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Localization of multilayer networks by optimized single-layer rewiring
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We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with
a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization
technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows
us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring
process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our
investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of
a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second
largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight
into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using
real-world social and biological data shows that the localization properties of these real-world multilayer networks
are in good agreement with the simulation results for the model multilayer network. This paper is relevant to
applications that require understanding propagation of perturbation in multilayer networks.
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I. INTRODUCTION

The traditional monolayer network framework offers only
a limited representation of complex systems having different
layers of interactions. Recent years have witnessed emergence
of the multilayer network (MN) framework, which provides
more accurate insights into the behaviors of complex systems
possessing multiple types of relations among the same units
[1–10]. For example, the collective behavior of a society, which
is modeled by individuals interacting through the Facebook
and Twitter social networks, can be better understood by
considering a MN consisting of layers representing the network
of people in each social media. The interactions within a
layer (intralayer connection) for this particular network model
of a social system encode friendship relationships between
the pairs of two people within each social media, whereas
the interactions between the layers (interlayer connection)
represent the impact of interactions in one layer on the other;
for example, two people actively interacting by Facebook
may lead to an increase in their Twitter activities as well
[1]. Another example of a real-world system which inherently
has multiple types of relations is the brain. In the brain MN,
one layer corresponds to a physical network, and another
corresponds to a functional relationship among neurons [11].
Furthermore, the physical layer can also itself be a MN in
the synaptic level. Neurons can be connected by chemical
or electric synapses forming a brain MN [12,13]. Recently,
Internet routing protocol IPv4 and IPv6 autonomous systems
have also been analyzed through the MN framework [14].

Furthermore, interactions among the constituents of a sys-
tem provide a backbone for the sustenance of the dynamical
behavior or functionality of the entire system. For instance, in
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the Facebook-Twitter MN, information propagates through the
links in the individual layer and spread of information propa-
gation depends on the architecture of the underlying network.
Neurons in the brain interact to perform specific functions.
Reconfiguration or rewiring of functional brain networks is
required during the learning phases [15,16]. Therefore scrutiny
of network architecture is thus important as “structure affects
function” and vice versa [17].

The last 20 years have witnessed the development of meth-
ods and techniques to characterize various structural properties
and functional activities of networks representing complex
systems. Particularly, it has been reported that the eigenvector
corresponding to the largest eigenvalue, the so-called PEV
of the network’s adjacency matrices, provides information
about both the structural and dynamical properties of the
underlying systems [18–23]. For various dynamical processes
on networks, for instance, disease spreading, the steady-state
vector has been shown to be approximated using the PEV of
the underlying adjacency matrix [18,19]. To understand how
an individual entity is infected or how information spreads
in a network in the steady state, it is sometimes enough to
analyze the PEV of the corresponding adjacency matrices.
The behavior of the disease spreading in the susceptible-
infected-susceptible model has been investigated with the help
of PEV localization revealing its connection with various
structural properties of the underlying monolayer networks
[18,22,24,25]. The localization of an eigenvector refers to a
state where few components of the vector take very high values,
and the rest of the components take very small values. We
quantify the localization of an eigenvector using the inverse
participation ratio (IPR) [18] [see also Eq. (1)]. Moretti and
Muñoz used PEV localization of the corresponding adjacency
matrix to analyze the brain network dynamics [26]. Recently,
Arruda et al. extended the PEV localization concepts for MNs
[27] and identified that the PEV localization behaviors for MNs
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could be different from the monolayer networks. Specifically,
in the monolayer networks, localization can happen on few
nodes [18] whereas in MNs a layer can be localized [27]. These
investigations shed light on the properties of the networks and
their relations with eigenvectors, particularly PEVs. However,
it remains unclear what specific structural properties the MNs
should have so that they make the corresponding PEV local-
ized. Additionally, how does network structure of an individual
layer affect or regulate the PEV localization of the entire MN?
What role do other layers of a MN play in restricting the impact
on the regulating layers? Specifically, the question which we
address here using the optimization technique is that of what
structural properties an individual layer should possess so that
they correspond to a highly localized PEV of the entire MN.

In this paper, we examine various structural and spectral
properties of the MNs as layers evolve from a state having a
completely delocalized PEV to a state having a very highly
localized PEV. Our investigations reveal that the highly local-
ized PEV of the MN for a given network size possesses specific
structural properties, such as the presence of a hub node, high
clustering coefficient, and low degree-degree correlation. For
a two-layer MN, the optimization process can be implemented
considering two different edge rewiring protocols: (1) by
rewiring edges in both layers and (2) by rewiring edges in only
one (accessible) layer. For both the rewiring protocols, though
there is an emergence of various specific structural features, the
different rewiring protocols lead to a noticeable and essential
difference in the spectral properties of the optimized MN
structure. For the both-layers rewiring protocol, the PEV is
sensitive to a single edge rewiring in the optimized MN
structure as also observed in the monolayer networks [22];
however, interestingly, we get rid of this sensitivity of the PEV
for the single-layer rewiring protocol.

We can summarize our paper as follows. Starting with an
initial random MN, where the individual layer is represented by
a random monolayer network, we rewire the intralayer edges
with an optimization-based method by considering IPR value
of the PEV as the fitness function. The initial random MN
corresponding to the delocalized PEV evolves to an optimized
structure corresponding to a highly localized state. We examine
various structural and spectral properties of this optimized
MN structure. Additionally, the rewiring scheme adopted here
allows us to scrutinize various structural and spectral properties
of the MNs at various steps of the evolution process.

We present our results for two-layer, three-layer, and four-
layer MNs. Additionally, we consider various real-world MNs
constructed using empirical data taken from social and biolog-
ical systems and analyze their PEV localization behaviors.

II. METHODS

First, we represent a MN, M = (G,C) [2], where G =
{Lα; α ∈ {1,2, . . . ,l}} is the family of connected monolayer
networkLα = {Vα,Eα}, where Vα = {vα

1 ,vα
2 , . . . ,vα

n } is the set
of vertices and Eα = {eα

1 ,eα
2 , . . . ,eα

r(α) : er(α) = (vα
i ,vα

j )} ⊆ Uα

is the set of edges in the α layer of the MN. We define the uni-
versal set Uα = Vα × Vα = {(vα

i ,vα
j ) : vα

i ,vα
j ∈ Vα and i �= j}

which contains all possible ordered pairs of vertices excluding
the self-loops and the complementary set can be defined
as Ec

α = Uα − Eα = {(vα
i ,vα

j ) : (vα
i ,vα

j ) ∈ Uα and (vα
i ,vα

j ) /∈

Eα}, i.e., Eα ∩ Ec
α = ∅ and Eα ∪ Ec

α = Uα . In addition,
C = {Eαβ ⊆ Vα × Vβ : α,β ∈ {1,2, . . . ,l},α �= β} is the set
of edges betweenLα andLβ layers. We refer to Eα as the set of
all intralayer edges and Eαβ = {eαβ

1 ,e
αβ

2 , . . . ,e
αβ
n } as the set of

all interlayer edges of M. Here, we consider each node in one
layer connected to its mirror node in the other layers of the MN,
and all the layers consist of exactly the same number of nodes.

Second, we denote the adjacency matrices corresponding
to Lα as Aα ∈ Rn×n which can be defined as (aα)ij = 1,
if vα

i ∼ vα
j , and 0 otherwise. We represent the degree of a

node vα
i as dvα

i
= ∑nα

j=1(aα)ij and the average degree of the
α layer as 〈kα〉 = 1

n α

∑nα

i=1 dvα
i
. The average degree of the MN

is denoted as 〈k〉 = 1 +
∑l

α=1〈kα〉
l

. For all the model MNs, each
layer has the same average degree and same number of nodes.
Here, we consider a two-layer MN with L1 = {V1,E1} and
L2 = {V2,E2}, where |V1| = |V2| = n, |E1| = m1, |E2| = m2,
|Ec

1| = n(n−1)
2 − m1, |Ec

2| = n(n−1)
2 − m2, and |E12| = n.

Hence, the total number of nodes in M is |V | = 2n = N and
edges |E| = m1 + m2 + n = M . The supra-adjacency matrix
[2] of the MN is a block matrix and can be defined as

A =
[
A1 I
I A2

]

where I is an n×n identity matrix. As A1, A2, and A are real
symmetric matrices, each has real eigenvalues. In addition, the
networks are connected. Hence, we know from the Perron-
Frobenius theorem [28] that all the entries in the PEV of A are
positive. We calculate the IPR of the MN [18] as follows:

YxM
k

=
N∑

i=1

(xk)4
i (1)

where (xk)i is the ith component of the orthonormal eigenvec-
tor, xk , with 1 � k � N , of the MN. A delocalized eigenvector
with component [1/

√
N,1/

√
N, . . . ,1/

√
N ] has the IPR value

1/N , whereas the most localized eigenvector with components
[1,0, . . . ,0] yields an IPR value equal to 1. For a connected
MN, the IPR value of the PEV lies between 1/N � YxM

1
< 1.

In addition, to assess the contribution of an individual layer
to the IPR value of the PEV of the MN, we define

YxM
1

= C
x
L1
1

+ C
x
L2
1

,

YxM
1

= (
x1

1

)4
1 + (

x1
1

)4
2 + · · · + (

x1
1

)4
n︸ ︷︷ ︸

L1

+ (
x2

1

)4
n+1 + (

x2
1

)4
n+2 + · · · + (

x2
1

)4
2n︸ ︷︷ ︸

L2

(2)

where (x1
1 )i and (x2

1 )j are the ith and j th entry in the PEV
of the MN from the L1 and L2 layers, respectively. Note that
contribution from the individual layers in the IPR value of the
PEV of the entire MN (represented by C

x
L1
1

& C
x
L2
1

) and the IPR
value of the PEV of layers as monolayer networks (represented
by Y

x
L1
1

and Y
x
L2
1

) are different.
Starting from a connected two-layer MN with each layer

constructed from an Erdös-Rényi (ER) random network, we
rewire the edges uniformly and independently at random with
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FIG. 1. Schematic representation of the evolution of a multilayer
network using the single-layer optimized edge rewiring scheme. A
rewiring is accepted if it increases the IPR value of the PEV of the
multilayer networks.

an optimization-based method. Only those edge rewirings are
approved which lead to an increase in the IPR value (Fig. 1).
We are interested in assessing various properties of the MNs
during the network evolution and that of the network having
highly localized PEV, i.e., the optimized MN.

We first examine the impact of the optimized rewiring for
the two-layer MN, with both-layers and single-layer rewiring
protocols, and then apply the rewiring scheme to the MNs
consisting of three and four layers. For the single-layer rewiring
protocol, we choose an edge e1

i ∈ E1 uniformly and indepen-
dently at random from L1 and remove it (Fig. 1). At the same
time, we introduce an edge in the L1 layer from Ec

1, which pre-
serves the total number of edges during the network evolution
in L1 and also in M. Similarly, for the both-layers rewiring
protocol, we choose a layer independently and uniformly at
random from M and follow the same approach as adopted for
the single-layer rewiring protocol for the selected layer. Note
that for both the rewiring protocols, we do not rewire any edges
in E12. We remark that during the network evolution there is a
possibility that an edge rewiring disconnects the corresponding
layer, i.e., leads to the layer having isolated nodes which are
connected only through interlayer connections without having
any intralayer connection. To avoid this situation, we only
approve those rewirings which yield a connected layer. Further,
the evolution takes place in a manner that keeps the network
size fixed.

The optimization problem can be defined as follows: Given
an input MN M with N vertices, M edges, and a function
ζ : RN → R, we want to compute the maximum possible
value of an objective function ζ (M) over all the simple,
connected, and undirected MN M. Thus, we maximize the
objective function, ζ (M) = YxM

1
, subject to the constraints

that
∑N

i=1(x1)2
i = 1 and 0 < (x1)i < 1. The first constraint

simply says that the PEV of A is normalized to the Euclidean
norm. The second constraint implicitly stipulates that the
network must be connected in the optimization method. In our
numerical simulation, we keep the layers, as well as the MN,
connected using depth-first search method [29]. We perform
the optimization process by applying simulated annealing
method [30]. We refer to the initial network as Minit and the
optimized network as Mopt.

III. RESULTS AND DISCUSSION

We begin the investigation by analyzing the impact of
changes in the architecture of the individual layers on the
PEV localization of the entire MNs. For the layers in an MN,
we consider various combinations of ER random network,
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FIG. 2. IPR value of monolayer and multilayer model networks
for different combinations. The size of the monolayer networks
n1 = n2 = 200 and 〈k1〉 = 〈k2〉 = 10. Thus, size and the average
degree of the MN are N = 400 and 〈k〉 = 11, respectively.

the Barabási-Albert scale-free (SF) network, the star network
(STAR), and the regular lattice [one-dimensional (1D)] net-
work [31]. The ER random network is generated with an edge
probability 〈kα〉/nα , where 〈kα〉 is the average degree of theLα

layer. The SF network is constructed using the Barabási-Albert
preferential attachment model [31].

A. Localization of the model multilayer network

After multilayering of two monolayer networks, we con-
jecture that the IPR value of the entire MN is smaller than
the maximum IPR value of the individual layers for the same
number of nodes:

YxM
1

< max
1�α�l

{
Yx

Lα
1

}
. (3)

For a few combinations, multilayering may yield a high YxM
1

value, and for a few combinations the multilayering can lead
to a low YxM

1
value (Fig. 2); however, Eq. (3) always holds.

For example, the STAR-ER and STAR-1D MNs have higher
IPR values as compared to other multilayer configurations
investigated here (Fig. 2). For the regular monolayer network
(see Theorem 6 of Ref. [28]), we have

x
Lα

1 =
(

1√
n
,

1√
n
, . . . ,

1√
n

)
.

Therefore, from Eq. (1) we get Yx
Lα
1

= 1
n

, which corresponds
to the most delocalized PEV for a network size n. Next, for
a star monolayer network consisting of n nodes with the hub
node being labeled as 1, we get the PEV as

x
Lα

1 =
(

1√
2
,

1√
2(n − 1)

, . . . ,
1√

2(n − 1)

)
,

which yields

Yx
Lα
1

= 1

4
+ 1

4(n − 1)
.

For n → ∞, Yx
Lα
1

→ 1
4 ≈ 0.25. Upon multilayering two 1D

monolayer networks of size n and node degree 〈k1〉=〈k2〉=r ,
the degree of each node of the MN gets increased by 1, yielding
the same degree to each node of the MN as (r + 1). Thus, a
1D-1D MN network becomes a regular network of 〈k〉 = r + 1
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and 2n number of nodes. Therefore, the PEV of the 1D-1D MN
will be

xM
1 =

(
1√
2n

,
1√
2n

, . . . ,
1√
2n

)
and YxM

1
= 1

2n
, (4)

resulting in the same contribution of each layer which is
calculated from Eq. (2) as C

x
L1
1

= C
x
L2
1

= 1
4n

and Y
x
L1
1

=
Y

x
L2
1

= 1
n

from Eq. (1), respectively. Therefore, both the layers
contribute equally to the IPR value of the MN and the IPR
value of the overall MN decreases by a factor of 1/2 for 1D-1D
MN configurations. The ER random network has a delocalized
PEV for large n [32]; therefore, again multilayering of two ER
random networks brings the same contribution from both the
layers in YxM

1
.

Next, if we consider STAR-1D or STAR-ER MN, the
contribution C

x
L2
1

becomes very small as compared to C
x
L1
1

.
In these cases, 99.99% of the contribution comes from the
layer which has the STAR network for n → ∞. For the
STAR-ER case, the PEV entry corresponding to the hub
node of the STAR network has a significantly high value. In
contrast, the ER random network has a delocalized PEV. After
multilayering, the PEV of the STAR-ER MN contains one very
large entry which in combination with other tiny entries leads
to a significantly high IPR value. However, for the case of the
STAR-STAR MN, the presence of two hub nodes leads to a
decrease in the IPR value of M (Fig. 2). Similarly, for SF-ER
and SF-SF networks, the presence of several hub nodes reduces
the IPR value of M. Following Eqs. (3) and (4) we get a bound
for the IPR value of MNs having the same number of nodes in
all the layers:

1

2n
� YxM

1
< max

{
Y

x
L1
1

,Y
x
L2
1

}
.

In general, for l-layer MNs, we get

1

nl
� YxM

1
< max

1�α�l

{
Yx

Lα
1

}
.

It is not surprising that multilayering of a delocalized mono-
layer network with a localized monolayer network structure
leads to a higher IPR value of the MN as compared to mul-
tilayering with a delocalized monolayer network (YxER-STAR

1
>

YxER-ER
1

). Additionally, it is also possible that multilayering
of a localized monolayer network with another localized
monolayer network (e.g., STAR-STAR) yields an IPR value
which is lower than that of the localized and delocalized (e.g.,
STAR-ER) multilayer network combinations (Fig. 2). These
experiments demonstrate that PEV localization of a multilayer
network can be regulated by changing topological properties
of one or both of its layers.

B. Layer rewiring based on simulated annealing

From the above experiments, we already have obtained
an idea of the structural properties of an individual layer
corresponding to a localized PEV state as well as how by
choosing an appropriate multilayering one can make the
PEV of the entire MN more localized. These investigations
have been carried out for a few specific network structures
representing each layer of the MNs. In the following, we
aim to address the issue of the PEV localization for MNs
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FIG. 3. Optimized evolution of an initial ER-ER multilayer net-
work for 50 000 edge rewirings for a single layer (�) and both layers
(�). Size of the MN is N = 400, 〈k〉 = 7, and 〈k1〉 = 〈k2〉.

having a general network architecture representing each layer.
Particularly, we investigate how, starting with an initial random
MN, an optimized rewiring of one or more than one layer
can build a MN having a highly localized PEV. Additionally,
we investigate various structural and spectral properties of the
rewired layers and those of the entire MN during the optimized
evolution process at various rewiring stages.

It can be noticed that from an initial ER-ER random MN
the optimized rewiring for both layers, as well as for the
single layer, significantly increases the IPR value [Fig. 3(a)]
of M. The choice of an ER-ER MN at the beginning of
the evolution provides a delocalized PEV to start with [32].
During the network evolution, there are several changes in the
structural and spectral properties of the network architecture
of the rewired layer. For both the optimization protocols as
evolution progress, the IPR value of the PEV shows an increase
and finally becomes saturated. Based on the nature of the
increment in the IPR value, we can divide the evolution into
three different regions: the slow (r1), the fast (r2), and the
saturation (r3) regions, respectively [Fig. 3(a)].

As evolution progresses, there is a formation of the hub node
[Fig. 3(b)] and the IPR value of the PEV shows an increase
which finally becomes saturated in Mopt. This evolution
process leads to a drastic change in the degree distribution of
the final MN (Fig. 4). There exists one node in the MN coming
from the smaller part of the network (Fig. 5) which has a very
high degree as it is connected with all the nodes in that part of
the network. The rest of the nodes in this part of the network
have very small degrees. The other part of the layer, which
does not consist of the hub node, has all the nodes having again
very small degree but different than those lying in the smaller
part. This leads to two distinguishable peaks in the degree
distribution of the optimized MN (Fig. 4). Note that instead
of a random initial MN, if we start with a MN having both the
layers having SF topology, the final optimized network will be
the same as that achieved for the initial MN having a random
structure. We have plotted degree distribution of the final
optimized MNs as well as those of the initial networks (Fig. 4).
It is interesting to note that, despite the SF networks being
more localized than the corresponding ER random networks,
if we evolve a SF-SF MN using the optimization technique,
the degree sequence of the final optimized structure will be the
same as that achieved for optimizing the ER-ER MNs.
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FIG. 4. Degree distribution of the initial multilayer network of (a)
ER-ER (N = 400, 〈k1〉 = 〈k2〉 = 6) and (b) SF-SF (N = 400, 〈k1〉 =
〈k2〉 = 6). (c) and (d) depict the degree distribution of the optimized
MN achieved through the both-layers rewiring protocol.

Additionally, Mopt has a higher average clustering coef-
ficient (〈CC〉) value [Fig. 3(c)] and low degree-degree cor-
relation (rdeg-deg) value [Fig. 3(d)] as compared to those of
Minit [31]. It indicates that localization of the PEV leads
to the triangle formation in the MN structure. Similarly, the
existence of a lower degree-degree correlation suggests that
hub nodes are connected with lower degree nodes in an
individual layer leading to the MN with highly localized PEV
being disassortative.

Furthermore, to check the relation between the degree and
local clustering coefficient of each node as the PEV gets lo-
calized, we calculate the Pearson product-moment correlation
coefficient [31] measure of degree vector and local clustering
coefficient vector (rdeg-CC) during the optimization process. It
unveils that as evolution progresses the rdeg-CC value decreases
[Fig. 3(e)], which indicates that as the PEV gets localized the
participation of lower degree nodes is more for the cluster
formation than for the higher degree nodes. We measure the
Pearson product-moment correlation coefficient between pairs
of various other structural properties to accomplish a better
understanding of the network structures. It is surprising to
see that rPEV-CC value increases [Fig. 3(f)] as compared to

FIG. 5. Cytoscape diagram of optimized MN obtained for (a)
both-layers and (b) single-layer rewirings. For both the protocols,
N = 120 and 〈k〉 = 3, where 〈k1〉 = 〈k2〉. A smaller size MN is
considered here for a clear illustration of the optimized network
structure.
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FIG. 6. Changes in the IPR values (Yx1 ) with the evolution. (a)
Single-layer rewiring protocol (PI) does not show IPR drops in the
saturation region. (b) Both-layers rewiring protocol (PII) shows drops
in the IPR value in the saturation region. The behavior of the largest
two eigenvalues of the (c) single-layer and (d) both-layers rewiring
protocols. Here, N = 400, 〈k〉 = 7, and 〈k1〉 = 〈k2〉.

Minit as the PEV gets localized. From the rdeg-CC and rPEV-CC

values, we can also infer the correlation between degree vector
and PEV (rdeg-PEV), which decreases as the PEV gets more
localized. From these correlation measures, it is evident that
lower degree nodes contribute more to the triangle formation
and also to the PEV entry of the Mopt. These correlation
measures provide insight for possible architectures of theMopt

structure corresponding to the highly localized PEV. Note that
〈CC〉 and all the correlation measures are evaluated for the
entire MN.

Network visualization software reveals that the optimized
layer consists of two components which are connected with
each other via a single node (Fig. 5). One of the components
in this structure contains a hub node. For the both-layers
rewiring protocol, we get a network structure in which one
layer is similar to that obtained for the monolayer network
rewiring [22]. However, another layer has a network structure
consisting of two components of different sizes devoid of the
hub node [Fig. 5(a)]. Various structural properties of Mopt

obtained through the single-layer rewiring protocol [Fig. 5(b)]
are qualitatively the same as those observed for the rewiring
of the monolayer networks. However, for the both-layers and
single-layer rewiring protocols, there is a striking [Figs. 6(a)
and 6(b)] difference in the spectral properties in the saturation
region, r3. In this region, there exist several edges, for which
rewiring does not lead to an increase in the IPR value. If
we consider rewiring of all the edges during each step of the
evolution, we can notice a substantial difference between the
both-layers versus single-layer rewiring protocols of the MNs.
In the r3 region (Fig. 6), the IPR value gets almost saturated,
and there may exist only a subtle increment in the IPR value
with a further evolution of the network. Although the MN in
this region has the maximum IPR value, in the Mopt achieved
through the both-layers rewiring protocol there exist only a
few edges, for which rewiring leads to a sudden drop in the
IPR value. It leads to a complete delocalization of the PEV
from a highly localized state [Fig. 6(b)]. Thus, for both-layers
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FIG. 7. (a) Change in the IPR value during the evolution of MNs
with various combinations of the initial networks for single-layer
rewiring protocol (PI) and both-layers rewiring protocol (PII). (b)
Value of C

x
L1
1

and C
x
L2
1

as two layers are multilayered and evolved.

The initial multilayer network takes two different combinations: ER-
ER and ER-SF with N = 400,〈k〉 = 7, and 〈k1〉 = 〈k2〉. The rewiring
has been done in the first layer (i.e., ER layer). The contribution of
the rewired ER layer is represented by C

x
L1
1

. (•) and (�) represent this

contribution for ER-ER and ER-SF multiplex networks, respectively.
Similarly, the fixed layer contribution (C

x
L2
1

) for ER-ER and ER-SF

multiplex networks is depicted by (◦) and (�), respectively.

rewiring, the PEV in the r3 region is sensitive to a single edge
rewiring as also observed for the monolayer network rewiring
[22]. However, for the Mopt in the r3 region achieved through
the single-layer rewiring protocol, there are no such sudden
drops [Fig. 6(a)] and the PEV is robust to a single edge rewiring.

For the single-layer rewiring, the component consisting of
the hub node (in the rewired layer) has a major contribution
to the IPR value of the PEV of the MN, followed by the
contribution from the fixed layer and the second component of
the rewired layer connected to the component having the hub
node [Fig. 5(b)]. Similarly, for the case of both-layers rewiring,
the component containing the hub node contributes the most,
followed by the contribution from the other parts of Mopt

[Fig. 5(a)]. The component containing the hub node has an
overwhelming contribution in the corresponding PEV entries
accompanied by an equally negligible contribution from the
rest of the nodes, leading to a high IPR value in the optimized
structure.

For various combinations of the layer forming the MN
[Fig. 7(a)], for the single-layer rewiring protocol, the fixed
layer restricts the IPR value of the entire MN. In Fig. 7(b),
we depict the values of C

x
L1
1

and C
x
L2
1

of YxM
1

during the
network evolution for the initial MN having ER-ER and ER-SF
configurations. For the ER-ER MNs, the layer which undergoes
rewiring associates more weight to the PEV entries at the
expense of the contributions from the fixed layer [Fig. 7(b)].
Both of these factors lead to a high value of YxM

1
. For ER-SF

MNs considered as initial networks, we observe that rewiring
of the ER random layer through the optimized evolution is not
sufficient to change the IPR value of the PEV which is reflected
by almost a constant value of C

x
L1
1

and C
x
L2
1

[Fig. 7(b)]. This
constant value of the IPR is a consequence of the existence of
the hub nodes in the fixed SF layer which imposes a restriction
on the increase in YxM

1
. However, for the combination of SF-ER

MNs, rewiring of the SF layer leads to an enhancement in the
YxM

1
value [Fig. 7(a)].
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FIG. 8. The IPR value (YM
x1

) of (a) three-layer and (b) four-layer
MNs. The simulation is performed for (a) three- and (b) four-layer
rewiring protocols. Each layer ofM contains 100 nodes and 〈kα〉 = 5.

We can see that during the evolution [Fig. 7(b)], though
one layer is fixed and rewiring is performed on the other layer,
changes happen in both C

x
L1
1

and C
x
L2
1

, leading to an increase in
the YxM

1
value. This is a direct consequence of the multilayering

of the layers indicating that by rewiring (“dynamics of the
networks”) one can change the value of the PEV entries, i.e.,
“dynamics on networks” [11]. In other words, our framework
is useful in connecting “dynamics on” and “dynamics of”
networks for MNs in terms of the PEV localization.

Next, we attempt to understand the sensitivity of the PEV
in the critical region (r3) for the both-layers rewiring protocol
and in the absence of the same in the single-layer protocol.
We can witness that for the case of single-layer rewiring,
during the evolution of λ1 and λ2, both show an increase and
remain separated from each other [Fig. 6(c)]. However, for
the both-layers rewiring protocol, as evolution progresses, λ2

starts shifting towards λ1 [Fig. 6(d)], as a consequence of λ2

drifting away from the bulk region [33]. This drift in λ2 is
not surprising as we know that the final optimized structure
obtained from the both-layers rewiring consists of two parts
in both layers of Mopt. We can observe from Fig. 5(a) that
there exist two communities (surrounded by a dotted ellipse)
such that for each community one part resides in the L1 layer
and another part of the community belongs to the L2 layer
of the MN. Hence, there should be two eigenvalues which lie
outside the bulk. However, the interesting observation is that
for the Mopt obtained from the both-layers rewiring λ2 not
only drifts away from the bulk but becomes very close to λ1; in
fact, λ1 ∼ λ2. The almost same value for both the eigenvalues
might be a reason behind the sensitivity of the PEV [22] for the
both-layers rewiring. Note that, for the single-layer rewiring
protocol [Fig. 5(b)], it is hard to get two communities as one
layer is fixed which prohibits λ2 being separated from the bulk.
Hence, there is no possibility of λ2 being close to λ1 which is
always well separated from the bulk of the sparse networks.

Furthermore, we present the results for three-layer and four-
layer MNs (Fig. 8). Starting with the three- and four-layer
initial random MNs, we evolve them using the optimization
technique as described above. Again, the optimized rewiring
leads to an increase in the IPR value of the MN during the
evolution (Fig. 8) with the existence of r1, r2, and r3 regions.
For the three-layer MNs, we can adopt the rewiring protocol
in various manners: (i) rewiring only one layer by fixing other
layers, (ii) rewiring two layers and fixing one layer, and (iii)
rewiring all the layers independently. All the three ways of the
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TABLE I. Various properties of real-world social (first seven) and biological (last ten) multilayer networks. Inverse participation ratio (Yx1 ),
maximum degree (kmax), average clustering coefficient (〈CC〉), degree-degree correlation (rdeg-deg), PEV-degree correlation (rPEV-deg), PEV-CC
correlation (rPEV-CC), the largest eigenvalue (λ1), the second largest eigenvalue (λ2), power-law [38] scaling parameter (γ ), and λe

1 [18] of few
real-world MNs. Reference [39] is used to calculate IPR and eigenvalues of MNs having large network size. The IPR values of the corresponding
random networks are very close to 3/N which is predicted by the random matrix theory [40]. The first six networks with l layers are constructed
based on the Twitter data with different exceptional events ranging from sports and politics to scientific discovery of the Higgs boson. The layers
represent retweet, reply, and mention on the Twitter [34] network. The CKM is a multilayer social network of a sample of physicians in the U.S.
[41]. The Drosophila and Homo are the multilayer genetic and protein interaction networks where layers are the physical association, direct
interaction, colocalization, and association, respectively [35–37]. The rest of the networks are also multilayer genetic and protein interaction
networks where we consider only the first four layers when the number of layers is more. We consider the largest connected component to
calculate various properties and treat all the edges as undirected and unweighted. Moreover, we measure the clustering coefficient value for all
the nodes of the multiplex network having degree 2 or more, as nodes with degree 1 have zero clustering coefficient.

Network l N 〈k〉 YxM1
kmax 〈CC〉 rdeg-deg λ1 λ2 rPEV-deg rPEV-CC γ λe

1

Moscow Athl. 3 124423 4.01 0.03 4840 0.11 −0.13 75.22 71.5 0.66 0.05 2.11 72.26
NYClimate 3 148936 5.39 0.07 9742 0.11 −0.1 118.5 99.2 0.65 0.08 2.19 101.16
MLKing2013 3 318962 2.51 0.08 8689 0.07 −0.11 93.2 85.5 0.25 0.01 2.02 95.92
Cannes2013 3 573353 3.98 0.2 8676 0.1 −0.1 94.26 86.9 0.38 0.004 2.17 94.59
Higgs mux 2 886744 31.09 0.003 51387 0.09 −0.1 653.5 436.7 0.71 −0.15 2.33 279.94
ObamaIsrael 3 2258678 3.55 0.15 21650 0.1 0.0 151.77 139.9 0.43 0.02 2.25 148.44
CKM 3 329 5.95 0.02 25 0.16 0.1 7.84 5.75 0.78 −0.17 3.5 5.02

Drosophila 4 10255 7.62 0.008 175 0.11 0.1 46.96 31.0 0.6 −0.27 3.5 13.98
Homo 4 34363 10.22 0.09 9570 0.19 −0.05 118.76 67.2 0.7 0.09 2.69 99.70
Arabidopsis 4 8163 4.45 0.24 1296 0.1 −0.1 36.28 23.03 0.6 −0.02 2.65 36.90
HumanHIV1 2 1138 2.48 0.24 250 0.01 −0.45 15.87 14.93 0.5 −0.05 2.59 17.97
Celegans-connectome 3 791 9.74 0.025 82 0.18 0.11 21.18 13.53 0.8 0.1 3.18 9.39
Mus 4 9657 4.22 0.03 368 0.09 −0.16 34.56 24.57 0.46 0.05 2.59 20.04
Plasmodium 3 1161 4.15 0.03 83 0.03 0.0 13.12 8.75 0.8 0.13 3.5 9.52
Rattus 4 2906 2.98 0.23 814 0.14 −0.14 29.16 14.14 0.74 −0.17 2.75 30.22
SacchCere 4 20482 17.37 0.02 3187 0.22 −0.1 110.81 70.51 0.65 0.1 2.65 57.55
SacchPomb 4 6401 8.62 0.06 1021 0.17 −0.14 47.95 36.62 0.57 0.12 2.44 33.10

rewiring yield the network properties similar to those obtained
for the two-layer MN in the optimized state.

C. Localization in real-world multilayer networks

Furthermore, we examine the PEV localization of many
real-world MNs. We find that the real-world MNs have the
PEV which is much more localized than the corresponding
random MNs, however much less localized than the optimized
multilayer structure. We present results for the MN of the
Twitter data collected during the occurrence of different
exceptional events like the discovery of the Higgs boson
in 2012, the Cannes Film Festival, the 14th IAAF World
Championships in Athletics held in Moscow 2013, the 50th
anniversary of Martin Luther King’s famous public “I have
a dream” speech in 2013, the official visit of U.S. President
Barack Obama in Israel in 2013 [34], and a large-scale event
on global climate change in New York in 2014. The choice
of the Twitter network data provides a good proxy for a large
population of social behaviors [34]. The individual layers of
the Twitter MN follow the power-law degree distribution and
reflect scale-free topology. In addition to these social networks,
we consider biological MNs as well. The multilayer gene-
interaction networks Drosophila and Homo-genetic [35–37]
consist of layers denoting the physical association, direct inter-
action, colocalization, and association, respectively. We make
crude approximations that all the networks are undirected and

unweighted. Table I presents PEV localization and structural
properties of these MNs. All the networks have IPR value much
larger than the corresponding random networks.

We can estimate the IPR value of a random MN consisting
of layers of size N/l represented by ER random networks like
YxM

1
≈ 3/N [40]. Other structural properties of such random

MNs can be calculated as 〈CC〉 ≈ 〈k〉
N

, and rdeg-deg ≈ 0 for
large N [31]. The real-world multilayer networks considered
here comprise structural properties which differ considerably
from the corresponding random MNs. From Table I, it is clear
that all the real-world multilayer networks considered here
contain a hub node having a very large degree. Additionally,
they have higher average clustering coefficient value (〈CC〉)
and smaller degree-degree correlation than the corresponding
random networks. Additionally, PEVs of these MNs are more
localized than the corresponding random MN. From Table I, it
is evident that the less localized networks possess high rPEV-deg

value, and for most of the real-world MNs the rPEV-CC value is
positive. Although these are not very surprising observations,
by combining the comparison of measures of various structural
properties and IPR values of the real MNs with those of the
model MNs achieved during the optimized evolution process,
it is evident that real-world MNs lie well above the r1 region.
Furthermore, Table I depicts that the largest and the second
largest eigenvalue of the real-world MNs are well separated
from each other, indicating that these real-world MNs lie
below the r3 region. Note that in the r3 region the largest and
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the second largest eigenvalues lie very close to each other,
leading to the sensitivity of the IPR value of the PEV to single
edge rewiring. Based on these two sets of observations we
can fairly conclude that the real-world multilayer networks
lie in the r2 region of the evolution process of the model
multilayer networks. Additionally, we calculate the power-law
exponent (γ ) [38] of the real-world MNs. Goltsev et al. [18]
state that PEV localization at a node with degree kmax occurs
if estimated λe

1 = kmax/
√

kmax − (〈k2〉/〈k〉 − 1) is close to the
largest eigenvalue of the network. We find that those real-world
MNs, considered here, which have highly localized PEVs obey
this relation between the largest eigenvalue and the degree
sequence. However, we can not conclude more on the relation
between the localization properties of the real-world MNs
and γ value, which requires further rigorous investigation by
considering various network sizes and scaling parameters.

IV. CONCLUSION

In this paper, we explore the impact of the optimized
rewiring for the PEV localization in MNs. We construct MN
structures through an optimization process that yields highly
localized PEVs quantified by the IPR value. Our approach
provides a comprehensive way to investigate not only the
properties of the optimized multilayer structure but also the
intermediate multilayer networks before the most optimized
structure is found. In other words, we develop a learning
framework to explore the evolution of the eigenvector from
a delocalized to a highly localized state. We analyze several
structural and spectral properties during the network evolution
process for the single layer as well as all the layers of the MNs.
For both the protocols, we find that there is an emergence of
various structural features as the PEV gets localized. Moreover,
for both the protocols, there is a noticeable difference present
in the spectral properties in the saturation region. For the
both-layers rewiring protocol, in the saturation region, the
PEV is sensitive to a single edge rewiring as also observed for
the optimized evolution of the monolayer networks. However,
interestingly, we get rid of the sensitivity in the PEV in the
saturation region by implementing a single-layer rewiring of
the MN. Additionally, we have investigated the PEV local-
ization behavior of several large empirical MNs constructed
using the data ranging from social to biological systems. Our

analysis reveals that these real-world MNs are much more
localized than the corresponding random MNs, and also have
structural properties close to those obtained in the r2 region of
the optimized evolution process of the model MNs. Further,
we show that by rewiring a single layer one can tune the
contribution of the node weights of the other layer to the
PEV of the entire MN. Rearrangement of the node weights is
used in semisupervised based learning and has great practical
importance in machine learning [42].

This paper can be extended to confine or facilitate prop-
agation of perturbation in a network by an appropriate mul-
tilayering with other networks. For instance, in the case of a
disease outbreak in a society, which already has a connection
network among its people, one can create another network (for
instance virtual-world awareness network) composed of the
same people in a manner such that the PEV of the whole MN
gets localized, leading to a restriction of the disease in a small
section of the society. Furthermore, there exist several open
questions which require future investigations. An important
direction is to understand the prerequisite of the second largest
eigenvalue becoming very close to the largest one in the most
localized structure. Additionally, the current paper focuses
on the localization of only one eigenvector, and it will be
interesting to characterize network properties leading to more
than one localization point. Furthermore, this paper considers
only random edge rewiring adopted during the optimization
process. It will be interesting to see the consequences of
restricted rewiring such as 1-k and 2-k rewirings [43].
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