. However,
we here restrict our analysis to static networks, which allows
for further simplifications.

Finally, the third block of assumptions is also consistent
with experimental evidence. Indeed, the nearly linear trend that
usually characterizes the MCC rule in the type of experiments
we analyze (see, e.g., Figs. 3 A and 3 B in Ref. [19]) is con-
sistent with a relatively large randomness in agents’ strategic
choices (i.e., the parameter 8 < 1; see Table I). This implies
that the timescale associated with individual strategic choices
is smaller than the timescale on which adaptation happens, i.e.,
adaptation can be assumed slow; this assumption allows us to
turn the stochastic agent-based model into a deterministic one
(see Sec. V). The second assumption in this block exploits

experimental finding (i) to turn the resulting deterministic
model of agents interacting on a (static) network into an
effective four-parameter model of a single representative agent
(see Sec. V). This four-parameter model is parsimonious
enough to allow for the analytical determination of its long-
term dynamics (see Sec. VI). We emphasize once again that
this effective model is restricted to the study of interactions on
static networks.

A remark is in order: While the reinforcement learning
algorithms studied by Horita ez al. [24] conserve the identity of
the individuals, our mean field model is based solely on a single
representative agent. While our single-agent model depends
on four parameters, the two models studied by Horita et al.
depend only on two or three parameters. However, our mean
field four-parameter model is parsimonious enough to allow
for the analytical characterization of its different dynamical
regimes. Avoiding the adiabatic and mean field approximations
described above, as well as the equal weights between model-
free and model-based reinforcement learning, we could turn
our model into a stochastic agent-based model that includes as
a special case the two-parameter model studied by Horita et al.
In the future, such a more general model could be used, along
with model selection techniques, to better compare ours with
the work of Horita ef al.

III. LEARNING ALGORITHM

Here we describe the learning component of the EWA
model, which incorporates the first block of assumptions in
Table I. In the next section we discuss how to extend this model
to include normative considerations in the agents’ decision-
making.

Theoretical and empirical evidence shows that human social
strategic behavior is based on a combination of model-free and
model-based reinforcement learning algorithms [14,42,43].
These models are related to habits that subjects acquired from
past experiences and goals that they expect to achieve in
the future, respectively. Under some circumstances [44,45],
carefully described in the first section of the Supplemental
Material of Ref. [44], this can be captured by a simplified
form of the EWA model [14]. Experience weighted attraction
is a modeling approach that combines both reinforcement
learning [15] and belief learning [16]. The former refers to
reinforcing actions based on agents’ past performance and
the latter refers to reasoning about how actions that have not
been chosen would have performed. One of the key insights
provided by EWA is that belief learning can also be understood
as a process in which actions are reinforced by forgone
payoffs. In this sense, EWA is a combination of model-free
and model-based reinforcement learning [57]. The simplified
EWA model [44,45], which we are interested in here, can be
described by the equations

xit+1)= ()

Dyt + 1) = (1 = )D;(1) + AU (1), @

Here x;(t + 1) and D;(¢ + 1) are, respectively, the probability
and drive of agent i to cooperate at round ¢ + 1. When the
parameter 8 > 0 is large, agent i tends to cooperate or defect
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if the drive is positive or negative, respectively; if instead
the drive or B is zero, the agent acts randomly. Intermediate
values of B interpolate between these two extremes: rational
optimization and random behavior. The term AU;(¢) in Eq. (2)
is the difference in utilities resulting from the choice of
either cooperate or defect. If AU;(t) > 0, agent i’s drive to
cooperate increases; if AU;(t) < 0, the drive decreases, while
if AU;(t) =0 it stays the same. Finally, the parameter o
describes memory loss: If « = 1, the agent remembers only
the previous round ¢, while if « = 0, the agent has cumulative
information of the full history of play. The case of 0 < o < 1
amounts to an exponential discount of utility over time.

While the EWA model assumes that agents’ motivation to
cooperate AU;(¢) is specified exclusively by individual con-
siderations, namely, material payoffs, in this work we extend
the EWA formalism to incorporate normative considerations,
as described in the next section.

IV. BALANCING INDIVIDUAL AND NORMATIVE
CONSIDERATIONS

Here we discuss how we extend the EWA model (see
Sec. III) to make agents balance between individual and
normative considerations in their decision-making. The indi-
vidual component is common to previous EWA models and
implements the assumption of selfishness in Table I, while
the normative component is introduced in this work and
implements the second block of assumptions in Table I. We
combine both considerations by defining agents’ motivation
to cooperate AU;(t) as a weighted sum of the individual and
normative components. This combination is also consistent
with experimental observations suggesting that a common area
in the brain correlates with the computation of both monetary
and social rewards [58] (see also Ref. [59]). The idea that
norms can be conceived as part of the utility function that
individuals maximize has been receiving growing attention
and empirical support [13,22,59-62]. In these works, however,
social norms typically have an exogenously specified impact
on individuals’ behavior, while we assume that this impact is
endogenously updated on the basis of how salient the specific
norm is perceived to be within a certain group.

A. Decision rule to cooperate

Decades of theoretical and experimental work are nowa-
days putting on solid ground that when deciding whether to
cooperate, humans do not always make choices that maximize
their individual payoffs, but they also care about behaving
in line with others in their group. Social norms accurately
provide information about how members of a certain group will
behave and more importantly about how they are prescribed to
behave [7,9,63].

Consistent with this evidence and in analogy with Ref. [46],
we develop a model in which the decision makers’ utility
AU;(t) is based on the material rewards they obtain and on
the degree to which their actions comply with social norms.
Thus,

AU;(t) = AL;(t) + hAN;(1), 3)

where the individual drive AI;(t) models the motivation to
maximize personal material payoffs and the normative drive
A N;(t) models the motivation to comply with social norms (see
Sec. IVC below for more details). The parameter & weights
the relative influence of selfish and norm-based motivations
on cooperative decision-making: If 4 = 0, agents do not care
about normative information, while if % is very large, agents’
behavior is dominated by what the norm dictates. It also defines
a relative timescale between selfish and prosocial reasoning,
related to reflection and intuition [64].

In this way we have incorporated the ability to balance
between normative and selfish considerations into the EWA
model, keeping the standard EWA formalism almost intact. The
impact of both types of considerations on individual decisions
has been scarcely explored (see Refs. [13,22,59,62,64]).

B. Individual component

Here we describe the individual component of the model,
which implements the assumption of selfishness in Table I.
We also describe the specific case of the PD game because this
is the game used in the experiment we analyze in Sec. VII.
Evidently, other types of games can also be implemented by
defining the payoffs accordingly.

We are interested in the situation where agents interact
pairwise by playing a given two-player game with each
neighbor in a social network [19,53]. In this case, we
can write the individual motivation for agent i to cooper-
ate in her interaction with her neighbor j at round ¢ as
AlLij(t) =sj(t)Alc +[1 —s5;(t)]Alp. Here s;(¢) refers to the
strategy played by agent j at round ¢, i.e., whether she co-
operated 5 () = 1 or defected s;(¢) = 0, while Alc = R —T
and Alp = S — P, where R is i’s reward’s payoff when both
agents cooperate, P is i’s punishment’s payoff when both
agents defect, S is i’s sucker’s payoff when i cooperates and j
defects, and T is i’s temptation’s payoff when i defects and j
cooperates.

The total payoff received by an agent i interacting with K
neighbors is given by the average over the payoffs obtained on
each of the K pairwise games the agent is involved in. So the
individual drive of agent i to cooperate at round ¢ is

1
ALi(t) =(Alc — AID)En,v(t) + Alp, 4)

where n; =}, ;; s; refers to the number of i’s peers who
cooperate, with di standing for the set of neighbors of i in the
social network.

If the payoffs satisfy T > R > P > S, we have the PD
game; furthermore, 2R > T + S for iterated PD games. The
structure of social dilemma is the following: Although the best
individual choice for both is to defect, mutual cooperation
yields a better payoff than mutual defection (R > P). The
experiments that we analyze here correspond to a weak PD
game where, in experimental currency units (ECUs), R =7
ECUs, T =10 ECUs, and P =S =0 ECUs; so Alc = -3
ECUs and AIp = 0 ECUs [19].

C. Normative component

Here we describe the normative component of the model,
which implements the second block of assumptions in Table I.
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We also define the entire utility function [see Eq. (3)] for the
specific case of the PD game.

The impact that social norms have on an agent’s decisions is
afunction of how salient [46,47] the norm is perceived by agent
i at round ¢ within the social group. The higher the salience
of the social norm, the stronger its impact on the motivation
to comply with it. The norm salience is determined by two
independent factors, weighted with the parameters we,wo >
0, and their interaction, weighted with the parameter w; > 0,
i.e. (cf. [46]),

n;(t) n;(t)
AN;(t) = wel2si(t) — 11+ wo—— + wISi(t)T~ @)

According to the first term, the salience of a norm is determined
by the behavior at round ¢, namely, the agent’s choice to comply
with or violate the norm. If agent i complies with the norm, she
will perceive it as more salient than if she violates it. This is
justified by the fact that humans have a strong need to enhance
their self-concepts by behaving consistently with their own
beliefs and self-ascribed habits so that they can avoid ethical
dissonance (self-consistency in Refs. [48—50]).

Inline with theoretical and empirical findings on conditional
cooperation [40,51], the second term containing wo > 0 as-
sumes that the salience of the norm is also affected by the share
of peers that complied with it. The more peers comply with the
norm, the more salient the norm becomes, and vice versa. The
third term containing w; > 0 disappears if the agent did not
cooperate at round ¢ [i.e., if s;(#) = 0]; while not present in
Ref. [46], this last term is introduced in this work to account
for recent experimental observations that support the MCC
rule, which assumes that in making decisions individuals are
responsive to the behavior of others, but only if they have
cooperated themselves [52]. It can be noticed that the second
term relaxes the assumption behind the MCC rule by positing
that when deciding whether to cooperate individuals are always
sensitive to what others do and not just after having cooperated
themselves (social influence). This relaxation is in line with
recent findings reported in Ref. [24].

Comparing Egs. (4) and (5), we can see that the information
required about neighbors’ action to estimate norm salience,
i.e., n;(t), could in principle be inferred from the information
on material payoffs. So it is not unreasonable to expect
that agents can indirectly infer normative information from
material payoffs only, as suggested by Horita et al. [24].

Now, introducing Eqgs. (4) and (5) into Eq. (3), we get

AUi(si,n;) = (as; + b)n; + 2hs; — h, (6)

where
a = hw;/K, (7)
b= (hwo + Alc)/K )

are effective parameters introduced to simplify the notation.
We have dropped the index ¢ to include explicitly the de-
pendence of AU; on the number n; of agent i’s peers who
cooperated at round 7. Furthermore, we took we = 1, as it can
be absorbed in the parameter /2, and Alp = 0 as we will focus
our analysis on the weak PD game studied in Ref. [19].

V. SLOW ADAPTATION AND ABSENCE OF NETWORK
RECIPROCITY

Here we describe how to implement the third block of
assumptions presented in Table I and how to obtain an effective
four-parameter model of a single representative agent. Our
interest in such an effective model is that it allows for the
complete analytical characterization of its long-term dynamics,
indicating the existence of critical phenomena, while still
quantitatively reproducing major features of large-scale ex-
periments with human groups.

As already discussed in Sec. II, the large-scale experiments
analyzed here are consistent with the assumption that adapta-
tion is slow in comparison to the rate of change of individual
strategic choices. Fluctuations around agents’ average behav-
ior induced by their stochastic nature can then be neglected (see
Appendix A). This so-called adiabatic [44,45] approximation
allows us to replace the stochastic variable s; encoding the
actual strategy chosen by each agent i for its mean value x;,
which is a deterministic quantity.

To see this, notice that by introducing Eq. (2) into Eq. (1)
the system dynamics can be fully specified in terms of the
cooperation probability as

xi (1)

jt 1 = .
ni D xi(t)lia +[1 - xi(t)]lf‘)‘e*ﬁAUi(l‘)

®

Replacing the stochastic term AU;(t), which depends on the
actual actions s; and sy; of agent i and her neighbors di [see
Eq. (6)], by its average value AU;(t), which is obtained by
changing each action s; by its corresponding average x;, we
get the deterministic equation

i (1 l—a
K+ )= i — . (10)
Xi(O 4+ [1 — x;(1)]1~*e—PAUID
More precisely,
Ui(r) = Z AU;(si,n;)pi(si,t) l_[ p(sj,1)
Si»Sai jeoi
= ax;(t) ij(t) +b ij(t) + 2hx;i(t) — h,
jeai jedi
(11)

where n; = > jeoi Si» the term s3; denotes the set of strategies
of i’s peers, p;(s,t) = [x;(O)’[1 — xj(t)]l‘s is the probability
that agent j plays strategy s, and we have used the expression
for AU;(s;,n;) in Eq. (6).

On the other hand, the interaction structure of a human
group does not appear to significantly influence its cooperative
behavior [19,51,53-55]; this is usually referred to as the
absence of network reciprocity, which is the influence of
network structure on cooperative behavior [65]. This implies
that correlations between different agents can then be assumed
to be weak, which leads to a mean field approximation [27],
where ;. x; ~ xK. Here x is the global mean value of x;
calculated over all agents i and K is the average number of
neighbors of a generic agent i. This approximation allows us
to describe the system in terms of a single representative agent
that captures the typical behavior of a generic agent i. In this
way, we obtain a deterministic learning dynamics of a single
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representative agent given by the equation (see Appendix A and
the first two sections in the supporting information of Ref. [44]
for further details)

x(t)l—ot
x(1)'=% + [1 — x()]\~@e~FAULKD)

where x is the probability for the representative agent to
cooperate and

AU[x] = aKx*+ (bK +2h)x — h (13)

x(t+1) = (12)

is obtained by replacing in Eq. (3) both s; and n; /K with the
average value x. Equation (12) describes the relevant aspects of
the dynamics of the global cooperation level and can reproduce
the values observed in Ref. [19] with accuracy comparable to
more complex models [20,66] (see Sec. VII).

VI. DYNAMICAL REGIMES AND PHASE DIAGRAM

Here we determine the phase diagram characterizing the
long-term dynamics of the effective single-agent model de-
scribed in detail in the previous sections; this diagram shows
three regimes, monostability, bistability, and nonequilibrium,
as well as a line of critical points.

To study the long-term dynamics of the model defined in
Eq. (12), we look for fixed points, i.e., points x that satisfy x (¢ +
1) = x(¢) = x. The points at the boundary, i.e.,x = 0and x =
1, are fixed points of the mean field dynamics described by
Eq. (12), but they are unstable since o, > 0. Only fixed points
x*satisfying0 < x* < 1 canbestable. The condition that these
points satisfy can be derived from Eq. (12) by setting x(¢ +
1) = x(¢) = x, which yields

x = f(x) with f(x) =1+ §anh[A(x — x0)* + yol, (14)

where

A=K (15)
=3,
bK +2h

=1 16
o 2aK (16)

(K +2h)? h
Yo=—""——7——"— 7, (17)

8aKy 2y

and y = «o/B. In Eq. (14) we have not made explicit the
dependence of the function f on the effective parameters A,
Xo, and yp to reduce clutter in the notation.

If the MCC assumption is dropped, i.e., w; =0 so a =
0, Eq. (14) becomes equivalent to the equation that deter-
mines the equilibrium magnetization, given by m = 2x — 1,
of the Curie-Weiss model [67]. Indeed, when a — 0
Eq. (14) can be written as m = tanh[B(Jegm + Hegr)],
where Jo = (hwo + Alc 4+ 2h)/4a would correspond to
an effective ferromagnetic interaction (when Jei > 0) and
H = (hwo + Alc)/4a would correspond to an effective
external field. As it is well known, the Curie-Weiss model can
display two phases, paramagnetic and ferromagnetic, which
are the magnetic analogs to the regimes of monostability and
bistability of our model of human cooperative dynamics.

The MCC assumption (w; > 0) introduces an additional
nonlinearity, whose magnetic analog is an additive term of
order m? in the argument of the hyperbolic tangent. Such

term comes from the interaction between the agent’s own
cooperative behavior and that of her neighbors. Such additional
nonlinearity renders the phase diagram of the model more
complex and gives rise to a new nonequilibrium phase, where
the cooperative dynamics never settles.

Indeed, as described in detail in Appendix B and shown
in Fig. 1, depending on the values of the parameters A, xo,
and yo, there can be zero, one, or two stable fixed points,
corresponding to a nonequilibrium, monostable, or bistable
long-term dynamics, respectively. This provides an analytical
characterization of the system that helps to obtain insights
into systems as complex as human groups that are typically
difficult to obtain. In particular, this analytical characterization
allows us to infer model parameters from experimental data
and identify evidence that the human groups playing in the
experiments of Ref. [19] are near criticality (see Sec. VII and
Appendix E). The strategy we adopt here for the estimation
of model parameters from experiments uses information about
the dynamical regimes identified.

The regions of the phase diagram corresponding to the
different dynamical regimes are separated by surfaces of
discontinuous transitions that terminate on a line of critical
points (see Appendix B). At these critical points, correlations
are known to become long range [27] and systems have been
shown to display a multitude of significant features, such as a
large repertoire of dynamical responses, optimal transmission
and storage of information, and extreme sensitivity to external
perturbations [26-36].

Several mechanisms have been put forward in an attempt
to explain how criticality could emerge in living systems [30].
A novel perspective posits that criticality is the evolutionary
stable outcome of a group of individuals equipped with mech-
anisms aimed at representing each other with fidelity, wherein
the best possible trade-off between accuracy and flexibility
is achieved [26]. We here show evidence that mechanisms
balancing between individuality and social conformity can
underlie human cooperation and poise human groups near
criticality.

Criticality is usually associated with the divergence of a
properly defined susceptibility that quantifies the range of
the correlations in the system and its response to external
perturbations [27,67]. Here it can be defined in terms of the
change in the global cooperation x when a certain model
parameter 6 varies, e.g., 8 = h. For illustration purposes, let
us assume that the model parameters vary as A(6) = A% — 0,
x0(0) = x;,., and yo(6) = ;.. for a generic parameter 6 > 0,
where A%, x;., and y;. correspond to a point on the critical line.
So, when approaching the critical point, i.e., when 8 — 0 or
A — A%, out of the nonequilibrium region the susceptibility
is given by (see Appendix C)

0x 1

which clearly diverges. Notice that A varies with the original
parameters of the model since it is defined in terms of them [see
Eq. (15)]. In the Conclusion we discuss the implications that
this feature may have for the adaptiveness of human groups.
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FIG. 1. Dynamical regimes of human cooperation. Colormap representation of the surfaces of discontinuous transitions defined by a function
A4(x0,Y0) that returns the transition value of A for each value of the effective parameters x, and yy, defined in Egs. (16) and (17), respectively.
Each (color) gray level encodes a level curve A,(xo,y0) = A, which partitions the xy-y, plane into three regions corresponding to different
long-term dynamical regimes: Inside the sharp triangularlike curve (left) the system is bistable; inside the paraboliclike region (right) the
system never reaches equilibrium (see also Fig. 3 in Appendix B). Outside these two regions the system is monostable (see Appendix B). The
cloud of densely packed (green) dots around the plus and the cloud of sparsely scattered (yellow) little triangles around the cross represent a
projection on the x(-y, plane of the posterior population of parameters o, A, xo, and y, inferred here from the experiments performed in [19] on
a heterogeneous network (HN) and on a lattice (L), respectively. We show the parameters estimated (HN, diagonal cross; L, vertical cross) and
quantify their relative distance (HN, 3%; L, 11%) to the closest point (HN, square; L, circle) on the critical lines (dashed) (see Appendix E).

VII. ANALYSIS OF LARGE-SCALE EXPERIMENTS OF
HUMANS PLAYING A PRISONER’S DILEMMA

Here we use experimental data from Ref. [19] to determine
the parameters of the effective single-agent model described
in Secs. II-V and locate the human group playing in the
experiment into the phase diagram obtained in Sec. VI (see
Fig. D).

A. Brief review of experiments analyzed

To estimate where human groups may be located in the
phase diagram of Fig. 1, we extracted the model parameters
from two recent large-scale experiments in which more than
600 human participants play a prisoner’s dilemma game
simultaneously in two different network environments [19].
These experiments are aimed at testing the relative ef-
fect of homogeneous or heterogeneous network environ-
ments on cooperative behavior (for details see Appendix E).
We build on these experiments because we expect them
to offer more robust statistics than similar but smaller
experiments.

In Ref. [19], one of the two experiments was conducted
on a square lattice and the other on a heterogeneous network.
However, their finding that network structure does not signifi-
cantly affect behavior (i.e., the absence of network reciprocity)
suggests that even though our mean field model neglects
network structure, it can still provide a good description of
the experiments, as shown below.

In these experiments, human subjects played a 2 x 2 mul-
tiplayer PD game with each of their K neighbors for 52
rounds. Players could take only one action, either to cooperate
C or defect D, the action being the same against all the
opponents. The experiment was simultaneously carried out on
two different virtual networks: The first network consisted in a
25 x 25 lattice with a fixed number of 4 neighbors and periodic
boundary conditions (625 subjects); the second network was
a heterogeneous network with a fat-tailed degree distribution
(604 subjects), where the number of neighbors varied between
2 and 16.

Subjects played a repeated (weak) prisoner’s dilemma game
with all their neighbors for an initially undetermined number of
rounds. Payoffs were set to be 7 ECUs for mutual cooperation,
10 ECUs for a defector facing a cooperator, and 0 ECUs for
any player facing a defector.

Participants received information about the actions and
normalized payoffs of their neighbors in the previous round.
Without knowledge of the duration of the game, participants
had to make only one decision for all neighbors. Therefore, the
situation becomes similar to a repeated public goods game. In
public goods experiments, participants usually start coopera-
tive, but in the absence of cooperation-enhancing mechanisms,
such as punishment or reputation, their cooperation levels
decrease over time. Information about the behavior of others
allows participants to create expectations about how others will
behave, namely, about the social norms ruling the group.

We focus here on two features observed in these experi-
ments that can be reproduced by our model (Fig. 2). The first
feature is the dynamics of the global cooperation level, which
decays from an initial value of about 60% to a relatively con-
stant value of about 35%, both on the heterogeneous network
and on the square lattice [Figs. 2(a) and 2(b)]. The second
feature is the probability P(C|s,n) for a generic individual to
cooperate C in a generic round, conditioned by her previous
action s and the number n of neighbors who cooperated in the
previous round [19,51,53-55]. Reference [19], for instance,
reports a nearly linear dependence of P(C|s,n) on n for both
values of s [see Figs. 2(c) and 2(d)].

B. Inference of model parameters

To fit our model to the experimental data, we notice that
the left-hand side of Eq. (1) for the representative agent can
be interpreted as x(t + 1) = P(C,t + 1|s,n,x,t), namely, the
probability that the agent cooperates at round ¢ 4 1 given that
at round ¢ the following three conditions are satisfied: (i) She
played strategy s, (ii) n of her neighbors cooperated, and (iii)
x(t) = x. To eliminate the explicit dependence on the history
of the system, i.e., on x and ¢, we first assume that the system
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FIG. 2. (a) and (b) Balance of selfishness and conformity to social norms explains human behavior in large-scale prisoner’s dilemma games.
Shown is a comparison of the dynamics of the global cooperation level observed in the laboratory experiment conducted in [19] (circles) on
(a) a heterogeneous network and (b) a square lattice with that predicted by Eq. (12) (line) with the corresponding parameters inferred from the
same experiments (see the caption of Fig. 1). The model and experimental dynamics are in agreement even in the transient regime. Also shown
is the empirical probability for a representative agent to cooperate in a generic round based on whether she cooperated (“after C,” squares) or
defected (“after D,” circles) and on the number of neighbors who cooperated in the previous round obtained in the same experiments [19] on
(c) a heterogeneous network and (d) a lattice. The experimental data are compared with the values predicted by Eq. (19) (“after C,” red upper
solid lines; “after D,” blue lower dash-dotted lines) with the corresponding parameters inferred from the same experiments (see the caption of
Fig. 1). We can see that the assumption of linearity is valid and that our model agrees with the experimental values to a large extent. We include

the linear fits (dashed straight lines) directly obtained from experimental data [19] for comparison.

of interacting humans observed in the laboratory has reached
a stationary state, so it can be accurately described by the
long-term mean field dynamics [Eq. (12)]. We further assume
that the system is essentially monostable and, accordingly,
the model dynamics is dominated by a single fixed point.
These assumptions considerably simplify the analysis and, as
it turns out, are self-consistent with the results obtained (see
Appendix D for a more general and detailed treatment).

Although the stationary state of a generic system can depend
on its dynamical history, under the above assumptions, this is
not the case. Thus, the right-hand side of Eq. (1) evaluated at
the fixed point, i.e.,

1

P(C|S,l’l) = l—a ,—BAU(s,n)’
I+y %e J

19)

should coincide with the experimental results, where y; =
(1 — x1)/x1, with x; the global cooperation level at the domi-
nant stable fixed point. The term AU (s,n) is the utility function
of the representative agent in the mean field approximation,
which is obtained by simply dropping the agent index i in
Eq. (6). Similarly, y; = (1 — x;)/x;, with x; being the only
stable fixed point of Eq. (12). This result indicates that when
the system is deterministic and monostable, its long-term
dynamics is independent of its history. When the system is
bistable and we neglect fluctuations altogether, the probability
P(C|s,n) is given instead by a convex combination of terms
like the one on the right-hand side of Eq. (19), one for each
fixed point. More details can be found in Appendix D1.

To compare Eq. (19) with the nearly linear behavior
[Figs. 2(c) and 2(d)] observed in [19,54] (but see Ref. [55]),
we do a first-order approximation in 8 to obtain

P(Cls,n) =men/K +ry, (20)
with
my = BK J(a)(as + D), (21
ry = I(a) + BJ(a)[h(2s — 1)], (22)
where
1
I((X) = ﬁ’ (23)
1+ y
yl—ot
J@) = ———3. (24)
(1 + )
This approximation is consistent with the results below (see
Fig. 2).

The slopes m; and intercepts r; in Eq. (20) are better
described in terms of the mean intercept r and the gap G
between intercepts of the near linear trends that describe the
MCC rule [19], i.e.,

r=L0c+rp)=I@). (25)

G =rc —rp =2BhwcJ (), (26)
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TABLE II. Experimental data for the two experiments reported
in Ref. [19], which were carried out on a square lattice and on a
heterogeneous network. The first four rows are extracted from Table
S2 in Ref. [19] and correspond to a linear fit of Figs. 3 A and 3 B in
Ref. [19], while the last row is obtained from averaging the last ten
rounds in Fig. 2 A in Ref. [19] (see Sec. E 2).

Quantity Square lattice Heterogeneous network
mc 0.122 £ 0.034 0.126 £ 0.039
mp —0.149 £+ 0.050 —0.0269 £+ 0.035
re 0.457 £0.015 0.475 £0.016
rp 0.350 £ 0.021 0.309 £ 0.069
X 0.306 £ 0.024 0.355+£0.021

where, for convenience, we took mg = mp, r; = rc, etc. In
experiments we have mp # 0, which implies that b # 0 as
mp X b, so

me —mp = BaKJ(w), )
me _ Patpb (28)
mp /31)

We are now in a better position to discuss the role played
by the parameters w¢, wp, and w; encoding the norma-
tive assumptions. First, notice that we have reintroduced the
parameter we = 1 in Eq. (26) to make explicit that if the
assumption of self-consistency (see Table I) were dropped,
i.e., if we set we = 0, the gap G would vanish, contradicting
experimental observations (see Fig. 2). Analogously, we can
see from Eq. (27) that if the MCC assumption (see Table I)
were dropped, i.e., if we set w; = 0, which implies a = 0, the
two slopes m¢ = mp are equal, contradicting experimental
observations (see Fig. 2). In this sense, the parameters w; and
wc play not only a quantitative but also a qualitative role. In
contrast, the role of the parameter w is more quantitative than
qualitative. Indeed, Eq. (21) implies that mp = BK J()b. If
wo = 0 we have b = Al¢/K, which is fixed by the experi-
mental conditions, and mp = BJ(a)Alc would be less than
zero for the PD game, since Al- < 0. While this is consistent
with experimental observations, with wo = 0, the accuracy
of the fit was rather poor and so we did not include it in our
analysis. However, future analysis should study in further detail
the relevance of this assumption.

As described in detail in Appendix D 2, there is a direct
relationship between the parameters of the model and the
experimental quantities defined above [see Egs. (D27)—(D30)].
So the values of m; and ry, extracted from experimental
data [19] (see Table II), constrain the values of the model
parameters. There is a further constraint: The dynamics of the
global cooperation level should be consistent with experimen-
tal results [Figs. 2(a) and 2(b)].

A population of parameters satisfying the resulting set of
constraints was obtained via Bayesian inference by using the
package POMP [68] and is illustrated in Fig. 1. Although the
two-dimensional projection of the phase diagram in Fig. 1 may
suggest otherwise, they all lie in the region of monostability.
The technical details and the data obtained are provided in
Appendix E.

C. Results

The parameters corresponding to the two experiments (see
Table 1V), inferred by the method described above (see also
Appendix E) are at arelative Euclidean distance of 3% and 11%
to the critical line (see Fig. 1 and Appendix E 5). Figures 2(a)
and 2(b) compare the levels of global cooperation observed
in the laboratory experiment [19] (circles) with the ones
predicted by Eq. (12) (line), informed with values extracted
from Ref. [19]. Results from both the heterogeneous [Fig. 2(a)]
and homogeneous [Fig. 2(b)] networks are presented. Both
figures show decay in cooperation over the 52 rounds from
the initial value of 60% to around 35% in both treatments.
Results show close agreement of the model dynamics with the
laboratory experiments. Likewise, in Ref. [19], the network
topology does not have any appreciable influence on the
evolution of the level of cooperation.

Figures 2(c) and 2(d) show the probability for a represen-
tative agent to cooperate in a generic round based on whether
she cooperated (C, squares) or defected (D, circles) and on the
number of neighbors who cooperated in the previous round.
Results obtained in both the heterogeneous network [Fig. 2(c)]
and lattice [Fig. 2(d)] are shown. Again, both figures indicate
that the probability defined in Eq. (19) is consistent with both
the experiments and the linear approximation in Eq. (20). Our
model reproduces human cooperative behavior observed in
large-scale laboratory experiments more accurately than the
MCC behavioral rule since, as shown in Refs. [19,52], the latter
is not able to reproduce the slow decay of the cooperation level
when the agents did not cooperate in the immediate past.

VIII. CONCLUSION

In this work we presented a statistical-physics-based model
to account for human decision processes behind cooperative
behavior. In this model, the decision makers’ utility is based
both on the material rewards they obtain and on the degree to
which their actions comply with social norms. Results from this
analytically tractable model are in agreement with observations
from recent large-scale experiments with humans [19]. The
model closely reproduces both the global cooperation level and
the final distribution of agents according to their probability of
cooperation. This provides support to our hypothesis that hu-
man cooperation is the outcome of the interaction between in-
strumental decision-making, aimed to maximize people’s eco-
nomic rewards and the norm psychology humans are endowed
with. In doing so, we have provided experimental evidence of
the effect of social norms in promoting cooperative behavior
in large groups of humans facing a social dilemma situation.

The cognitively inspired model presented encapsulates
important empirical knowledge on human cooperative behav-
ior: (i) Humans’ social strategic behavior operates with both
model-free and model-based reinforcement learning [14,43]
that are at the basis of the EWA framework adopted, (ii) popu-
lation structure does not significantly influence the cooperative
outcome [19,51,53-55] that in the model led to a mean field
approximation, and (iii) adaptation is slow when compared
with the timescale at which individual actions change, which
allows us to neglect in the model stochastic fluctuations and
obtain a deterministic dynamics [see Eq. (12) and Appendix A].
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The presented model is parsimonious enough to allow
for a detailed characterization of its long-term dynamics.
By inferring the model’s parameters from experimental data
extracted from Ref. [19], we show that the cooperative system
is located near criticality.

Recently, evidence has been mounting that living systems,
such as the human brain, insect swarms, gene expression
networks, bird flocks, and fish schools [27-31], operate near
critical points and this might provide them functional advan-
tages. Far from criticality, a system can be either too stable,
which may favor maladaptive behaviors, or too uncoordinated
with its members behaving essentially independently of each
other. In both extremes the system as a whole is not very
responsive to external changes, while around a critical point it
is strongly correlated and highly sensitive to changes and its
capacity to respond efficiently to varying external conditions
can be maximized [26].

Even though still preliminary, our evidence of signatures
of criticality in human cooperative groups is in agreement
with recent findings on socioecological systems showing that
social norms enhance the adaptiveness of cooperative systems
to social and environmental variability [4,69]. These studies re-
port that during times of institutional and ecological volatility,
social norms facilitate the management of common resources,
such as forests, water, and fisheries, more than the action of
formal institutions. The long-range correlations between pairs
of human subjects associated with a critical point could then
help explain why norm-based cooperation may enhance the
adaptiveness of human groups to external change. Social norms
are then crucial mechanisms for both promoting cooperation
and enhancing its resilience to external perturbation.

Clearly, more theoretical and empirical work is needed
to reach solid conclusions. For example, machine learn-
ing techniques, such as the maximum entropy approach in
Refs. [29,70-72], can be used to carry out a complementary
data-driven analysis that does not rely on expert knowledge
like the model we presented here. Moreover, experiments that
vary some of the relevant parameters of the model, e.g., the
payoff matrices, specifically targeted to more directly address
our findings need to be performed.

However, the increasing amount of similar evidence [27-
32,34-36] attesting criticality in living systems seems to sup-
port the plausibility of our results. Similarly to ants [28], human
groups appear to reach optimal coordination at a suitable
trade-off between individuality and social conformity [28] and
this makes them poised at the critical point. Social conformity
increases the ability of a group to coordinate to reach the de-
sired collective outcome. However, behavioral conformism has
also the disadvantages of increasing the stability of undesirable
behaviors and of decreasing the ability of the system to react to
external information [28]. Thus the optimal collective perfor-
mance is achieved when group members are able to balance be-
tween social conformism and individuality so that they are able
to achieve a high level of coordination within the group but also
to maintain robust responsiveness to external perturbations.

How would humans tune to criticality? An intriguing
possibility is that humans implicitly build a model of the
external world and adjust its parameters accordingly, similar in
a sense to what we did here. Model-based inference techniques
apparently tend to produce parameter values that are close

to a critical point [73]. Model-based learning mechanisms
in humans [14,42] could then influence their behavior and
drive human groups towards criticality [26]. Human subjects
hardly possess global structural information about their group,
which may explain why the mean field model developed here
is accurate enough and ultimately why no significant impact
of population structure on cooperative behavior has been
observed [54]. An alternative idea [28,32] posits that biological
groups can tune to criticality by growing until a suitable size.
If so, it may be difficult to observe signatures of criticality in
experimental setups with human groups of fixed size. Another
interesting question that arises is whether there may be a
connection between the signatures of criticality observed here
ina group of decision makers and those that have been observed
in the brains powering the decision-making itself [29,36,71].
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APPENDIX A: SLOW ADAPTATION AND ADIABATIC
APPROXIMATION

A way to justify the approach leading to Egs. (10) and (11)
in the main text is assuming that the cooperation probability,
or equivalently the drive in Eq. (2), changes slowly during a
batch of about 7 rounds [44,74,75]. For small values of T, a
linear noise correction to the deterministic equation give good
results even for a number of players as small as two [74].

Since we are interested here in games with hundreds of play-
ers and we are focusing exclusively on observed experimental
features at the aggregate level, namely, the global level of coop-
eration and the MCC rule, we take T = 1 and neglect the noise
altogether. This approach is expected to be better suited for
games with a sufficiently large number of agents and is not ex-
pected to necessarily describe the initial transient regime in suf-
ficient detail. As discussed in the main text, this approach can
actually describe the major features of the largest experiment
to date [19] with enough qualitative and quantitative detail.

If « and B both vanish, the probability of cooperation
remains constant. We will thus assume that « and § are small
so that changes in the drive during a few rounds are not
appreciable. The accumulated changes will then only become
noticeable after each batch of 7 rounds; these can be written as

T-1
Dit+T)=(1-a) Di)+ Y (1 - AU +h). (AD
k=0
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Here the sum is over the 7 consecutive rounds that start at
round . We can rewrite Eq. (A1) as

— T AUt + k),

(A2)
where o/ = 1 — (1 — )" ~ T, since « is assumed small.

For large values of the batch size T', we can interpret the sum
on the right-hand side of Eq. (A2) as a weighted time average.
The weight is given by a discounting factor (1 — &’)*/”, which
decreases from 1 to 1 — ' from the beginning (k = 0) to
end (k = T — 1) of the batch, respectively. So, if we further
assume that also o’ ~ «T is small, we can approximate such
a sum by the ensemble average in Eq. (11) calculated with the
corresponding mixed strategies [44,74,75].

Replacing the last term in Eq. (A2) with the term defined
in Eq. (11) and writing everything in terms of a rescaled
time v =t/ T, arescaled drive D}(tr) = D;(zT)/T, and utility
differences AU/(7) = AU;(tT)/ T, we obtain

Di(t +1) = (1 —&)D}(1) + AU/(7). (A3)

Following Egs. (1) and (A3) and the definitions t = /T and
x'(t) = x(zT), we can write

xt+T)=x(t+1)= (A4)

1 + e BD/+D)’

In terms of a rescaled parameter 8’ = BT, we obtain an
equation analogous to Eq. (9) but for updates on batches of
T rounds, i.e.,

xj(0)! =
(1) 4 [1 = xj(0)]' e P AU’
where introducing Eq. (6) into Eq. (11) for the case of the weak

prisoner’s dilemma that we are interested in, we have

AU!(7) = ax)(1) Z_x}(‘[) +b Zx}(r) + 2hx/(t) — h.

jeoi jeai

x(t+1)= (AS)

(A6)

Equation (AS5) is a deterministic update rule obtained by
neglecting the fluctuations in the last term in Eq. (A2), which
is stochastic, and replacing it with the average in Eq. (11).
Finally, notice that since we assumed o’ is small thena ~ o'/ T
should be even smaller. Notice also that in this case the ratio
o' /B’ = a/B remains the same. If we take T = 1 then 7 =1,
so we can replace x;(t) — x;(t) and AU'(t) — AU; (1) in
Eq. (A6). Similarly, we can replace «' — « and 8’ — S. This
yields Egs. (10) and (11).

APPENDIX B: CALCULATION OF THE PHASE DIAGRAM

Here we show that Eq. (12) indeed predicts three regimes
with qualitatively different long-term dynamics: monostable,
bistable, and nonequilibrium. Graphically, the solutions of
Eq. (14) correspond to the intersections of the graphs of f
and the identity function at points x that satisfy 0 < x < 1.
Their stability is determined by the magnitude of the derivative
of f,1i.e.,

_ A(x — xo)
dx  cosh’[A(x — x0)% + yol

(BI)

05 ; ; — - —
Critical points \\_“\‘\ Critical
" ~a. lines
< -05f ]
; R R Ry Ra N
) . WA P S o
< Two ; RS
fixed ——> :No fixed points
points
15 < - i : L
-1 -0.5 0 05 1 15 2

X0

FIG. 3. Level curve of the surface A,(xo,yo) of discontinuous
transitions [see Egs. (B3) and (B4)],1.e., A;(xo, o) = A (here A = 5).
Inside the (green) shaded triangularlike region (left) there are two
stable fixed points. Inside the (blue) shaded paraboliclike region
(right) there are no stable fixed points. In all the remaining white area
there is one stable fixed point. These regions terminate on critical
points (red squares). If the value of A changes, these regions shift and
so do the corresponding critical points along the critical lines (red
dashed nonhorizontal lines crossing from the bottom left and bottom
right to the top center). The points R1, ... ,Rs on the (black) dashed
horizontal line show examples of the five regions described in the
text (see Appendix B). These correspond to parameter values A = 5,
yo = —1, and xo = —0.90,0.00,0.35,0.80,1.62, respectively.

evaluated at the corresponding intersection point x: If | f/(x)| <
1 [|f/(x)| > 1], then the fixed point is stable (unstable). We
have used the partial rather than total derivative in Eq. (B1) to
stress that f is also a function of A, x¢, and yy.

We now proceed to derive the equations that define the
surfaces separating the different regimes which, as we will see,
are accompanied by a line of critical points. For clarity, we will
first give a somewhat informal discussion before addressing the
problem in more detail below. Notice that Eq. (14) is similar to
the one yielding the equilibrium magnetization in the mean
field Ising model on an external field. In analogy with the
analysis of the Ising model and following the discussion in the
preceding paragraph, the condition | f'(x)| = 1 plays a central
role in determining the transition between different regimes.
Using Eq. (B1), the condition | f'(x)| = 1 yields

VAlz| = cosh®(2> + yo),

where 7z = \/Z(x — xp). Using Eq. (B2), rewriting the defini-
tion of z as xo = x — z/~/A, and using Eq. (14) to change x
for f(x), we can write

(B2)

cosh*(z22 + yo)

Aq(z,y0) = — (B3)
x0(z,y0) = l + ltamh(z2 + yo) — ;, (B4)
22 VAdz.0)

from which we can obtain in parametric form the surface
Ag(x0,y0) that separates the three dynamical regimes, as a
function of x( and yo with the parameter z [Fig. 1(a)]. Figure 3
shows a level curve of this surface, which is the set of points
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FIG. 4. Graph of f [see Eq. (14)] corresponding to points Ry, ..
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. ,Rs in Fig. 3 in Appendix B. Notice that f'(P;) = f'(P,) = 1 and

f'(P3) = f'(Psy) = —1 (green crosses). The fixed points of f are its intersections with the identity function (dashed line); these are stable (blue
circles) if | f'(x)| < 1 and unstable (black squares) if | f'(x)| > 1. (a) For small x, (e.g., point R in Fig. 3), there is only one stable fixed point
x1. (b) Increasing x, (e.g., point R, in Fig. 3) until point P, touches the identity function, we enter region 2 where there are two stable fixed
points x; and x, and an unstable one x, in between. (c) Increasing x, (e.g., point Rz in Fig. 3) until x, hits point P, to then disappear, we enter
region 3 where only the stable fixed point x, survives. (d) Increasing x, (e.g., point R, in Fig. 3) until x, hits the point P; to become unstable,
we enter region 4 where there are no stable fixed points. (e) Increasing x (e.g., point Rs in Fig. 3) until x, hits point P, to become stable, we

enter region 5 where there is only one stable fixed point x;.

that satisfies A;(xo,yo) = A, with A = 5. This value allows for
abetter visualization, while the discussion that follows remains
qualitatively true for the case in Fig. 1 discussed in the main
text, where the parameters inferred from the experiment [19]
were used instead.

To fix ideas before we continue with a more formal de-
scription, we first show a more graphical discussion following
Figs. 3 and 4. For this we fix parameters A = 5 and yp = —1

and vary xo moving from left to right along the horizontal
dashed line in Fig. 3. This figure shows five different points
labeled R, (with £ =1, ... ,5) on the said horizontal dashed
line, which illustrate the five regions to be discussed next.
Figure 4 depicts the respective functions f(x) for A =5 and
yo = —1 at each of the five values of x( that correspond to
the five points R, in Fig. 3. Notice that f(x) always takes
its minimum value at x = xo. We have also identified four
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points, labeled P, (with £ =1, ... ,4), where the magnitude
of the slope of f is exactly one, ie., f'(P)) = f/(P;) =
1 and f/(P3) = f'(P4y) = —1 [see, for example, Fig. 4(a)].
Starting at R; [Fig. 4(a)], we can then shift f(x) (red solid
line) towards the right by increasing x(, and when each of
the four P, points hits the graph of the identity function
(dashed line) they become fixed points x with |f'(x)| = 1
(i.e., marginally stable).

We now describe the different ways in which the identity
function can intercept the graph of f.Referring to the sequence
in Figs. 4(a)—4(e), we canimagine that we start from xo < —0.1
[Fig. 4(a)] and slowly increase its value so that the function
f slowly moves from left to right traversing the conditions
corresponding to the five points R, (with £ =1,...,5) in
Fig. 3. In this process we traverse the following five regions.

Region 1. Initially xo, where f takes its minimum value,
is negative enough to cause the graph of the identity function
to intersect f at a single point x; =~ 1 [see Fig. 4(a)]. Since
f'(x1) = 0, the fixed point x; is stable. Then, if we start
increasing the value of x, the graph of f will move to the
right and the value of x; will decrease until the graphs of f
(red solid line) and the identity function (dashed line) intersect
at point P; [see Fig. 4(a)] and that situation will mark the end
of region 1. Point R; in Fig. 3 belongs to this region.

Region 2. From then on, a second stable fixed point x;
emerges along with an unstable fixed point x,,, with x, < x, <
x1 [see Fig. 4(b)]. Increasing the value of x, further, these fixed
points shift to the left until x; hits point P, [see Fig. 4(b)] and
then disappears. This can only happen if the curvature of the
graph of f is not too large. Point R, in Fig. 3 belongs to this
second region.

Region 3. Afterward, there is only one stable fixed point x,
which shifts to the left while we keep increasing the value of
Xo, until it hits point P; [see Fig. 4(c)], to then become unstable.
This can only happen if the curvature of the graph of f is not
too large. Point R; in Fig. 3 belongs to this region.

Region 4. After this, there is only one fixed point x,,, which
is unstable, that shifts to the left when increasing the value of
Xo, until it hits a point Py, where f'(P4) = —1 [see Fig. 4(d)].
Point R4 in Fig. 3 belongs to this region.

Region 5. In this last regime, there is only one stable fixed
point x; which keeps shifting to the left while we increase
further the value of x, [see Fig. 4(e)]. Point Rs in Fig. 3 belongs
to this region.

Following the comments made in the description of regions
2 and 3 above, when the curvature of the graph of f is large
enough the order in which points P, and P; in Fig. 4 meet gets
inverted. However, the experimental results are not located in
this regime and so we do not discuss this further.

In Fig. 3 the level curve A,(xg,yo) = A defines regions
inside which there are zero (blue paraboliclike area) and two
(green triangularlike area) stable fixed points. These regions
terminate on a critical point (red squares), where a continuous
transition takes place. By varying the value of A, we can change
those regions and the corresponding critical points, which then
gives rise to lines of critical points (red dashed nonhorizontal
lines crossing from the bottom left and bottom right to the
top center). One condition satisfied by a critical point is that
there are only two points (instead of four) where the slope
of f has magnitude one; one of those points is the reflection

of the other around x = x¢. This is the case if Eq. (B2) has
only one solution z* > 0, since this implies a second solution
—z* by the symmetry of Eq. (B2) under reflections z — —z.
The condition for Eq. (B2) to have a unique positive solution
is that the slope of the function g(z) = cosh?(z% + yo) on its
right-hand side equals \/Z, i.e.,

VA = g'(z) = 4z sinh(z2 + yo) cosh(z> + yo).  (B5)
We can safely assume that A # 0 and divide Eq. (BS) by
Eq. (B2) for z > 0 to obtain the equation 4z tanh(z? + y,) =
1, from which we can obtain y.(z), i.e., the critical value of
yo as a function of z [see Eq. (B6) below]. Knowing this, we
can use Egs. (B3) and (B4) to obtain A.(z) and x(.(2), i.e., the
corresponding critical values of A and x( as a function of z
[see Egs. (B7) and (B8) below]. More explicitly, the critical
lines (A(z),x0:(2), yoc(2)) are described by

Y0(2) = tanh™! (i) _2 (B6)
4z2
4r.2
A(0) = cosh™[z Z;r yoC(z)]’ B7)
Xoe(2) = l(1 + i) SR (BS)
2 4z2 VA(Z)

where we have used the condition for criticality, i.e.,
4z% tanh(z? + yo) = 1, to obtain Eq. (BS).

In all the discussion so far the condition | f'(x)] = 1 has
played a central role. Here we show in a more detailed way
why this is the case. First, notice that the function f in
Eq. (14) essentially contains a parabola given by the expression
A(x — x0)*> + yo and transforms it by applying a hyperbolic
tangent, a constant scaling, and a constant offset (both equal
to 1/2) to it. The parameter A defines the curvature of the
parabola, while the parameters yy and x¢ define the minimum
value it takes and where it takes it, respectively. These features
remain qualitatively true for the graph of f, except that now
yo also influences its curvature. Now note that the graph of the
function f in Eq. (14) has the following properties (see Fig. 4).

Property 1. Itis continuous and bounded, i.e.,0 < f(x) < 1
for all x.

Property 2. It is symmetric around x = xo, where it
takes its minimum value, i.e., f(xo —x) = f(xo+ x) for
Xo = argmin, f(x).

Property 3. Starting from x = xo and moving towards
X > xo (x < xp), its slope monotonically increases (decreases)
from zero up to a certain point, where its second deriva-
tive f” vanishes, and then starts decreasing (increasing)
until it asymptotically reaches zero again. In particular
lim, 400 f/()C) =0.

Property 4. By varying x it is translated horizontally,
but otherwise its shape remains unchanged. In particular, this
implies that f’(x) depends only on the difference x — xp, as
observed in Eq. (B1).

According to properties 1 and 4, the graph of the function f
in Eq. (14) can intersect with the graph of the identity function
in any of its points, by choosing a proper value of x, (see Fig. 4).
Furthermore, due to properties 3 and 4, we can always find a
value of x( for which there is at least one stable fixed point,
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since the function f always has points with slopes as close to
ZEro as necessary.

Now, due to the continuity of f, if there are only two stable
fixed points, say, x; and x, < xi, then there is an unstable fixed
point, say, x,, such that x, < x, < x; [see Fig. 4(b)]. In this
case, because of the shape of f [see Fig. 4(b)], the unstable
fixed point x, and at least one of the two stable fixed points
should be on the right side of xy, i.e., x; > x, > x¢. Following
properties 1 and 3, if there is an unstable fixed point x, such
that x,, > xo, there must also be two points where the slope of
f is equal to one; this is due to the fact that for x > x; we have
f'(x) > 0and f'(x) goes to zero for both x = x¢ and x — o0;
furthermore, f'(x,) > 1.

Hence, the existence of a point x with f/(x) > 1 signals
also the existence of at least one value of the parameter x, for
which there are two stable fixed points [see Fig. 4(b)]. Since
f is symmetric around x = xy, this also implies the existence
of a point x” such that f(x") < —1. The first time this happens
is when a point x with | f'(x)| = 1 emerges.

APPENDIX C: DIVERGING SUSCEPTIBILITY

The susceptibility x of a system is related to its response to a
small change in the external conditions. We could ask what the
change éx is in the global level of cooperation when a generic
parameter 6 of the model is varied by a small amount 6.
We have §x ~ (dx/06)86, so x = dx/d6. Arguably, the most
natural parameters to consider in our model are A /¢ introduced
in Eq. (4), which is in principle under the influence of the
experimenter, and perhaps also & [64]; these two parameters
influence the effective parameters xo and yy [see Eqgs. (16)
and (17)]. Since f in Eq. (14) depends explicitly on the
parameters A, xo, and yo any change in a generic parameter 0
that affects any of those three parameters would also affect f.
To be more specific, let us assume that A = A(0), xo = x(0),
and yy = yo(0) are well-behaved functions of 6.

Deriving both sides of Eq. (14) with respect to a generic
parameter 6, we obtain

dax ox

Cox L 0 o
X=5g =T Wgg T 755

where f’(x) is defined in Eq. (B1) and the additional term

af(x)  af(x)dA(®) N af (x) dxo(0) n af (x) dyo(0)
90 dA 930 dxg 00 L
(C2)

takes into account the explicit dependence of f on the parame-
ters of the model, which vary when varying 6. The term defined
in Eq. (C2) is smooth as long as we can assume, as we do here,
that there are no spurious singularities in the definition of A(6),
x0(60), and yo(6).

Solving Eq. (C1) for the susceptibility x = dx /36, we get

1 W)

XTT 500 o6
which clearly diverges when, by varying 6, the fixed point
x under consideration crosses continuously a point x, where
f'(x;) = 1, i.e., a critical point. For illustration purposes, let
us assume that the model parameters vary as A(0) = AX — 0,
x0(0) = x§,, and yo(0) = y;. for a generic parameter 6 > 0;

(ChH

, (C3)

here A} = A.(z%), x5, = Xoc(2¥), and y§, = yo.(z*) correspond
to a point on the critical line specified by a particular value
of z* through Egs. (B6)—(B8). Using Egs. (B1) and (B7),
we can write f'(x) = ,/A(0)/A¥, which for small 6 can be
approximated as f'(x) &~ 1 — 6/2A%. So, following Eq. (C3),
when approaching the critical point, i.e., § — 0 or A — A7,
the susceptibility diverges as
1 1

X X —= e
0 A*—A A-a

oo, (C4)

where in the last expression we have written § = A* — A in
terms of A. The divergence of the susceptibility is one of the
hallmarks of criticality [27].

APPENDIX D: CONNECTION TO EXPERIMENTS

1. Moody conditional cooperation

As mentioned in the main text, experiments show that the
probability for a human to cooperate in a generic round of the
game depends on whether she cooperated or not and how many
of her peers cooperated. Here we explain how to connect this
so-called moody conditional cooperation rule with the mean
field model described by Eq. (12).

Indeed, the MCC rule can be expressed mathematically in
terms of the conditional probability P(C;t + 1|s,n;t) for a
generic agent to cooperate C at round ¢ + 1 given that she
played strategy s and that n of her peers cooperated at round
t. More precisely, the probability which the MCC rule refers
to can be written as P(C|s,n) = (1/T))_, P(C;t + l|s,n;1),
where T is the total number of rounds. We assume, however,
that T is sufficiently large and that the system reaches a
stationary state. In this case, the MCC rule is given by the
conditional probability corresponding to the stationary state
(t — 00), and we can drop the index f; we will keep the
dependence on ¢ for the most part to facilitate the discussion,
though. We further assume that the stationary state can be
described by the long-term dynamics of the mean field model.

Depending on the context, we will use interchangeably
s = C or s = 1 to refer to cooperation, and similarly we will
use interchangeably s = D or s = 0 to refer to defection. Now,
writing AU;(t) = AU;(s;,n;) [see Eq. (6)], the right-hand side
of Eq. (9) gives the probability that an agent i cooperates
at round ¢ + 1 given that, at round ¢, she played strategy
si, that m; = )5, s; of her peers cooperated, and that her
cooperation probability was x;. Indeed, this is a more detailed
reading of Eq. (9). Since in the mean field approximation we
are interested in a representative agent, we can drop the indices
and write

xlfa

xl-o + (1 _ x)l—ae—ﬂAU(s,n) ’ (Dl)

where AU(s,n) = (as + b)n + 2hs — h [see Eq. (6)]. This

conditional probability distribution depends on x, while the

MCC rule does not. Informally, if we assume that the system

is monostable we can get rid of the dependence on x to obtain
1

1+ yll—ae—ﬂAU(x,n)’

P(C;t + 1|s,n,x;t) =

P(C|s,n) = (D2)

where y; = (1 — x)/x; and x; is the only stable fixed point;
Eq. (D2) coincides with Eq. (11).
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In the following we use the rules of probability theory to
obtain a more general form of P(C|s,n) from Eq. (D1) that
reduces to Eq. (D2) if we assume that the system is monostable.
Let us first write

fy PUC: 1 + 1), {s,n,x;1))dx
fol P(s,n,x;t)dx

P(C;t 4+ 1s,n;t) = , (D3)

by definition of conditional probability. The term inside the
integral in the numerator is the joint probability of all the vari-
ables involved. We have emphasized between curly brackets
which round the variables refer to. On the other hand, the term
inside the integral in the denominator is the joint probability
of all the variables that refer only to round ¢.

Using the chain rule of probability theory, we can express
such joint probabilities as

P({C;t + 1}, {s,n,x;t}) = P(C;t + 1]s,n,x;t)
x P(s,n;t|x;t)P(x;1), (D4)

P(s,n.x;t) = P(s,n;tx; 1) P(x; 1), (D5)

Let N denote the set of neighbors of the representative agent
and let sy = {s;|j € N} and xy = {x;|j € N} be the set
of their strategies and cooperation probabilities, respectively.
Then

P(s,n;t|x;t) = Z P(s,sy;t|x;1)8| n = Zsj , (D6)

SN JjeN

where §[ p] is the indicator function, which is equal to one if
proposition p is true and zero otherwise. Here P(s,sy;t|x;1)
is the conditional probability that the representative agent play
strategy s and her peers play strategies sy, jointly, at round
t given that the probability for the representative agent to
cooperate at the same round is x. The definition of conditional
probability and the chain rule allow us to write

P(s,sy;tlx;t)

_fol P(s.systlx.xn; P xns ) [ ey dx;
- P(x;1)

where the term inside the integral in the numerator is the joint
probability that at round ¢ the representative agent and her
neighbors play strategies s and sy and their cooperation prob-
abilities are x and xy, respectively. The integral marginalizes
this probability over xy leaving the joint probability of the
variables s, sy, and x.

Although the next sentence may be redundant, its sole
intention is to put everything in the formalism we are describing
here: The probability that an agent plays strategy s at round ¢,
given that the probability to cooperate at the same round ¢ is
x, can be written as P(s;t|x;7) = x*(1 — x)!~*. Furthermore,
at each round each agent picks her strategy independently of
the rest. So

P(s.systlxxns )= P(sstlx o) [ | Plsjselxss0)
JjeN

=x'(1-x) " []x7A—xp'™v. (DY)
JEN

» (D7)

This reflects the fact that correlations in the system come
only through the correlations in the cooperation probability
accumulated during the history of play. Equation (D7) can then
be written as

P(s,sy;t|x;t)

=01 [ PO D [Ty 1) (1= x)! ™ dx;
B P(x;1) '

(D9)

Only now we resort to the mean field approximation
which neglects correlations altogether to write P(x,xy;t) ~
Px;)]] jeN P(x;;1).Since weare intf.:rested in the sFationary
state, we can drop the round index ¢ in the expressions that
follow. So

P(s.systlxs ) =x(1—x)' 7 p% (1 = p)' =, (D10)

where p = fol xjP(xj)dx; is the average probability that a
neighbor cooperates, which equals the average probability
that the representative agent cooperates since we are working
within a mean field approximation. Introducing Eq. (D10) into
Eq. (D6), we get

P(s,n,tlx,t) = x*(1 — x)'~* <I§>p"(] —p)X— (D11

where ( ',f ) = K!/n!(K — n)!isthe binomial coefficient. Intro-
ducing Egs. (D11) and (D1) into Egs. (D3) and (D4), Eq. (D5)
yields the desired result

P(C,t + 1s,n,t)
B 1 /1 (1 — x)1 =5 P(x) i
,05(1 _ p)lfs 0 yl-a + (1 _ x)lfaefﬁAU(s,n) ’
(D12)

where we have used fol (1 —x)"=%dx = p*(1 — p)!=*. Us-
ing the change of variables y = (1 — x)/x, which is monotonic
for x € (0,1), we have

P(C,t + 1|s,n,t)
o /°° Y+ ) P ()
,05(1 _ p)l—s 0 1 +yl—ae—ﬁAU(s,n)

Since we have assumed that § is small, we can expand the
right-hand side of Eq. (D13) to first order in § to obtain

dy. (D13)

P(C,t + 1|s,n,t) = () + BJ;(x)AU((s,n), (D14)
where
00 ,1—s —1
L) = 1 f y (I +y) Py(y)d ’
p (L =p)'= Jo 14 yl=e
(D15)
1 00 y27afs(1 + y)flpy(y)
Jg = dy.
= —p)l—sfo a+yp @
(D16)

Using Eq. (6), we can see that Eq. (D14) is of the form

P(C,t + 1|s,n,t) =msn/K + s, (D17)
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where

my = BK Jy(a)(as + b), (D18)

ry = Is(e) + BJo()[h(2s — 1)].

This yields the general expression introduced in Egs. (20)—
(22); in the next section we make use of the assumption of
monostability.

(D19)

2. Regime of monostability

We now make use of the assumption that the long-
term dynamics of the system is well described by the
stable fixed points of the mean field dynamics. So
P(x)=(1 — w)d(x — x1) + ud(x — x), where x; and x, are
the fixed points of Eq. (12) and w yields their corresponding
weights. In this case, the average probability for the represen-
tative agent to cooperate is p = (1 — w)x; + ux,. If there is
only one fixed point we can take u = 0. If there are no fixed
points, the analysis here does not apply. For simplicity and in
agreement with the experiment we analyze [19], we assume
that the dynamics is essentially monostable, say, u =~ 0. This
implies that the experimental global average cooperation level
in the stationary state X is close to the relevant fixed point, i.e.,
X ~ Xj.

In this case we have p = x; and Py(y) = §(y — y;) with
y1 = (1 — x1)/x1, which yields

1

PG+ i) = 1+ yll_ae_ﬁAU(s,n);

(D20)

this is the expression in Eq. (19). In this case both terms in
Egs. (D15) and (D16) become

Ii(@) = I(@) = ——, (D21)
1+,
1—a
Y
J(@) = J(a) = ————, (D22)
(1+y7)?

independent of s. Equations (D18) and (D19) are better
described in terms of the quantities

~

= 3(rc +rp) = I(a), (D23)

G =rc—rp=28hJ(). (D24)

Here r and G are the mean intercept and the gap between
intercepts of the near linear trends that describe the MCC
rule [19], respectively. We can safely assume that b £ 0, which
gives

mec —mp = BaKJ(w), (D25)
me _ patpb (D26)
nmp ,Bb

Now, Eq. (D23) can be readily inverted to obtain « in
terms of the experimental quantity r [see Eq. (D27)
below]. Similarly, using Eq. (D23) we can write
J(@)=I(a)[l — ()] =r(1 —r) and so Eq. (D24) can
be readily inverted to obtain Sk in terms of the experimental

quantities G and r [see Eq. (D28) below]. Finally, Egs. (D25)
and (D26) can be inverted to obtain Ba and 8b in terms of the
experimental quantities m¢, mp, r, and K [see Egs. (D29)
and (D30) below]. This yields

log[(1 —r)/7]

~ Tosld =33’ (D27)
Bh = % (D28)
pa = % (D29)
Bb = % (D30)

where we have used the condition that the only stable fixed
point should equal the experimental global cooperation level,
i.e., x; = X, to obtain Eq. (D27).

Although these equations leave the parameter 8 undeter-
mined, this combination of parameters completely determines
the coefficients that define the mean field dynamics through
Eq. (12) and the parameters A, xo and y, that locate the system
in the phase diagram. Indeed, multiplying by 8 in the numerator
and denominator of Eqgs. (15)—(17), using Egs. (D27)-(D30),
and doing some algebra we obtain the expressions

— w, (D31)
2ar(1 —r)
G
xp = _L7 (D32)
2(mc —mp)
m% +2mcG + G?
Yo = DT (D33)

 8ar(l —r)(me —mp)’

where the expression for o is given in Eq. (D27).
Equations (D31)—~(D33) in principle allow us to locate the
system in the phase diagram of Fig. 1(a). However, we still
need to check that these parameter values produce a dynamics
through Eq. (12) that indeed agree with the dynamics observed
in experiments, within the margin of error of the experimental
results. Furthermore, we should check that indeed the assump-
tion of monostability is indeed satisfied, i.e., that x; & X.

Before finishing this section note that we can invert
Egs. (15)—(17) to recover the parameters defining the mean
field dynamics in Eq. (12), which yields

200A
a=—, (D34)
K
4o
Bb = ?[yo — xo(1 — x0)Al, (D35)
Bh = —2a(yo + x5 A); (D36)
here we made use of the expression yy = —(szg + h)/2y.

3. Regime of bistability

In the case in which the system is bistable with a non-
negligible value of p, we have to deal with the whole expres-
sion P(x) = (1 — w)d(x — x1) + ud(x — x,) and Egs. (D15)
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and (D16) become

Ii(a) = Wi Ti(@) + Wa s To(a), (D37)

Js(@) = Wi Ti(e)[1 — Ti(@)] + Wa  Ta(e)[1 — Ta(a)],

(D38)
where we have defined the expressions
1
Ty =—— (D39)
1+,

i-1 (% \ (1 —xi =
Wes =p' (1 —p) — . (D40)
P I—p

Equations (D18) and (D19) defining the slopes and intercepts
can still be inverted to obtain

mc mp

K = _ Mo D41
Pk =T @~ nh@ (B4
mp
pK — D D42
P Jo(a) (D42)
h = l[ e Ip o) 11(05)]' (D43)
21 Ji(@)  Jola)  Jo(@)  Ji()

However, the corresponding values of « are given implicitly
by solutions to the equation

Jo(@)lre — Ii(@)] + Ji(@)[rp — Ip(e)] = 0.

In the bistable regime, we can parametrize the model in
terms of «, the two stable fixed points x; and x,, and the
unstable fixed point x,,. Indeed, if we write the fixed point (14)
as A(x — xo)*> + yo = tanh~!(2x — 1), evaluate it at two of the
fixed points, say, x| and x,, and subtract the two corresponding
equations, we obtain the expression for A,

A(x2,x1)

(D44)

A=F , = , D45
a(x2,x1]|x0) [ R— (D45)

which defines the function F4(x;,x;|xo); here
A(xz,x1) = tanh~'(2x, — 1) —tanh ' 2x; — 1).  (D46)

Any two fixed points that we choose would give us a different
expression for A, which should be consistent. In particular, we
should have A = Fx(x2,x,|x0) = F(x,,x1]|x0), from which we
can obtain an expression for x in terms of the three fixed points,
ie.,

(¥3 — xi) AGxux) = (g =

o x?) A(xp,x,)
O 7 () — x)AGx) — (G — XDARDX,)

(D47)

So we can introduce any feasible values for xi, x, and x,
into Eq. (D47) to obtain the corresponding value for x(; from
Eq. (D45) we can obtain the corresponding value for A and
from Eq. (14) the corresponding value for y.

APPENDIX E: FROM EXPERIMENTAL DATA TO MODEL
PARAMETERS

1. General considerations

Here we depict how we estimated the parameters of the
model described by Eq. (12). We follow the framework of
partially observed Markov processes [68] and assume that the

system is described by an underlying deterministic dynamics
x () satisfying Eq. (12). We further assume that the scientist
in the laboratory observes a noisy version xqs(#) of the un-
derlying dynamics characterized by a probability distribution
Pobs[Xobs(t)|x(¢)]. This collectively describes experimental
uncertainty as well as intrinsic stochasticity [74,75] in the
system dynamics that has been averaged out in the derivation
of Eq. (12).

To each observed trajectory Xghs(l:7T) = {xops(f) : t =
1,...,T} of T rounds and a trajectory of the underlying
dynamics x(0: T) = {x(#): t =0,...,T}, we can assign a
joint probability distribution

T
PIx(0 : T),Xgn5(1 = T)|O] = Po[x(0)] Hpobs[xobs(t)lx(t)]

t=1

X Payn[x()|x(r — D]®], (EI)

where © represents the parameters that define the system
dynamics via Eq. (12), Py[x(0)] represents the probability
distribution over the initial condition x(0) of the underlying
dynamics, and Py, [x(2)|x(z — 1)|®] is a Dirac delta function
representing the deterministic dynamics described by Eq. (12).
Finally, we assume that Pops [Xops(£)|x ()] = N [xops(1); X(£),0°]
is a Gaussian distribution of mean x(¢) and standard deviation
o to be determined later.

From the joint distribution defined in Eq. (E1) we can
obtain the probability or likelihood of observing a par-
ticular realization of the observed dynamics Pi[Xops(1 :
T)|®] given the parameters ®. Our aim is to determine the
probability of the parameters given a particular realization
of the observed dynamics which, following Bayes’ rule,
is given by PH [®|X0bs(1 : T)] X Plik[xobs(l : T)|®]Ppri0r[®]7
where Ppior[©] contains the prior information on the param-
eters ®. We estimate the parameter values by the average
over the posterior, i.e., 6= f OPy[O|Xons(1 : T)]dO®. What
follows depends on whether we are in aregime of monostability
or bistability.

2. Parameter estimation in the regime of monostability

We build the prior Ppuio;(®) in an indirect way. First,
we notice that Eqgs. (D27)-(D30) yield a set of values for
the parameters that, along with the initial condition x(0),
define the system dynamics through Eq. (12). So we can
parametrize our model in Eq. (12) by the collection of exper-
imental observables ® = O = (m¢,mp,rc,rp). To deal with
the uncertainty in the experimental results, we assume that
any observable O reported in the literature is described by
a uniform probability distribution supported in the interval
[0* —¢80*,0* + £50*].Here O* and § O* are, respectively,
the value reported for O and its corresponding standard error
(Table II); the parameter ¢ is used to define a credible interval
of the reported experimental results, e.g., if ¢ & 1.28 or { =
1.96 we are dealing with a 90% or 97.5% credible interval,
respectively. We rely on a uniform rather than a Gaussian
distribution on experimental results to avoid the statistics being
dominated by rare events [e.g., due to the logarithmic term in
Eq. (D27)]. We will use this as a prior distribution P(QO).

To compute « from O via Eq. (D27), we assume that the
fixed point equals the average global cooperation over the last

042321-18



BALANCING SELFISHNESS AND NORM CONFORMITY CAN ...

PHYSICAL REVIEW E 97, 042321 (2018)

TABLE III. Parameters inferred for the experiment in Ref. [19]
on a heterogeneous network and a square lattice using { = 1.96 and
¢ = 1.28, respectively (see Sec. VIII).

Parameter Heterogeneous network Square lattice
i 0.0545 0.0868
mp —0.0901 —0.2095

P 0.3917 0.38765
G 0.161 0.1809
x(0) 0.5328 0.580

Covariance matrix (heterogeneous network)

1.3x107° —73x107% 85x10% 43x10° -3.8x10°°
—-73%x107% 13x107° —-1.8x10° 6.1 x107° -3.6 x 10~¢
85x10% —1.8x107% 7.1x10° 49x10™* —1.0 x 10°¢
43 x107° 6.1 x107% 49x10* 35x107% —2.0 x 1073

—3.8x107% =3.6 x 107° —=1.0 x 107® =2.0 x 107> 2.2 x 1073

Covariance matrix (square lattice)

34x107° —55x10°%-7.6x 1077 3.4 x107° 3.0 x 107>
—55x107% 87x10% =33 x 1077 1.1 x107% —5.4 x 107°
—-76x1077 =33 x 1077 4.1x1077 9.1x107% 6.7 x 1077
3.4 x 1076 1.1 x107% 9.1x10% 1.0x 107 —4.3x 107°
—30x107° =54 x10° 6.7x107 —-43x107% 32x107*

ten rounds of the experiment, i.e., x; & X. In this way we
avoid the technical difficulty that the prior state would actually
depend on the final state of the dynamics, i.e., the fixed point.
We also estimate the standard deviation o of the observation
error to be equal to the standard deviation of the last ten points
in the time series Xqbs(1 : 7). We assign, however, a standard
deviation three times larger 3o to the first two points in the
dynamics to take into account that the adiabatic approximation
is expected to capture better the slower dynamics that follows
the initial transient regime of rather fast decay.

3. Parameter estimation in the regime of bistability

This case is a bit more complex since now the relationships
between parameters and experimental values, i.e., Egs. (D41)—
(D44), depend nontrivially on the fixed points of the underlying
dynamics. Moreover, in contrast to the previous case, here we
cannot disentangle this dependence as the observed long-term
cooperation level is related to the underlying dynamics by ¥ =
(1 — w)x{ + px;. The prior here is also defined indirectly. As
discussed in Appendix D 3, in this regime it is convenient to
parametrize the model in Eq. (12) in terms of the two stable
fixed points x| and xJ, the only unstable fixed point x;/, and «,
ie., © = (o, x},x3,x)).

To take into account the influence of the two stable fixed
points on the underlying dynamics, we describe the observed
dynamics as xps(2) = (1 — w)x(t) + ux2(t), where x;(¢) and
x»(t) represent the dynamics given by Eq. (12) with two
different initial conditions x;(0) and x,(0). For any given
choice of the parameters ®, we use Egs. (D45) and (D47) and
invert Eq. (14) to compute the corresponding values of A, xo,
and yo. With these and the parameter o, we can use Eqgs. (D34)—
(D36) to compute the corresponding parameters aqyn = fKa,
bayn = BKb, and hgy, = Bh that, along with the initial condi-
tions x1(0) and x,(0), fully specify the underlying dynamics

TABLE IV. Parameters locating on the phase diagram of the
model (Fig. 1 in the main text) the experiment performed in [19]
on a heterogeneous network and a square lattice [19]. These data
were obtained from Table III by using Eqgs. (D27) and (D31)—(D33)
to get the parameter values and first-order error propagation to get the
corresponding covariance matrix.

Parameter Heterogeneous network Square lattice
A 1.16 1.413

Xo —-0.24 0.0483
Yo —0.71 —0.4346
& 0.263 0.4417

Covariance matrix (heterogeneous network)
9.3 x 1072 6.7 x 1072 5.9 x 1072 —2.0 x 1072
6.7 x 1072 5.1 x 1072 4.7 x 1072 —1.5%x 1072
5.9 x 1072 4.7 x 1072 44 %1072 —1.3x 1072
—2.0x 1072 —1.5x 1072 —1.3x 1072 4.4 %1073
Covariance matrix (square lattice)

1.6 x 1073 43 x 107 —1.0x 107* —5.7 x 107
4.3 x 107 6.8 x 1073 5.4 x 1073 1.6 x 107
—1.0x 107 5.4 x 1073 7.4 x 1073 1.2 x 107
—5.7 x 1073 1.6 x 1076 1.2 x 1073 1.3 x 1073

through Eq. (12). Furthermore, using Egs. (D18) and (D19),
we can estimate the corresponding values for the slopes and
intercepts describing the MCC rule and then compare with the
experimental values reported. If the values obtained happen
to be outside the credible interval [O* — ¢60*,0* + ¢5§0*]
defined by the choice of parameter ¢, then such a specific value
for the parameters © is rejected.

4. Implementation

We have used the package POMP [68] implemented in R to
perform the Bayesian inference via a particle Markov chain
Monte Carlo with an adaptive random walk as the proposed
distribution. This is a package specifically designed for pa-
rameter inference of partially observed Markov processes.

5. Results

Table II summarizes the experimental results reported in
Ref. [19]. The quantity x represents the global level of
cooperation reached by the system of interacting humans in
the laboratory. We estimate this quantity and its standard error
by computing the average and standard deviation, respectively,
of the global cooperation [Figs. 2(a) and 2(b)] over the last ten
rounds of each of the two experiments performed in [19], on a
heterogeneous network and on a square lattice. These are the
two experiments that we analyze in this paper and to which we
refer in this section.

Table III shows the parameters estimated for the two exper-
iments and their corresponding covariance matrix. In the case
of the experiment on a heterogeneous network (square lattice)
we used ¢ = 1.96 (¢ = 1.28) corresponding to a uniform dis-
tribution on the experimental quantities representing a 97.5%
(90%) credible interval (Appendix E 2). Since these results
were obtained in the regime of monostability (Appendix E 2),

042321-19



REALPE-GOMEZ, ANDRIGHETTO, NARDIN, AND MONTOYA

PHYSICAL REVIEW E 97, 042321 (2018)

the parameters over which we performed Bayesian inference
were Qe = (mc,mp,r,G,x(0)). (In the regime of bistability
we did not find satisfactory results.) The dynamical parameters
are then determined through Egs. (D27)—(D30). Figures 2(a)
and 2(b) show the dynamics corresponding to these parameters
in the case of the experiment on a heterogeneous network and
on a square lattice, respectively. In contrast, Figs. 2(c) and 2(d)
show the results of applying Eq. (11) using these parameter
values.

Table IV shows the corresponding values of the parameters
Ogyn = (Ophase, ), Where Opnase = (A, x0,y0) directly locate the
system in the phase diagram of the model (Fig. 1 in the main
text) and, along with o, completely determine the dynamics of
the system through Eq. (12). The covariance matrix reported
is obtained by first-order error propagation of the results
displayed in Table III. This was done to take into account that
the constraints were enforced on @,y during the inference
process and produced the best visual results of Fig. 2. We

also tried to first transform the posterior over the parameters
Oexpt into a posterior on the parameters Oy, to then compute
the average value over the latter, but the results were less
satisfactory. In any case, Fig. 1 also shows the population
of parameters ®gy, representing the corresponding posterior.
We see that the values reported in Table IV, which are also
shown in Fig. 1, indeed appear to be representative of the
population.

Finally, we estimated the Euclidean distance d(Ophase,0))
of the parameters Gppase to the closest point 6 = (A, x(.,¥5.)
on the critical lines defined by Egs. (B6)-(B8). Following
the standard analysis of continuous phase transitions, we
define a reduced or relative distance to the critical point
as 8(Ophase,0c) = d(Ophase;0c)/|Oc|, where |6,| stands for the
Euclidean norm of the vector of parameters 6. Using the values
in Table IV, we obtained the values of §(Ophase, Oc) ~ 0.03 and
3(Ophase,Oc) ~ 0.11 for the experiments on a heterogeneous
network and on a square lattice, respectively.
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