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Stable target opinion through power-law bias in information exchange
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We study a model of binary decision making when a certain population of agents is initially seeded with two
different opinions, “+” and “−,” with fractions p1 and p2, respectively, p1 + p2 = 1. Individuals can reverse their
initial opinion only once based on this information exchange. We study this model on a completely connected
network, where any pair of agents can exchange information, and a two-dimensional square lattice with periodic
boundary conditions, where information exchange is possible only between the nearest neighbors. We propose
a model in which each agent maintains two counters of opposite opinions and accepts opinions of other agents
with a power-law bias until a threshold is reached, when they fix their final opinion. Our model is inspired by the
study of negativity bias and positive-negative asymmetry, which has been known in the psychology literature for
a long time. Our model can achieve a stable intermediate mix of positive and negative opinions in a population.
In particular, we show that it is possible to achieve close to any fraction p3, 0 � p3 � 1, of “−” opinion starting
from an initial fraction p1 of “−” opinion by applying a bias through adjusting the power-law exponent of p3.
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I. INTRODUCTION

The study of emergent behavior in a population based on
simple interaction rules among individuals has been an intense
area of research in complex systems and sociophysics. Most
of these models study opinion formation in a population in
the context of two different opinions, majority and minority,
or “+” and “−.” The opinions in these models evolve either
according to some simple local rules, or according to some
group dynamics. An extensive review of such models can be
found in the paper by Castellano et al. [1].

The aim of this paper is to investigate negativity bias
in opinion formation. There is an extensive literature on
negativity bias in psychology, as reviewed by Rozin and
Royzman [2] and Vaish et al. [3]. Negativity bias is manifested
in humans and animals in many different activities, including
attention and salience, sensation and perception, motivation,
mood, and decision making [2]. Some of these activities are
closely related to opinion formation, and hence it is interesting
to study the effect of negativity bias in opinion formation in a
population. We present a model of opinion formation that uses
negativity bias and has several interesting properties, including
a similarity with the random-field Ising model and also the
formation of predictable intermediate configurations of mixed
opinions.

Among opinion formation models, one of the earliest was
the voter model (VM) [4,5] that can be simulated on any con-
nected network. Each agent has a state ±1 and two neighboring
agents interact at each simulation time step. Starting from a
(+−) state, the probability of assuming a (++) or a (−−)
state in an interaction is 1

2 each. This simple update rule gives
rise to rich dynamical behavior, and the VM has been studied
extensively. The VM always evolves to a homogeneous final
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state of one of the opinions, where the rate of convergence
depends on the initial populations of the two opinions, and
has a stochastic nature. Hence it is hard to predict the mix of
populations at intermediate stages of the evolution.

Schweitzer and Behera [6] introduced the nonlinear VM
where neighbors with different opinions are weighted with
nonlinear weighting factors. The nonlinear VM has interesting
configurations where both opinions coexist equally when the
starting initial fraction of population for each opinion is 0.5 of
the total. However, it is not clear whether the nonlinear VM
has any stable intermediate configurations where both opinions
coexist if the initial populations are unbalanced.

A contrarian has a different strategy from the other agents.
Contrarians introduce interesting variations in the evolution of
almost all the models we discuss. Masuda [7] studied the linear
VM by introducing three types of contrarians and concluded
that contrarians prevent the evolution of the linear VM to
a homogeneous final state of a single opinion and induce a
mixed population of both opinions. Masuda [7] derived the
equilibrium distributions of the two opinions under different
assumptions on the contrarians. However, it is not clear whether
it is possible to get a specific mix of populations in the model
in Ref. [7] and also whether the dynamics of the model is scale
invariant.

Group dynamics of binary opinion formation has been
studied extensively by Galam and co-workers, as discussed in
the review paper [8]. Galam’s [9] two-state opinion dynamics
model is of particular interest for our present work. This model
is for a completely connected network where any agent is a
neighbor of any other agent. Initially, each agent has one of
two opinions A and B, and the density of the two populations
is denoted by pc, expressed as a fraction, e.g., pc = 1

2 indicates
a balanced initial population of agents with A and B opinions.
Each step of the evolution of the model consists of picking a
random group of agents of a predetermined size. All agents in
this group adopt the opinion of the local majority. When this
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update process is repeated, the resulting dynamics is dependent
on pc. The final population is a balance of A and B opinions
when pc = 1

2 and the group size is odd. When the group size
is even, the final population is balanced for a different value
of pc, however, any deviation from these pc values makes the
final population converge to one of the two opinions. The speed
of convergence is faster for larger group sizes.

Galam [9] also considered the introduction of contrarian
agents in this model: The contrarians participate in the group
opinion formation exactly in the same way as before, however,
a contrarian reverses its opinion once it has left the group. A
mixed phase dynamics with a clear separation of majority and
minority opinions prevails when the density of the contrarians
ac is low. These populations are stable for a fixed value of ac.
However, there are thresholds for ac for different group sizes
when no opinion dominates and there is no symmetry breaking
to separate the final population into majority and minority
opinions. In other words, the final population is balanced
between the two opinions even though agents change their
opinion dynamically. It is not clear whether Galam’s model can
achieve arbitrary and stable proportions of the two opinions by
introducing contrarians.

The majority rule (MR) model was introduced by Krapivsky
and Redner [10] as a simple two-state opinion dynamics model.
The MR model has similarities with Galam’s model [9]. A
group of agents is chosen at every step and the agents in the
group all assume the opinion of the local majority. The aim
in Ref. [10] was to study the time to reach a global consensus
as a function of N , the total number of agents, and also the
probability of reaching a given final state as a function of the
initial opinion densities. The MR model has many interesting
properties and one of the characteristic features of the MR
model that is of interest to us is that even small islands of
one opinion surrounded by the opposite opinion can grow
in size. The growth of a particular opinion varies from one
initialization to another. There are also intermediate metastable
states in the MR model that persist for long times, however,
again the concentration of opinions in these metastable states
varies depending on the initialization.

There are some similarities between our proposed model
and the model in Ref. [9]. First, the aim of our model is to
arrive at a final population of a mixed majority and minority
population. This is achieved in Galam’s model when the
density of the contrarians is low. Second, our model behaves
similar to Galam’s model when the fraction of the initial
population of agents is balanced, i.e., 1

2 each. This is manifested
in Galam’s model both in the absence of contrarians and also
when the initial population of contrarians is greater than a
threshold for different group sizes.

However, there are distinct dissimilarities between our
model and the model in Ref. [9], apart from the fact that
the update rules in Galam’s model are based on groups. Our
aim is to achieve a final population of agents separated into
majority and minority opinions without the use of contrarians.
In other words, all agents in our model have a common
strategy. Galam’s model without contrarians has been ana-
lyzed for d-dimensional lattices by Lanchier and Taylor [11].
They have proven that Galam’s model (or the spatial public
debate model in the terminology of Ref. [11]) converges to
a stationary distribution where both opinions have positive

densities. However, it is not clear whether any specific mix
of the two opinions can be achieved. Our model, on the
other hand, behaves in a similar way both on a completely
connected network and on a two-dimensional (2D) lattice with
nearest-neighbor connections. Hence our model can be thought
of as the formation of global opinion through simple local
interactions. The differences between our model and the MR
model are also similar to the differences mentioned above.

We frame our problem in this paper in a general way as
follows. Given an initial population of agents with “+” and “−”
opinions, with fractions p1 and p2, respectively, p1 + p2 = 1,
the goal is to achieve a fraction p3 of the final population of
agents with the − opinion, 0 � p3 � 1, and p3 > p2. We show
that it is possible to achieve close to a final fraction p3 of
agents with − opinion by introducing a bias in the exchange
of opinion when two agents meet. It is interesting that this
bias can be expressed as a power-law exponent of p3, and
scale invariant for both the completely connected network
and the two-dimensional lattice. Our model has interesting
properties that are similar to other models studied in statistical
mechanics. For example, a coexistence of opposite opinions
has been observed in the nonlinear voter model [6], even though
this coexistence is not stable and predictable in terms of the
exact mix of the two opinions. Also, the properties of our
model related to the surface tension of the domain bound-
aries of opposite opinions and the first-order phase transition
and domain formation are similar to the random-field Ising
model [12].

The rest of the paper is organized as follows. We discuss
our model in Sec. II. We discuss the results from an empirical
study of the model without and with the power-law bias during
information exchange in Secs. III and IV, respectively. Finally,
we conclude in Sec. V.

II. THE MODEL

A population initially has agents with two opinions in
certain fractions p1 and p2, with p1 + p2 = 1. Each agent has
the option of choosing one of the opinions as their final opinion,
however, reverting an initial opinion is allowed only once.
Agents interact pairwise either on a completely connected net-
work or on a square lattice with periodic boundary conditions.
We have two free parameters in our model, β and τ . Each agent
maintains two counters θ+ and θ− of the positive and negative
opinions encountered so far. Initially, θ+

i = 1 and θ−
i = 0 if

agent i is a + agent, and θ+
i = 0 and θ−

i = 1 if agent i is a −
agent. When agents i and j interact, the rules for exchange of
opinion from agent i to agent j are given in Eqs. (1) and (2)
(the subscripts of the two counters indicate to which agent the
counter belongs),

if
(
θ−
i > p

β

3 θ+
i

)
then θ−

j = θ−
j + 1, (1)

if
(
θ+
i > θ−

i

)
then θ+

j = θ+
j + 1. (2)

The update of the state of agent j occurs due to one of these
two equations in a Monte Carlo step. First, Eq. (1) is checked
and if it is satisfied and an update occurs, Eq. (2) is skipped
for that Monte Carlo step. Otherwise, the condition in Eq. (2)
is checked and an update occurs if the condition in Eq. (2)
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is satisfied. There is no exchange of information if θ+
i = θ−

i

and the encounter is considered a failure. In other words, we
introduce an asymmetry in the updating of the counters of
agent j by introducing the bias factor p

β

3 in Eq. (1). The other
free parameter τ is used as a threshold of opinion until an
agent participates in information exchange. Once either of the
counters θ+

i or θ−
i reaches τ , agent i freezes its state either to

+, or to −, depending on whether θ+
i > θ−

i or θ+
i < θ−

i . Hence
this freezing of state may require a flipping of the initial state
of agent i; this is allowed only once. Once frozen, the state
of agent i remains the same until all agents have reached the
threshold, which is the same for all agents. However, agent i

still maintains its two counters θ+
i and θ−

i for use in interactions
with agents who have not yet reached the threshold τ . Although
there are no contrarian agents in our model, the β parameter
can be viewed as similar to a contrarian strategy as it introduces
a bias in the interactions among the agents.

The hallmark of negativity bias is to give greater emphasis to
negative perceptions and entities. This emphasis is manifested
in four different ways [2]: negative potency, steeper negative
gradients, negativity dominance, and negative differentiation.
We aim to capture negative potency and a steeper negative
gradient in our model. Negative potency gives a stronger
impact for negative entities, compared to positive entities. This
is captured in Eq. (1). A negative gradient emphasizes the
steeper growth of negative events compared to positive events.
This is an outcome of our model, as we will explain in later
sections. It becomes harder for positive opinion to prevail as
negative opinion accumulates more and more in the counters
of the agents in our model. The use of a single exponent in
the power-law bias for the whole population tries to capture
the inherent negativity bias quantitatively through a single
exponent. Although this is a simplified assumption in Eq. (1),
we show later that the behavior of the system is quite stable
when this exponent is allowed to vary randomly within a certain
range.

The agents in our model maintain more information com-
pared to Galam’s model [9] and the MR model [10] in the
sense that an agent has access to both accumulated positive
and negative opinions of another agent during an interaction.
It may seem that we are assuming a lot more information
for decision making, However, one surprising aspect of our
model is that the convergence to the desired final state is
very fast. In other words, each agent needs to interact with
a much smaller number of other agents in order to arrive at
a “correct” decision, so that the overall fraction of desired
opinion is achieved. Also, our model can converge to a desired
− opinion above the 0.5 threshold accurately even when the
initial fraction of agents with − opinion is low. This is not the
case for all the models that we have reviewed above. Galam’s
model [9] can achieve such a target population only by using
contrarian agents. The MR model has intermediate states with
mixed populations, however, the mix is sensitive to instances
of the two initial populations even when the fractions of the
two initial populations are fixed.

We will show in the following sections that our model has
stable states of a mix of opinions that can be tuned fairly
accurately using the β and τ parameters. These stable states are
scale invariant both for the completely connected network and
the 2D lattice. However, our model is unstable with respect

to the τ parameter. The final configurations converge to a
single opinion if the threshold τ is set relatively high. This
convergence is faster on the completely connected network
and much slower on the 2D lattice. However, the parameter τ

is a measure of the number of interactions among the agents,
and a lower value indicates that the convergence of our model
to a balanced population mix is faster.

Forming an opinion based on accumulated history may be
a realistic model in the sense that people in real life accept
others’ opinions for decision making. Also, people have their
own opinion and they usually take others’ opinions with some
negativity bias. The contagious effects of negative opinions
have been studied in the psychology literature [2], and it
has been noted that negative aspects of the human thought
process spread faster [13]. Moreover, people discussing a
binary opinion usually talk about the pros and cons of the two
choices. Although it is hard to capture these processes through
some numerical estimates, agents in our model abstract such
real-life interactions and discussions through the counters and
also through the bias for accepting opinions.

III. DYNAMICS WITHOUT BIAS

We first discuss the dynamics of our model without applying
any bias, in other words, when β = 0 in Eq. (1). There is no
bias for + or − opinion in this case, and agent j accepts the
higher of the two counters θ+

i and θ−
i of agent i for updating

its own counter. We study some interesting dynamics of our
model on a 256 × 256 lattice in Fig. 1. We have verified that
these results are scale invariant by simulating them on lattices
of size 512 × 512 and 1024 × 1024.

Figure 1 shows the results of two simulations of the unbiased
system on a 256 × 256 lattice with wraparound connections.
Figures 1(a) and 1(b) show the results when the initial popu-
lations of + and − agents are a fraction of 0.5 each, and the
threshold is τ = 10. We have simulated this configuration 100
times and the final fraction of − agents is between 0.48 and 0.52
in all the simulations. Figure 1(a) shows the initial population
of the agents (t = 0); black (white) denotes − (+) agents. In
Fig. 1(b), all agents reach the threshold by t = 2 657 346.

Since the final fractions of + and − agents are almost the
same, the basic difference between Figs. 1(a) and 1(b) is the
rearrangements of the agents into clusters. Figures 1(c) and
1(d) are for a simulation when the initial population of − agents
is 0.7 of the total. Cluster formation is more pronounced in this
simulation. The final fraction of − agents in Fig. 1(d) is 0.9
with a variation of ±0.02 for 100 simulations. We note here
that the behavior of our model has some similarity with the
nonlinear voter model [6] in this aspect of cluster formation.

Figure 2 shows the conversion of agents from − to +
and vice versa. Figure 2(a) shows this conversion for the
simulations in Fig. 1 on a 256 × 256 lattice. We have plotted
these graphs by counting agents that had an initial − opinion,
but had θ+ > θ− at a particular simulation step, or vice versa.
The error bars are very small compared to the values of the data
points, hence they are not shown. When the initial populations
are balanced, the conversions are almost in equal numbers
and the conversions stop at around t = 1 500 000; thereafter
the agents remain either + or − and gradually reach their
thresholds. This implies a rearrangement of the agents in
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FIG. 1. Two simulation results on a 256 × 256 lattice: − agents
are shown in black and + agents in white; simulation time (t)
is measured in Monte Carlo (MC) steps. (a) Initial fractions of
populations: + and − both 0.5 of the total. (b) The lattice after
all agents reach the threshold τ = 10, at t = 2 657 346. The final
population of − agents was a fraction of 0.51 of the total. (c) Initial
fractions of populations: − opinion 0.7 and + opinion 0.3. (d) The
lattice after all agents reach the threshold τ = 10, at t = 2 500 178.
The final population of − agents was a fraction of 0.9 of the total.

distinct clusters similar to the first-order phase transition in
a 2D random-field Ising model [14].

When the simulation starts with an initial fraction 0.7 of −
agents, the final fraction of − agents is 0.9 with a variation of
±0.02 for 100 simulations. The conversion of + to − agents in
this case is much higher and the fraction of − agents increases
from a fraction of 0.7 to over 0.9. However, there are still some
conversions from − to + agents. The final configuration at
t = 2 500 178 shows islands of + agents due to strong surface
tension.

Figure 2(b) shows similar conversions of agents for a
simulation on a completely connected network (CCN) of size
65 536. These simulations are very sensitive to the value of τ .
Both the simulations have an initial fraction of − agents as 0.5;
increasing the value of τ quickly pushes the final population
to either all − or all + agents, and this final population differs
from simulation to simulation. The final population is an equal
mix of − and + agents for τ = 3.

The formation of clusters on the lattice is symptomatic in our
model, as there is strong surface tension along the boundaries
between regions of − and + opinions. We also experimentally
verified the surface tension in our model by seeding a lattice
of size 256 × 256 with a droplet of negative opinion and let
the system evolve until all the agents reach their thresholds, as
shown in Fig. 3. There was almost no change in the shape
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FIG. 2. The conversion of agents from + to − and − to +. (a) On
a 256 × 256 lattice, corresponding to the simulations in Fig. 1. The
middle two plots are for the simulation when the initial population is
balanced, 0.5 each of + and − agents. The top and bottom plots are
for an initial population of − agents 0.7 of the total. The conversion of
+ to − is much higher (top plot), compared to the conversion of − to
+ (bottom plot). (b) On a completely connected network (CCN). The
two middle plots are for a small threshold τ = 3, and the conversions
are similar. The conversions vary widely from run to run (bottom and
top plots) when the threshold is higher (τ = 10).

of the droplet except for minute changes on the boundary.
This is different from the voter model, as the coarsening of
a similar droplet under the voter model results due to a lack of
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FIG. 3. Time evolution of a droplet of − agents in our model.
(a) t = 0; (b) t = 1 985 384.

surface tension and the droplet disintegrates into a region with
an irregular boundary [15].

The effects of threshold in our model for a completely con-
nected network and for a lattice are quite different. Increasing
the threshold for the lattice has a much slower effect. We can
again attribute this to the strong surface tension in our model.
The formation of the clusters or islands of − agents is fairly
rapid irrespective of the threshold, and the main effect of the
threshold is the increase in convergence time when all the
agents reach their thresholds within the clusters. On the other
hand, the model converges to an all − or all + population with
a higher threshold for the completely connected network.

We studied the formation of clusters of + and − agents
on a lattice. The clusters of + and − agents are of similar
size when the starting population of + and − agents is 0.5 of
the total population each. The internal sites of clusters have
all their neighbors as + or − sites, whereas the sites on the
surface of clusters have a mixed number of + and − neighbors.
In Fig. 4(a) we study the change in the population of lattice
points with different numbers of + and − neighbors on a lattice
of size 1024 × 1024. The trends for both + and − neighbors
are similar. In Fig. 4(a), the number of + sites with a single
− neighbor grows very fast and stabilizes at a high level as
more and more lattice sites become parts of larger clusters.
These + sites with a single − neighbor are on the surface or
the boundary of the clusters. On the other hand, the number
of + sites with two to four − neighbors decrease rapidly and
stabilize at lower levels, as these sites become parts of clusters.

We study a ratio φ in Fig. 4(b). This is the ratio of lattice
sites on the cluster boundaries (sites that have neighbors of
opposite opinion) and the total number of possible neighbors
in the entire lattice. We have plotted three graphs with starting
populations of − agents as 0.1, 0.2, and 0.4, with varying
target populations of − agents (a fraction of 0.1 higher than the
starting population, until a fraction of 0.9). The graphs have
a general trend that φ decreases with an increase in the target
fraction, as the clusters of + agents decrease in size. However,
there is a slight increase in φ as the starting population of −
agents is increased. This is due to the formation of a higher
number of − clusters as a higher initial population provides a
larger number of seeds for these clusters.

As the + and − agents form clusters quite rapidly in
simulations on a lattice, it is natural that most of the agents
will be inside the clusters and a relatively small number of
agents will be on the surface or the boundary of the clusters.
This behavior of our model is quite similar to the random-field
Ising model [12] in this respect. Moreover, there is a power-law
relationship between the lattice points inside the clusters and
on the surface of the clusters. If we denote the number of
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FIG. 4. (a) A plot of change of numbers of + and − neighbors
of lattice sites for a simulation on a lattice of size 1024 × 1024. The
simulation has been done only partially until the clusters stabilize. The
top line shows a rapid increase of + sites that have one − neighbor.
The number of + sites with two, three, and four − neighbors (second
from top to bottom) decreases. (b) φ against target fraction for three
different initial populations of − agents.

lattice sites inside the clusters (on the surface) as V (S), this
relationship can be expressed as

S = cV δ. (3)
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FIG. 5. A log-log plot of surface vs internal points in clusters
for different sizes of lattice. The size of the lattice increases from
128 × 128 (bottom) to 1024 × 1024 (top).

We show the log-log plot of this equation in Fig. 5 for
different sizes of lattice. A data collapse shows that the
exponent δ = −0.29 in the case of the simulation with an initial
fraction of + and − agents 0.5 each. The exponent δ depends
on the initial population of + and − agents. For example, with
a simulation starting with 0.3 − and 0.7 + agents, the final
population of + agents is 0.8 ± 0.02 and δ = −0.59. This is
due to the fact that the number of clusters of − agents as well
as the sizes of the clusters are smaller in this case and hence
the lattice sites on the cluster surfaces are also much smaller
in number.

IV. DYNAMICS WITH BIAS

Our aim in this section is to use a power-law bias to increase
the population of − agents when the starting population of
− agents is < 0.5 and the target population of − agents is
higher than the starting population. As we have noted in the
previous section, the conversion of agents from + to − and
vice versa is rapid in the early stages of the simulation both for
the completely connected network and the lattice. The purpose
of introducing the power-law bias in Eq. (1) is to influence this
conversion so that a larger proportion of + agents convert to
− opinion. In Eq. (1), 0 � p3 � 1 and β � 0, and we have
discussed the case β = 0 in the previous section. Hence for a
fixed p3, p

β

3 is a monotonically decreasing function of β. The
condition θ−

i > p
β

3 θ+
i in Eq. (1) ensures that this condition

will be satisfied for lower values of θ−
i compared to θ+

i , as
the factor p

β

3 < 1 and reduces the magnitude of the right-hand
side in Eq. (1).

We consider the τ discrete integer values of θ−
i , i.e.,

θ−
i,1,θ

−
i,2, . . . ,θ

−
i,τ for a fixed threshold τ . Similarly, we consider

the τ discrete integer values of θ+
i , namely, θ+

i,1,θ
+
i,2, . . . ,θ

+
i,τ .

The effect of the factor p
β

3 on θ+
i is a mapping θ+

i → θ−
i

to partition the values θ+
i,1,θ

+
i,2, . . . ,θ

+
i,τ into k partitions Pk ,

1 � k � τ . The members of partition Pm are mapped within
two consecutive integer values in θ−

i . For example, if we
assume τ = 10, p3 = 0.9, and β = 2.6, p

β

3 = 0.76. There are
ten values each for θ−

i and θ+
i , the integers 1,2, . . . ,10. Hence

p
β

3 θ+
i can be partitioned into eight partitions that are within

consecutive integer values of θ−
i , [0,1][1], [1,2][2], [2,3][3],

[3,4][4,5], [4,5][6], [5,6][7], [6,7][8,9], [7,8][10]. For example,
[6,7][8,9] indicates that p

β

3 θ+
i is between 6 and 7 for θ+

i = 8,9
(0.76 × 8 = 6.08 and 0.76 × 9 = 6.84). The dynamics of our
model remains unaffected for different values of β that result
in the same partitions, as the condition in Eq. (1) will evaluate
identically for the same partition. In this example, β = 2.7 also
gives the same partitions for p

β

3 θ+
i as β = 2.6, and hence the

behavior of our model will remain the same for either of these
two choices for β. Consequently, the exponent β has a range
instead of a unique value for achieving a final population of −
agents and there is no change in the final population when the
β value remains within this range. However, the changes in the
final population are sharp whenever the β parameter causes a
transition from one partition to another.

When the groups of p
β

3 are compressed within lower values
of θ−

i , the result is an increase of the θ−
j counter as the condition

in Eq. (1) is satisfied even for lower values of θ−
i . As a result,

this favors the − agents to dominate the dynamics as more and
more agents (both with initial + or − opinions) reach their
thresholds for the θ− counters. Hence a high enough threshold
makes the system converge in an all − opinion scenario. This
convergence is faster for the completely connected network
compared to the lattice, as the erosion of the surface of the
clusters of + nodes is a much slower process for the lattice.

A. Dynamics on a completely connected network

We first study the dynamics of the system through an
example for the completely connected network when the initial
fraction of − (+) agents is 0.3 (0.7) of the total population
and the required final fraction of − agents is 0.9 of the total
population. As we have noted earlier, if we simulate this
scenario without a bias, i.e., when β = 0, the final fraction of
agents with − opinion reduces further. Also, the final fraction
depends on the threshold; it approaches 0 very fast as the
threshold is increased for the completely connected network.
On the other hand, a low threshold does not allow enough scope
for the conversion of a large number of + agents to − agents
that is required for achieving a high fraction of− agents starting
from a low fraction. This trade-off for the threshold exists for
the model with a bias as well. In this case the bias gives an
impetus for reversing + agents to − agents. If the threshold is
high, eventually all + agents will be converted and the final
population will consist of all − agents.

Figure 6 shows the comparison between the simulations of
our model with and without bias. This simulation has been
done on a completely connected network of 65 536 agents.
The starting population of − agents is a fraction 0.3 of the
total, and the final target population of − agents is a fraction
of 0.9 of the total population. The threshold τ = 5 in this case.
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FIG. 6. The conversion of agents from + to − and − to + for the
biased and unbiased models for a simulation of 256 × 256 = 65 536
agents on a completely connected network. τ = 5 and p3 = 0.9. The
starting population of − agents is 0.3 of the total in both cases. If
θ−
i > θ+

i , agent i is identified as a − agent, and vice versa. (a) β = 0
and almost all − agents are converted to + agents (the upper curve);
conversion of + to − is very low (lower curve). (b) β = 6.7 and the
bias forces conversion of a large number of + agents to − (upper
curve), compared to − to + conversion (lower curve).

TABLE I. Simulation results on a completely connected network
of 256 × 256 = 65 536 agents. The result in each row is collected
from 100 simulations. The threshold is τ = 5 in all cases. The
results were similar when simulations were run ten times each on
completely connected networks of size 512 × 512 = 262 144 and
1024 × 1024 = 1 048 576 agents.

Initial population β Target population Population achieved

0.1 3.1 0.6 0.59–0.63
0.1 3.8 0.7 0.68–0.73
0.2 1.4 0.6 0.59–0.65
0.2 3.0 0.7 0.69–0.73
0.4 0.6 0.7 0.67–0.73
0.4 1.8 0.8 0.79–0.83

The simulation has been done without bias in Fig. 6(a), and
a lower starting population of − agents drives the system to
a final population of all + agents. We show in Fig. 6(a) the
conversion of agents from + to − and vice versa. There is
a small initial conversion of + agents to −, however, soon
the larger population of + agents dominates and all of the
initial fraction of 0.3 of − agents converts to +. The graph
shows a cumulative number of the agents that have a higher
value in the θ+ or θ− counter until a particular step. Almost
all the conversions occur in the initial stages of the simulation
and the agents reach their thresholds afterwards over many
simulation steps [as indicated by the red curve in Fig. 6(a)].
The biased simulation is shown in Fig. 6(b). The bias in this
case drives a conversion of + agents to −, and, as a result, the
final population of − agents rises to a fraction of 0.9 ± 0.03
for 100 simulations.

The threshold for both the simulations is τ = 5. Increasing
this threshold for the simulation with bias quickly pushes
the final population to consist only of − agents as a higher
threshold gives more scope for − agents to convert + agents.
For example, a simulation with τ = 10 has a final population
of all − agents. As β = 6.7 in the simulations in Fig. 6(b), and
the final target fraction of − agents is p3 = 0.9, the bias factor
p

β

3 = 0.96.7 = 0.493. Since τ = 5, there are three partitions of
p

β

3 θ+
i for agent i. These are [0,1][1,2], [1,2][3,4], and [2,3][5].

Most of the transitions from + to − occur in the initial steps
of the simulation, as shown in Fig. 6. There is a small number
of conversions from − to + as well, however, both of these
conversions plateau relatively early in the simulation. Another
interesting aspect of the dynamics is that a complete conversion
of + to − agents is dependent on τ , rather than β, as mentioned
earlier. For example, β = 18 gives only one partition of p

β

3 θ+
i ,

[0 − 1][1−5]. However, simulations in this case show a final
population of − agents as a fraction 0.95 ± 0.02 of the total
population. This is only possible if some of the + agents meet
only + agents during the course of the simulation, as a + agent
will be converted to a − agent whenever a + agents meets a −
agent in this case. Table I shows some more results from our
simulations.

B. Dynamics on a lattice

We now discuss the dynamics of the system on a lattice when
β is nonzero in Eq. (1). We take the same representative case
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FIG. 7. Evolution of agents on a 256 × 256 lattice, where the initial population of negative agents is a fraction 0.3 of the total. − agents are
shown in black and + agents in white. The data were collected over 50 simulations and the final population of negative agents was 0.89–0.93
of the total. This evolution is shown at different time steps for a representative simulation.

when the initial population of − agents is a fraction 0.3 of the
total and the final desired population of − agents is a fraction
0.9 of the total. For the simulation on a 256 × 256 lattice,
we have used β = 10.6 and obtained a final population of −
agents between a fraction 0.89 and 0.93 for 50 simulations.
We have chosen τ = 10, as a higher threshold has a slower
effect in driving the system to an all − population, compared
to the simulations on completely connected networks. A
representative simulation is shown in Fig. 7. Figure 7(a) shows
the initial configuration with − and + agents 0.3 and 0.7
of the total population. Figure 7(b) shows the initial growth
of the number of − agents with the initial − agents as seeds.
The number of − agents has grown significantly even after
t = 100 000 Monte Carlo steps. Figure 7(c) and 7(d) show
the simulation at time steps t = 200 000 and t = 400 000,
respectively, and the growth of the clusters of − agents is
clearly visible. Figure 7(e) shows the simulation at t = 600 000
and the large clusters of − agents have already emerged. These
clusters further consolidate in Fig. 7(f) at t = 1 000 000 and
remain almost unchanged until the end of the simulation at
t = 2 469 567. This is easy to see from Figs. 7(f)–7(h).

We show in Fig. 8 the conversion of agents from − to +
and vice versa. The behavior is similar to the simulation on the
completely connected network as the large-scale conversion of
+ to − agents occurs quite early in the simulation. However,
there is more conversion of − agents to + agents initially on
the lattice compared to the completely connected network. The
simulation takes a long time to complete since the agents reach
their thresholds τ = 10 at the later stages of the simulation.
The fractions of the final population of − agents for lattices
of size 512 × 512 and 1024 × 1024 are within these bounds
when β = 10.6 and τ = 10 are used for the simulations.
The partitions of θ+ values with τ = 10 and β = 10.6 are

[0,1][1−3], [1 − 2][4−6], [2 − 3][7−9], [3 − 4][10]. It is evident
that the dynamics of the system is dominated by the partitions
[0,1][1−3], [1 − 2][4−6] as the conversions of + to − agents
are rapid in the early stages of the simulation when the θ+
and θ− counters of all agents have relatively lower values.
This is similar to the simulations on the completely connected
network.

Table II shows some more results from our simulations. We
should note that it is possible to use higher values of τ for
achieving sharper and more stable population fractions closer
to the target population. We illustrate this in Fig. 9 with 0.3 as
the starting fraction of − agents and 0.8 as the target fraction.
We vary τ for two fixed values of β. For β = 4.6, the target
fraction is reached at a lower value of τ = 9, however, the
average target fraction was 0.82 for 20 simulations on a 256 ×
256 lattice. On the other hand, a lower value of β = 2.3 results
in a slow convergence to the target fraction of 0.8 at τ = 25,
and the target fraction was 0.8 every time for 20 simulations.

TABLE II. Simulation results on a lattice of 256 × 256 agents.
The result in each row is collected from 100 simulations. The threshold
is τ = 10 in all cases. The results were similar when simulations were
run ten times each on lattices of size 512 × 512 and 1024 × 1024
agents.

Initial population β Target population Population achieved

0.1 3.0 0.6 0.59–0.64
0.1 5.2 0.7 0.68–0.73
0.2 1.8 0.6 0.59–0.64
0.2 3.0 0.7 0.65–0.77
0.4 1.2 0.7 0.68–0.73
0.4 2.8 0.8 0.76–0.83
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FIG. 8. The conversion of agents from + to − and vice versa for a
simulation on a 256 × 256 lattice, with initial fraction of − agents 0.3,
p3 = 0.9, and τ = 10. (a) β = 0: Almost all − agents are converted
to + (upper curve), compared to + to − conversions (lower curve).
(b) β = 10.6: The bias forces the conversion of a large number of
+ agents to − (upper curve) compared to − to + conversion (lower
curve).

This behavior is common in our simulations, and it is possible
to choose β and τ pairs that allow us to achieve the target
fraction accurately.

Figure 9 has some similarities with rate-distortion curves
studied in information theory [16]. The aim of rate-distortion
theory is to establish a connection between the channel capacity
(rate) and output performance (distortion) of a communica-
tion channel, through minimizing channel distortion captured
through a cost function. A rate-distortion curve separates
the plane into two regions, allowable and nonallowable. The
points in the allowable region indicate the minimum required
rate to achieve a particular distortion in the output signal.
Points in the nonallowable region indicate distortions that
are unachievable using the corresponding rates. Two extreme

τ

5 10 15 20 25 30
ta

rg
e
t 
fr

a
c
ti
o
n
 o

f 
'-
'

0.3

0.4

0.5

0.6

0.7

0.8

0.9
β=4.6
β=2.3

FIG. 9. Slow and accurate convergence to the target fraction 0.8
with different values of β and τ .

points on a rate-distortion curve are the minimum rate required
for zero distortion and the maximum distortion when the rate
is zero. This also indicates a trade-off between the channel
capacity and distortion, as distortion reduces by increasing
channel capacity and increases by reducing channel capacity.

We can draw a parallel of Fig. 9 with a rate-distortion curve
if we consider the interactions of agents in Eqs. (1) and (2) as
the channel capacity or rate, and the fraction φ as the output of
the channel. Increasing τ increases the number of interactions
between agents and can be seen as an increase in channel
capacity. The distortion is the difference between the fraction
φ achieved with a specific value of τ and the target fraction
of − agents. We can study a trade-off between τ and φ for a
fixed β. For example, for β = 2.3 (the red line marked with ×
in Fig. 9), if we fix a value of τ and draw a vertical line, all
the fractions φ of the final population of − agents below the
red line are achievable with β = 2.3, and no fraction φ above
the red line is achievable with β = 2.3. In other words, if we
fix β, the red line divides the plane into allowable (below) and

TABLE III. Simulation results on a completely connected net-
work of 256 × 256 agents. The result in each row is collected from
100 simulations. The threshold is τ = 5 in all cases. The results were
similar when simulations were run ten times each on completely
connected networks of 512 × 512 and 1024 × 1024 agents.

Initial population β Target population Achieved

0.1 3.5 ± 2.0 0.6 0.59–0.63
0.1 5.5 ± 2.0 0.7 0.69–0.73
0.2 1.8 ± 1.1 0.6 0.59–0.63
0.2 3.0 ± 2.0 0.7 0.69–0.73
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TABLE IV. Simulation results on a lattice of 256 × 256 agents.
The result in each row is collected from 100 simulations. The threshold
is τ = 10 in all cases. The results were similar when simulations were
run ten times each on lattices of size 512 × 512 and 1024 × 1024
agents.

Initial population β Target population Achieved

0.1 3.2 ± 2.0 0.6 0.59–0.63
0.1 5.2 ± 2.0 0.7 0.69–0.72
0.2 3.0 ± 2.0 0.7 0.69–0.73
0.4 2.4 ± 2.0 0.8 0.79–0.83

nonallowable (above) regions. A trade-off between τ and φ

is also noticeable, as the nonallowable region is larger with
smaller values of τ and vice versa. A similar trade-off due to
rate-distortion curves has been observed in diverse domains
such as human perception [17], capital asset pricing model
for stocks [18], and balance between growth and entropy in
bacterial cultures [19].

C. Dynamics with a faulty β

We have also experimented with the dynamics of the
system when the bias β is not constant for all the agents,
where rather β varies within a range of values that we denote
by β ± R. We choose a value for β from the range β − R to
β + R uniformly at random at each Monte Carlo step for each
agent. In other words, each agent uses a different β within
this range at each Monte Carlo step. Although the values of
β are different for achieving the desired fractions of the final
population of − agents, the system is stable for a range of β

that is ±2.0 around a central value of β for the cases when
the central value of β > 2.0. The deterioration in achieving
the final desired fraction of − agents starts beyond the ±2.0
range. Some results are shown in Table III for a completely
connected network, and in Table IV for lattices. The dynamics
is quite similar in both cases. We have also verified that these
results scale for larger networks.

V. DISCUSSION

We have presented a model of opinion dynamics based
on the negativity bias extensively studied in the psychology
literature. Our main aim was to investigate the effect of
negativity bias in binary opinion formation. One of the inter-
esting aspects of our model is the formation of a stable target
population of − agents. Our model is close to a real-world
exchange of opinions based on negativity bias. People with
different opinions usually discuss the pros and cons of both
alternatives and give more importance to negative opinions.
We have abstracted this real-world situation in terms of the
two counters for individual agents. We have shown that the
application of a power-law bias during opinion exchange
results in consistent target populations and the bias factors
are scale invariant. Moreover, we have also shown that this
consistency is maintained with bias factors that can vary
randomly and uniformly within a range. Another interesting
aspect of our model is its rapid convergence; the composition
of the final population is reached quite early in the simulation,
when each agent has interacted with only a few other agents.
This is again close to the real-world situation in the sense that
usually people even within a large population interact with a
few other people while making decisions.

There are some similarities between the dynamics of our
model and the dynamics of the random-field Ising model. For
example, the conversions of + to − opinion and vice versa are
similar to the first-order phase transition in the random-field
Ising model. Similarly, the formation of clusters of + and −
opinions and strong surface tension on cluster boundaries are
very similar to the domains of similar spin in the random-field
Ising model. We will explore these similarities further in future
work.
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