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Two order parameters for the Kuramoto model on complex networks
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We investigate the behavior of two different order parameters for the Kuramoto model in the desynchronized
phase. Since the primary role of the order parameter is to distinguish different phases, we focus on the ability to
discern the desynchronized phase from the synchronized one on complex networks with the size N . From the
exact derivation of the difference between two order parameters, �, on a star network, we find that these order
parameters disagree in the desynchronized phase. We also show that the hub plays an important role and provide
an analytic conjecture on the condition that the two order parameters agree with each other as N → ∞. The
conjecture is numerically confirmed.
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I. INTRODUCTION

Phase transitions have been one of the traditional subjects
in statistical physics [1–3]. The first step to the quantitative
description of the phase transition is to identify the order
parameter (OP). The most fundamental role of the OP is the
identification of distinctive phases. Quantitatively, the average
vanishes on one side of the transition and moves away from
zero on the other side in general. Thus, the onset of the
nonzero value of the OP specifies the transition threshold.
Therefore, defining a good OP is one of the most important
steps to understand various properties of phase transitions.
Examples of good OPs are the magnetization in ferromagnetic
transitions [4], the difference of density between liquid and gas
in liquid-gas transitions [5], and the electron pair amplitude in
superconducting transitions [6].

Sometimes, however, a misbehaving OP has bothered
physicists in diverse topics. For example, the number of
corners or the corner density is claimed to be not a good OP
for the low-dimensional self-avoiding work model of protein
folding. The difference between the densities of vertical and
horizontal bonds is suggested as a better OP [7]. In the
homogeneous plaquette Ising model, the OP involving the
product of two nearest-neighbor spins on the same row of the
square lattice was suggested as a good OP instead of the usual
magnetization [8].

Recently, coupled oscillatory systems have attracted interest
from researchers for their theoretical importance and potential
applications (see for example Ref. [9]). The Kuramoto model
is one of the well-known models for coupled oscillatory sys-
tems [10]. The original Kuramoto model is defined on the com-
plete graph in which all oscillators are coupled to all the others.
The low-dimensional Kuramoto model on regular lattices has
been also investigated [11–14]. With the recent development of
the complex network theory, the Kuramoto model on complex
networks also has attracted many researchers [15–20]. More
recently, some variants of the Kuramoto model showed very

*syook@khu.ac.kr

intriguing transition natures such as the discontinuous or
explosive transition [21–26].

Like many other systems studied in statistical physics, the
simplest analytic approaches to the Kuramoto model generally
rely on the mean-field theory. The critical coupling strength of
the Kuramoto model on the complete graph is generally known
as the Kuramoto value. The mean-field analysis gives that the
critical coupling strength on a complex network is determined
by the Kuramoto value, rescaled by the first and second
moments of the degree distribution [15–17,20]. Thus, the
mean-field analysis predicts that the critical coupling vanishes
in the thermodynamic limit on a graph with a high degree
heterogeneity. However, the evidence obtained from extensive
numerical analyses shows that the critical coupling strength
converges to a nonzero value, in striking contrast to the predic-
tion of mean-field analysis [17–19]. Therefore, the question
left is what causes the disagreement between the mean-field
result and the numerical expectations. As one of the possible
origins of such discrepancy, the use of different OPs has been
conjectured [17,27], but the problem still remains open.

To study the phase transitions in the Kuramoto model,
two slightly different OPs are widely used depending on the
underlying topology. As already addressed, choosing a better
OP is the important first step to investigate various synchro-
nization transitions observed in Kuramoto-type models as in
many other systems showing phase transitions. Furthermore,
the use of different OPs has been conjectured [17,27] to
cause the disagreement between the mean-field result and
numerical predictions. However, how the choice of OP affects
the synchronization transition in the Kuramoto model is not
fully understood. Therefore, finding the difference between
the two OPs for the Kuramoto model is very important. In this
paper, we focus on the capability of the two OPs to separate the
desynchronized phase from the synchronized one depending
on the underlying topology. In the desynchronized (or disor-
dered) phase, both OPs should vanish in the thermodynamic
limit if they are good OPs. We, however, analytically and
numerically show that the two OPs do not coincide with each
other when the connectivity of the underlying network is highly
heterogeneous. This suggests that the OP should be carefully
chosen when the underlying topology is highly heterogeneous.
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II. THE KURAMOTO MODEL AND TWO
ORDER PARAMETERS

We consider an unweighted and undirected network of N

coupled phase oscillators. The phase of oscillator i, denoted
by θi(t) (i = 1, . . . ,N), evolves in time as

θ̇i = ωi + λ

N∑
j=1

Aij sin(θj − θi). (1)

Here, ωi is the natural frequency of oscillator i distributed with
a given probability density g(ω) and λ stands for the coupling
strength. The connections among oscillators are represented by
the adjacency matrix A, i.e., Aij = 1 if two oscillators i and
j are connected, while Aij = 0 otherwise. On the complete
graph, λ in Eq. (1) should be changed into λ/N .

The most widely used OP is defined as (for example, see
Ref. [21])

Rei� = 1

N

N∑
j=1

eiθj . (2)

Here R and � are the magnitude and phase of the complex OP,
respectively. Equation (2) is an especially convenient choice for
the Kuramoto model on the complete graph or homogeneous
network to apply the ordinary mean-field theory. For example,
on the complete graph in which every oscillator is connected
to all others, Eq. (1) is simplified as

θ̇i = ωi + λR sin(� − θi), (3)

using Eq. (2). In Eq. (3) the interaction between any given
oscillator i is effectively described as an interaction with
a single oscillator with phase �. Since � also evolves in
time, �(t) can be expressed as �(t) = �t + �0 in the steady
synchronous regime. Here � is a constant group angular
velocity and�0 is a constant initial phase. By introducing phase
deviations, �θi ≡ � − θi , Eq. (3) is rewritten as

�θ̇i = �ωi − λR sin �θi, (4)

where �ωi = � − ωi . Thus, the coupled N equations ef-
fectively become N decoupled equations, which makes the
analytical treatment much easier.

On the other hand, Ichinomya [20] introduced another OP
for the mean-field analysis of the synchronization transition of
the Kuramoto model on a network with heterogeneous degree
distribution [20]. This OP is a weighted sum,

rei� ′ = 1

N〈k〉
N∑

j=1

kj e
iθj , (5)

on discrete and finite networks [15–20,24–26]. Using mean-
field theory and Eq. (5), Eq. (1) is rewritten as (see Appendix A)

θ̇i = ωi + λkir sin(� ′ − θi). (6)

Here ki (≡ ∑N
j=1 Aij ) is the degree of the node i. As shown

in Eq. (6), the use of r has great advantages for the Kuramoto
model on the heterogeneous networks because the N coupled
equations become N decoupled equations as in Eq. (4), which
makes the mean-field approach simple. As one can easily find,
the usefulness of each OP defined in Eqs. (2) and (5) strongly
depends on the underlying topology. More precisely, if the

structure of the underlying network is rather homogeneous,
then choosing Eq. (2) is better to apply the mean-field theory,
while Eq. (5) can be better for heterogeneously connected
oscillators. Therefore, it is natural to ask a question whether R

and r predict the same phase or not, regardless of the underlying
topology.

III. DIFFERENCE BETWEEN r AND R

Due to the factor kj/〈k〉 in Eq. (5), hubs or oscillators with
large degrees contribute more to r , which causes overestima-
tion of r . Especially, even though each oscillator has randomly
assigned phase θi(t) in which R = 0, r still remains at some
nonzero value in the limit N → ∞. In order to find how such
overestimation occurs, we focus on the difference between the
two OPs,

� = r − R = 1

N

N∑
j

[
kj

〈k〉 − e−i(�−� ′)
]
ei(θj −� ′). (7)

For an exact analysis of the overestimation of r , we first
consider the star network as an underlying topology. Since
there is only one hub in the star network, the degree of the hub,
kh, and the average degree 〈k〉 are exactly expressed by N , i.e,
kh = N − 1 and 〈k〉 = 2(N − 1)/N � 2 for N 	 1. The other
oscillators have only one connection to the hub; thus ki = 1 if
i is not the hub. Thus, Eq. (5) becomes

rei� ′ � 1

2N

N∑
j 
=h

eiθj + 1

2
eiθh , (8)

where the subscript h stands for the hub. The first term comes
from the contribution of oscillators with ki = 1 and the second
term is that of the hub to r . Similarly, we rewrite Eq. (2) as

Rei� = 1

N

N∑
j 
=h

eiθj + 1

N
eiθh . (9)

From Eqs. (8) and (9), Eq. (7) becomes

�(N ) = 1

2N
(e−i� ′ − 2e−i� )

N∑
j 
=h

eiθj

+ 1

2
e−i� ′

eiθh − 1

N
e−i�eiθh . (10)

Here, θh(t) is the phase of the oscillator at the hub. In the limit
N → ∞, the last term in Eq. (10) can be ignored. In the case
of λ > λc in which the macroscopic portion of the oscillators
is mutually synchronized, the summation in the first term in
Eq. (10) should scale as

N∑
j 
=h

eiθj ∼ N. (11)

Thus, � remains constant (� > 0), which might not cause any
fundamental change in the behavior of OP.

However, one should be cautious to choose OP when λ < λc

in which θi is randomly distributed. By the definition of R,
R = 0 for randomly distributed θi . In contrast to the value of
R, if the contribution of the hub to r becomes significantly

042317-2



TWO ORDER PARAMETERS FOR THE KURAMOTO MODEL … PHYSICAL REVIEW E 97, 042317 (2018)

FIG. 1. Plot of δ(N ) against 1/N on the star network when
λ < λc. The solid line represents the analytic expectation δ(N ) (≡
[1/2 − �(N )]) � N−1/2. Inset: The same plot in log-log scale. The
slope of the solid line in the inset is 1/2.

large, or more precisely, if there is a node i whose degree
scales as ki ∼ N , then Eq. (7) predicts that r 
= 0 is possible
in the limit N → ∞, even though θi is randomly distributed.
For example, on a star network in a desynchronized phase,∑N

j 
=h exp(iθj ) in Eq. (10) scales as |∑N
j 
=h exp(iθj )| ∼ N1/2,

since θi is randomly distributed. The last term in Eq. (10) can
be ignored when N 	 1. Thus, Eq. (10) becomes

�(N ) ∼ 1/2 − N−1/2, (12)

when N 	 1. Therefore, on a star network in which kh � N ,
we expect �(N ) → 1/2 from Eq. (10) in the limit N → ∞.
In order to analyze the behavior of �(N ) on a star network, we
also define δ(N ) as

δ(N ) ≡ [1/2 − �(N )] ∼ N−1/2. (13)

IV. NUMERICAL RESULTS

In the numerical analyses, we use networks with
N = 102 ∼ 107. In order to investigate the capability of two
OPs to separate the desynchronized phase from the synchro-
nized one, we consider the behavior of �(N ) or δ(N ) for
λ = 0 to guarantee R = 0 for any distribution of ωi in the
limit N → ∞. Thus, we randomly assign θi (∈ [0,2π ]) (see
Appendix B) to each node i and measure R and r . Both OPs are
averaged over 1000 network realizations. In Fig. 1 we display
the behavior of δ(N ) in the desynchronized phase obtained
from star networks with various N . The data in Fig. 1 clearly
show that δ(N ) → 0 as 1/N → 0. This perfectly agrees with
the analytic expectation, �(N ) → 1/2 in the limit N → ∞.
From the best fit of the data to δ(N ) ∼ N−α we obtain α � 1/2
(see the inset of Fig. 1).

Equations (5)–(7) provide an important clue to understand
the behavior of � when the system is in the desynchronized
phase, i.e., when θi is distributed randomly. Now, let us
consider a scale-free network (SFN) as an underlying topology
connecting each oscillator in the system. SFNs are generally
characterized by their degree distribution, P (k) ∼ k−γ . On a
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FIG. 2. Plot of �(N ) against N on SFNs constructed from (a) the
configuration model and (b) the static model with 〈k〉 = 4. The solid
lines represent the relation �(N ) � N−0.5. The dashed lines denote
�(N ) = const.

SFN, the degree of the largest hub scales as kmax ∼ N
1

γ−1 . In
Eq. (7), the contribution of the second term in the summation
would be negligible in the desynchronized phase as N → ∞.
Therefore, if the degree of the largest hub grows faster than
O(N ), then we expect that � approaches a nonzero value in the
limit N → ∞. From this condition, we expect that �(N ) > 0
in the limit N → ∞ for γ � 2.

In order to verify our conjecture for the condition of
vanishing � on SFNs, we numerically measure �(N ) on two
different types of SFNs, the configuration model [28] and the
static model [29] when λ = 0 (< λc). The results are shown
in Fig. 2. In the configuration model, the assigned degree
of each node i, ki , is drawn from the power-law distribution
P (k) = (γ − 1)k−γ and ki ∈ [1,∞] for γ > 1. Therefore, the
average degree, 〈k〉, depends on γ ; i.e., 〈k〉 changes as γ

changes. On the other hand, 〈k〉 can be fixed to a constant
value in the static model, regardless of γ . In Fig. 2(b), we
set 〈k〉 = 4. As shown in Fig. 2(a), �(N ) approaches zero
as �(N ) ∼ N−α′

for γ > 2. The value of α′ depends on γ .
When γ is large enough (or γ > 3), we find that α′ → 1/2
and α′ continuously decreases as γ decreases. When γ = 2,
the behavior of �(N ) seems to be marginal, and �(N ) remains
constant (or α′ = 0) for γ < 2.0 as shown in Fig. 2(a).

On SFNs generated by the static model, the similar behavior
is observed as shown in Fig. 2(b). As for the case on SFNs
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generated by the configuration model, we find α′ → 1/2 for
γ > 3. The value of α′ decreases as γ decreases. In contrast
to the SFNs generated by the configuration model, γ = 2 does
not seem to be marginal for the SFNs generated by the static
model. When γ = 2, �(N ) tends to decrease as N increases,
even though the value of α′ is quite small. Thus, we expect that
�(N ) → 0 in the limit N → ∞. From the data in Fig. 2(b) we
expect that the marginal value of γ lies in the range 1.8 < γ <

1.9 for the SFNs generated by the static model.

V. SUMMARY AND DISCUSSION

In summary, we investigate the difference between two OPs
for the Kuramoto model. Since the primary role of the OP is
to distinguish the desynchronized phase (or disordered phase)
from the synchronized phase (or ordered phase), we mainly
focus on the difference between two OPs in the desynchronized
phase. Based on the analytic derivation for the difference
between two OPs on the star network, we find that the growth
of the hub’s degree plays an important role. Since the hub’s
degree in the star network grows as N , the behaviors of two
OPs on the star network are different in the desynchronized
phase, i.e., �(N → ∞) = 1/2 as in Eq. (12). The conjecture
is verified through the numerical analysis. This result also
provides a clue to understand the different behavior of two
OPs on heterogeneous networks. Since the degree of the largest

hub in a SFN grows as kmax ∼ N
1

γ−1 , we expect that γ = 2 is
marginal. From the numerical analysis on SFNs, we find that
γ = 2 is marginal for the configuration model. On the other
hand, the marginal value of γ on SFNs generated by the static
model slightly decreases and we expect that the marginal value
is in the range 1.8 < γ < 1.9 for the static model.

Even though the mean-field analysis of the Kuramoto
model on SFNs with relatively homogeneous natural frequency
distribution such as a Gaussian or Lorentzian distribution is
known to undergo a transition only for γ > 3 [16], the choice of
a suitable OP can be crucial, especially in numerical analysis,
due to the behavior of �(N ). On SFNs, �(N ) decreases as
�(N ) � N−0.5 for γ > 3. Thus, there is still a high possibility
that Eq. (5) overestimates the degree of coherence in the
desynchronized phase due to the strong finite-size effect even
for γ > 3 as in Fig. 2. More importantly, the mean-field
analysis and the numerical expectations on SFNs with γ � 3
do not coincide [15–20]. Our results provide quantitative
evidence that the disagreement comes from the use of different
OPs as suggested in Refs. [17,27]. This noncoincidence should
come from the fact that α′ < 1/2 for γ � 3. Furthermore,
some real networks have been reported to have γ < 2 [30,31]
including ecological networks. In such systems, our results
clearly show that the use of Eq. (5) is not suitable to study the
synchronization transition. Therefore, careful consideration
should be given to the analysis of the synchronization transition
when Eq. (5) is used as an OP.
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APPENDIX A: DERIVATION OF EQ. (6)

In the mean-field theory, Eq. (1) on a complex network can
be rewritten as

θ̇i(t) = ωi + λ

kmax∑
kj =1

∑
θj

kikjP (ki)

〈k〉
N (kj ; θj )

N (kj )
sin(θj − θi),

(A1)

where N (kj ; θj ) is the number of oscillators with phase θj

for a given degree kj , and N (kj ) is the total number of
oscillators of degree kj . P (k) for a finite network becomes
P (kj ) = N (kj )/N . Then, Eq. (A1) becomes

θ̇i(t) = ωi + λ

N∑
j=1

kikj

〈k〉N sin(θj − θi). (A2)

The same equation can be obtained from the annealed network
approach [25]. By substituting Eq. (5) into Eq. (A2) we finally
obtain Eq. (6).

APPENDIX B: DISTRIBUTION OF θ

In order to guarantee that the system is in the desynchro-
nized phase we use a random uniform distribution for θi ∈
[0,2π ]. In the desynchronized phase, P (θ (t = ∞)) reduces to
the random uniform distribution using any initial distribution
of P (θ ) if ωi’s are not identical, as shown in Fig. 3. In Fig. 3,
we have shown the following: if P (ω), and P (θ (t = 0)) are the
Gaussian distributions with zero means and standard deviations
σθ(t=0) = 0.01 and σω = 1.0, then P (θ ) reduces to a random
uniform distribution in the steady state. For σθ(t=0) = 0, we
obtain the same result if σω > 0.

−3 −2 −1 0 1 2 3
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P
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)

ω
θ(t = 0)
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FIG. 3. Plot of P (ω) (gray solid boxes), P (θ (t = 0)) (black solid
boxes), and P (θ (t = ∞)) (dashed boxes) on SFNs with N = 107.
P (ω) and P (θ (t = 0)) are given by the Gaussian distribution with
standard deviations σθ(t=0) = 0.01 and σω = 1.0, respectively.

042317-4



TWO ORDER PARAMETERS FOR THE KURAMOTO MODEL … PHYSICAL REVIEW E 97, 042317 (2018)

[1] S.-K. Ma, Modern Theory of Critical Phenomena (Addison-
Wesley, Redwood City, 1982).

[2] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J.
Newman, The Theory of Critical Phenomena: An Introduction to
the Renormalization Group (Oxford University Press, Oxford,
2002).

[3] H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Oxford University Press, Oxford, 1971).

[4] L. P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E. A. S. Lewis,
V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J. Kane, Rev.
Mod. Phys. 39, 395 (1967).

[5] J. M. H. Levelt Sengers, Physica 73, 73 (1974).
[6] P. Heller, Rep. Prog. Phys. 30, 731 (1967).
[7] D. P. Foster and C. Pinettes, Phys. Rev. E 77, 021115 (2008).
[8] S. Davatolhagh, D. Dariush, and L. Separdar, Phys. Rev. E 81,

031501 (2010).
[9] G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in

Oscillatory Networks (Springer, Berlin, 2007).
[10] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence

(Springer, Berlin, 1984).
[11] H. Daido, Phys. Rev. Lett. 61, 231 (1988).
[12] H. Hong, H. Park, and M. Y. Choi, Phys. Rev. E 70, 045204(R)

(2004).
[13] H. Hong, H. Park, and M. Y. Choi, Phys. Rev. E 72, 036217

(2005).
[14] H. Hong, H. Chaté, H. Park, and L.-H. Tang, Phys. Rev. Lett.

99, 184101 (2007).
[15] J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. E 71, 036151

(2005).

[16] D.-S. Lee, Phys. Rev. E 72, 026208 (2005).
[17] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,

Phys. Rep. 469, 93 (2008).
[18] Y. Moreno and A. F. Pacheco, Europhys. Lett. 68, 603

(2004).
[19] J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. Lett.

98, 034101 (2007).
[20] T. Ichinomiya, Phys. Rev. E 70, 026116 (2004).
[21] J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, Phys.

Rev. Lett. 106, 128701 (2011).
[22] X. Hu, S. Bocacaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and

C.-H. Lai, Sci. Rep. 4, 7262 (2014).
[23] X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Sci. Rep. 4, 5200

(2014).
[24] T. K. Dal’Maso Peron and F. A. Rodrigues, Phys. Rev. E 86,

056108 (2012).
[25] B. C. Coutinho, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F.

Mendes, Phys. Rev. E 87, 032106 (2013).
[26] P. Ji, T. K. D. M. Peron, F. A. Rodrigues, and J. Kurths, Sci. Rep.

4, 4783 (2014).
[27] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.

Hwang, Phys. Rep. 424, 175 (2006).
[28] M. Molloy and B. Reed, Random Struct. Alg. 6, 161

(1995).
[29] K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701

(2001).
[30] S. Valverde and R. V. Solé, Europhys. Lett. 72, 858 (2005).
[31] J. M. Montoya, S. L. Pimm, and R. V. Solé, Nature (London)

442, 259 (2006).

042317-5

https://doi.org/10.1103/RevModPhys.39.395
https://doi.org/10.1103/RevModPhys.39.395
https://doi.org/10.1103/RevModPhys.39.395
https://doi.org/10.1103/RevModPhys.39.395
https://doi.org/10.1016/0031-8914(74)90227-4
https://doi.org/10.1016/0031-8914(74)90227-4
https://doi.org/10.1016/0031-8914(74)90227-4
https://doi.org/10.1016/0031-8914(74)90227-4
https://doi.org/10.1088/0034-4885/30/2/307
https://doi.org/10.1088/0034-4885/30/2/307
https://doi.org/10.1088/0034-4885/30/2/307
https://doi.org/10.1088/0034-4885/30/2/307
https://doi.org/10.1103/PhysRevE.77.021115
https://doi.org/10.1103/PhysRevE.77.021115
https://doi.org/10.1103/PhysRevE.77.021115
https://doi.org/10.1103/PhysRevE.77.021115
https://doi.org/10.1103/PhysRevE.81.031501
https://doi.org/10.1103/PhysRevE.81.031501
https://doi.org/10.1103/PhysRevE.81.031501
https://doi.org/10.1103/PhysRevE.81.031501
https://doi.org/10.1103/PhysRevLett.61.231
https://doi.org/10.1103/PhysRevLett.61.231
https://doi.org/10.1103/PhysRevLett.61.231
https://doi.org/10.1103/PhysRevLett.61.231
https://doi.org/10.1103/PhysRevE.70.045204
https://doi.org/10.1103/PhysRevE.70.045204
https://doi.org/10.1103/PhysRevE.70.045204
https://doi.org/10.1103/PhysRevE.70.045204
https://doi.org/10.1103/PhysRevE.72.036217
https://doi.org/10.1103/PhysRevE.72.036217
https://doi.org/10.1103/PhysRevE.72.036217
https://doi.org/10.1103/PhysRevE.72.036217
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1103/PhysRevE.72.026208
https://doi.org/10.1103/PhysRevE.72.026208
https://doi.org/10.1103/PhysRevE.72.026208
https://doi.org/10.1103/PhysRevE.72.026208
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1209/epl/i2004-10238-x
https://doi.org/10.1209/epl/i2004-10238-x
https://doi.org/10.1209/epl/i2004-10238-x
https://doi.org/10.1209/epl/i2004-10238-x
https://doi.org/10.1103/PhysRevLett.98.034101
https://doi.org/10.1103/PhysRevLett.98.034101
https://doi.org/10.1103/PhysRevLett.98.034101
https://doi.org/10.1103/PhysRevLett.98.034101
https://doi.org/10.1103/PhysRevE.70.026116
https://doi.org/10.1103/PhysRevE.70.026116
https://doi.org/10.1103/PhysRevE.70.026116
https://doi.org/10.1103/PhysRevE.70.026116
https://doi.org/10.1103/PhysRevLett.106.128701
https://doi.org/10.1103/PhysRevLett.106.128701
https://doi.org/10.1103/PhysRevLett.106.128701
https://doi.org/10.1103/PhysRevLett.106.128701
https://doi.org/10.1038/srep07262
https://doi.org/10.1038/srep07262
https://doi.org/10.1038/srep07262
https://doi.org/10.1038/srep07262
https://doi.org/10.1038/srep05200
https://doi.org/10.1038/srep05200
https://doi.org/10.1038/srep05200
https://doi.org/10.1038/srep05200
https://doi.org/10.1103/PhysRevE.86.056108
https://doi.org/10.1103/PhysRevE.86.056108
https://doi.org/10.1103/PhysRevE.86.056108
https://doi.org/10.1103/PhysRevE.86.056108
https://doi.org/10.1103/PhysRevE.87.032106
https://doi.org/10.1103/PhysRevE.87.032106
https://doi.org/10.1103/PhysRevE.87.032106
https://doi.org/10.1103/PhysRevE.87.032106
https://doi.org/10.1038/srep04783
https://doi.org/10.1038/srep04783
https://doi.org/10.1038/srep04783
https://doi.org/10.1038/srep04783
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1209/epl/i2005-10314-9
https://doi.org/10.1209/epl/i2005-10314-9
https://doi.org/10.1209/epl/i2005-10314-9
https://doi.org/10.1209/epl/i2005-10314-9
https://doi.org/10.1038/nature04927
https://doi.org/10.1038/nature04927
https://doi.org/10.1038/nature04927
https://doi.org/10.1038/nature04927



