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Multiple scales in metapopulations of public goods producers
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Multiple scales in metapopulations can give rise to paradoxical behavior: in a conceptual model for a public
goods game, the species associated with a fitness cost due to the public good production can be stabilized in
the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale
corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction
with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the
interaction rate progressively stabilizes this species due to stochastic effects, and that the formation of spatial
patterns is not crucial for this stabilization.
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I. INTRODUCTION

Ecological populations have evolved into systems where
a variety of length and time scales exist due to patterns,
heterogeneities, or temporal variations in the states of indi-
vidual agents [1]. For example, populations dwell in spatial
substructures of separate or fragmented habitats, in which the
species form a tight community and are essentially well mixed
[2,3]. On larger scales, these habitats are then coupled by
migration or dispersal. Similarly, individuals take up nutrients
and interact with their local environments more frequently than
they reproduce or die. The impact of such multiple length and
time scales on ecosystems is associated with the maintenance
of biodiversity, where separate scales can stabilize subpopula-
tions which would otherwise die out [4,5].

In order to investigate this complex interplay of different
scales, we study a simplified model system for two different
species with interacting individuals. With this model, we can
tune the frequency of interaction events and dispersal, and thus
evaluate the importance of the coupling between two specific
length and time scales. We show that even for very simple in-
teractions, the interplay of these scales leads to counterintuitive
phenomenology. Indeed, recent advances in both microbial
[6,7] as well as interacting systems built with nucleic acids
[8–10] mean that such scales will be accessible experimentally,
which helps elucidate ecological principles and control matter
on small scales, respectively [11–13]. Theoretical models can
assist both these experimental advances by identifying what
interaction principles are ecologically viable or can lead to
interesting effects in these experiments.

A well-understood type of interaction are public goods
games, which have been demonstrated in a variety of mi-
croorganisms, from bacterioplankton to yeast [14–20]. In such
games, players receive fitness benefits due to the presence of a
public good, which is produced by only a part of the population
(“producers”) [21]. In theoretical models for this scenario
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[22–24], such as the prisoner’s dilemma [25,26], public good
production incurs a fitness cost for the producers. Due to this
cost, producers in well-mixed populations in the prisoner’s
dilemma always die out. Thus, we will analyze the impact of
the interplay of time scales (associated with the frequency of
interaction events) and length scales (associated with spatial
structure) for this game as deviations from this simple outcome.

Here we discuss how reducing fitness updates (associated
with an interaction or sensing rate) progressively stabilizes
producers up to finite costs in the small mobility limit. In
the large mobility limit, the mere existence of multiple scales
(temporal interaction frequency and spatial structure) leads to
a sharp jump in the stability of producers, as compared to a
situation where reproduction and interaction occur in one step.
Thus, producers are paradoxically stabilized by increasing
mobility in this system, even though in diffusive well-mixed
systems producers should die out [27–29].

II. MODEL

We consider a metapopulation of spatially separate sub-
populations on patches arranged on a square lattice [Fig. 1].
Patches initially contain N0 players each and are coupled by
hopping with rate μ [Fig. 1(c)], which then changes the number
of players on a patch. Interactions happen only locally on
a patch ν of this metapopulation [2,30–33], as opposed to
between players on different patches [34–38].

The interaction rate ω determines how often a player
interacts with its environment locally on its patch and then
updates its fitness f to reflect the environment accordingly
[see Fig. 1(a)]. As players retain their fitness from the time
when they last sensed their environment, the fitness of players
on a patch can vary (color shades in Fig. 1). In microbes, the
fitness generally increases with the amount public good on a
patch, which in turn increases with the number of producers
P on a patch ν of Nν players. Microbial experiments have
shown that the relationship between the fitness and the numbers
of producers on a patch can be complex, and often nonlinear
[17,39]. Since we are interested in a conceptual model that may
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FIG. 1. A public goods game between the good’s producers (blue
circles) and nonproducers and defectors (red pentagons) with sepa-
rate interaction (fitness update) and reproduction steps, which both
take place locally on a patch ν. The fitness is updated when bacteria
sense their local environment with rate ω (a). Reproduction occurs via
a Moran process proportional to a player’s fitnessf (b). The separation
of these steps means that players with different fitness values are
present (color shades). We study patches on a two-dimensional lattice,
where a hopping rate μ couples different patches (c).

apply to both ecological as well as engineered populations,
we opted for a simple and general form for the fitness. Thus,
we assume that the fitness obtained during such an interaction
event scales linearly with the number of producers P on a patch
of Nν players (see, e.g., Refs. [40–45]). We note that in these
models, producers can also profit from the public good that they
produce themselves. The assumption that the fitness depends
linearly on P means that our model is conceptual and amenable
to simple analysis. A different type of monotonously increasing
fitness functions will not change our results for small mobility
qualitatively, and our arguments for large mobility can also be
adapted to such nonlinear fitness functions. The fitness of the
part of the population that does not produce the public good
(“defectors” D) on a patch with NP producers is thus

f D
NP

= f0 + NP

Nν

b, (1)

where we set both the base fitness f0 = 1, as well as the benefit
of the public good b = 1, to one. The fitness of a producer on
a patch with NP producers is lower than that fitness by a cost
c, which corresponds to the cost of producing the public good:

f P
NP

= f D
NP

− c. (2)

We consider c < 1 so that the benefit is higher than the cost of
public good production.

We assume that players on a given patch reproduce propor-
tionally to their fitness according to the frequency-dependent
Moran process [46], by replacing another randomly selected
player on the same patch [Fig. 1(b)] [47–52]. In order to assure
that players cannot reproduce themselves, we defined repro-
duction rates as r = f (1 − 1/Nν), such that in this work the
largest possible reproduction rate for a producer at zero cost for
the mean number of players per site is rP = 2(1 − 1/N0), and
the minimal reproduction rate for a defector is rD=(1−1/N0)
[73].

We focus on ω > rP throughout, such that players have on
average updated their fitness before reproducing.

Initially, equal numbers of defectors and producers are
distributed randomly in the metapopulation of L×L patches.

We use a Gillespie algorithm [53] to simulate the stochastic
dynamics of the system until either producers or defectors
have gone extinct.

III. LOW MOBILITY LIMIT

We will start by elucidating the dynamics of the
metapopulation in the small mobility limit,μ � rP < ω. Since
hopping is rare in this limit, patches on the metapopulation
fixate to either producers or defectors before the first
movement occurs. When the number of individuals on each
patch is small, N0c � 1, the dynamics is dominated by
demographic fluctuations while fitness differences play only
a subordinate role [54]. Indeed, in our system we are mostly
concerned with values of cost c � 1 (as we will see in the
following), and so this criterion applies. Thus, the number of
patches on which producers fixate is approximately equal to
the number of patches where defectors fixate.

On time scales longer than fixation, hopping events occur,
whereby a single player hops from its patch to a neighboring
patch. For small mobility, this new patch will likely fixate
again before another player hops. The process of fixation on
the entire metapopulation can thus occur only via a series of
single player hops and subsequent fixation on single patches.
One can naively assume that if the probability that a producer
invades a patch of defectors is higher than the probability that a
defector will invade a patch of producers, producers will fixate
in the metapopulation. Hence, we will first concentrate on the
probability that a player successfully invades a patch fixated
to the other type.

A. Single patch invasion

Players on fixated patches all have the same fitness (fitness
f P

N0
= 1 + N0/N0 − c = 2 − c on patches with producers, and

the lowest possible fitness of 1 for defectors). Immediately
after a hopping event, the invading player will retain its fitness
from its previous (fixated) patch if the interaction rate ω is
finite. Thus, an invading producer has an advantage on the
stack of defectors initially, due to its higher fitness, while the
opposite is the case for the invading defector. This advantage
of the producer occurs for a variety of models with delayed
fitness updates [55–58] or memory [59]. Here we investigate
its impact by tuning the rate ω. In the following, we show
how one can understand the impact of this rate ω on fixation
using Markov chains, independently of the precise choice of
the fitness function.

In order to emphasize that we are discussing a single patch in
the following, we refer to the number of players on this single
patch by Ns . Since we are concerned with cases where one
player of one type fixates on a patch with N0 players of the other
type, the Ns relevant for understanding the metapopulation is
Ns = N0 + 1. We refer to this successful single patch fixation
probability of one player of a particular type as the invasion
probability.

B. Immediate interaction with the local environment

We start with the invasion probability of a producer (defec-
tor) on a patch of defectors (producers) in the limit of ω → ∞,
before decreasing ω. Then interactions occur so often that the
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fitness values of players always reflect their local environment,
and, in particular, that the fitness of the invading player is
updated immediately.

1. Transition probability matrix

The probability that this invading player fixates can be
calculated by considering the transition probability matrix
for the corresponding Markov chain [60,61]. This transition
probability matrix is constructed by calculating the transition
probabilities from any possible state, corresponding to any
possible configuration of players on this patch, into any other
possible state. For ω → ∞, the fitness of all Ns players is
always updated to reflect the configuration on the patch. Since
all fitness values are then uniquely determined by the numbers
of producers on a patch [see Eq. (1)], there are exactly as
many states as there are configurations of different numbers
of producers on the patch. In general, there are Ns + 1 such
states (for zero up to Ns producers on the patch). For Ns = 3,
we sketch these states in Fig. 2(b), with the different fitness
values encoded in the color scale. The arrows indicate which
states a particular state can transition into through reproduction
of a player. The corresponding transition probabilities are
proportional to the reproduction rate of that player.

The probabilities to be in one of these different configu-
rations make up the Ns + 1- dimensional probability vector.
More precisely, the ith entry in our probability vector corre-
sponds to the configuration with i producers, for i ∈ {0,Ns}.
The fitness of defectors in state i is then f D

i = f0 + i/Ns = 1
and f P

i = f D
i − c. Thus, the transition probability matrix for
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FIG. 2. Cost c∗ up to which producers fixate for small mobilities.
(a) Single patch invasion probability of a producer (solid) or defector
(dashed lines) on a patch of Nν = N0 = 6 defectors or producers,
respectively (i.e., seven players total, Ns = 7). Smaller ω (error bars
show 95% confidence interval) increases the cost of equal invasion
probability c∗, from the ω → ∞ limit. (b) Possible transitions
(arrows) between player configurations in the transition probability
matrix. (c) Rescaled c∗ for a variety of N0 in a metapopulation
(L = 20) (filled symbols) agrees with the corresponding c∗ from
single patch invasions (empty symbols) and scales linearly in 1/ω.
The estimate from Tω,2 for N0 = 2 players correctly shows this scaling
with ω. (d) Fixation probability P for ω = 20 in the metapopulation
becomes sharper but does not change its value for increasing L.

Ns = 3 reads

T3 =

⎛
⎜⎜⎜⎝

1 T −
1 0 0

0 T d
1 T −

2 0
0 T +

1 T d
2 0

0 0 T +
2 1

⎞
⎟⎟⎟⎠,

where T −
i denotes the probability to transition from state i to

state i − 1, and T +
i the probability to transition from state i to

i + 1. In our case, T −
1 = f D

1 /(2f D
1 + f P

1 ) corresponds to the
probability that a defector in a state with one producer replaces
that producer, while T +

1 = f P
1 /(2f D

1 + f P
1 ) denotes the prob-

ability that the producer replaces one defector. Similarly, T −
2 =

f D
2 /(f D

1 + 2f P
1 ) and T +

2 = f P
2 /(f D

1 + 2f P
1 ) correspond to

analogous events for the state with two producers. The diagonal
elements T d

1 = 1 − (T −
1 + T +

1 ) [T d
2 = 1 − (T −

2 + T +
2 )] con-

tain the probability that a defector (producer) replaces another
player of its type. Since this is a stochastic probability matrix,
the entries of a columns add up to one.

Repeated iteration of this transition probability matrix on
the initial state (in our case, that containing only one producer)
converges to a probability distribution with two nonzero
elements corresponding to the absorbing states [60] (in our
case, the first and last elements, corresponding to states with
only defectors or only producers). The transition probability
from a state of one producer into the absorbing state with
all producers (which we refer to as invasion probability I )
is known analytically from a first step analysis [60,62–64] and
reads

IP = 1

1 + ∑Ns−1
i=1 qi

, (3)

where qi = ∏k
j=1

T −
j

T +
j

.

2. Invasion probability to first order linear in c

For small cost, an expansion of this equation in cost is
accurate and more intuitive. To first order in c, the probability
that a single producer successfully invades a patch of defectors
for the ω → ∞ limit reads

IP ≈ 1

Ns

− c

N2
s

Ns−1∑
i=1

Ns − i

f D
i

, (4)

where f D
i is the fitness of a defector in a state with i producers.

Intuitively, the sum is over all states that need to be transitioned
through in order to arrive at the absorbing state; each term
contains the number of defectors that can be replaced in that
state and their fitness. The analogous expression for invasion
probability of a defector is

ID ≈ 1

Ns

+ c

N2
s

Ns−1∑
i=1

i

f D
i

. (5)

This expansion depends only on the fitness being linear in c,
not on the linearity of the fitness function with respect to public
good producers (provided that the states with only producers
and defectors are the two absorbing states).

Figure 2(a) shows the invasion probability from this expan-
sion (gray dashed-dotted line) for Ns = 7. The solid decreasing

042307-3



MARIANNE BAUER AND ERWIN FREY PHYSICAL REVIEW E 97, 042307 (2018)

line (dashed increasing line) corresponds to the invasion prob-
ability for a producer (defector). The invasion probabilities are
equal only at zero cost, where they have the value 1/Ns , i.e., the
probability for fixation of one out of Ns players in a Moran pro-
cess. As the invasion probability of producers decreases with
increasing c, this implies that for ω → ∞, producers die out.

C. Delayed interaction with the environment

Using simple arguments from Markov chains, we have
learnt that the probability for successful invasion (or fixation)
of a producer into a patch of defectors tends to be lower than
the invasion probability of a single defector into a patch of pro-
ducers, apart from at zero cost, where the two are equal. Now,
we ask how a delay in interactions (and thereby in adjusting
fitness to reflect the current environment) affects these invasion
probabilities by considering finite interaction rates ω.

1. Transition probability matrix: Increase in state space

For finite ω, additional states corresponding to players
with different fitnesses from previous configurations would
need to be included. These additional states correspond to
configurations where the fitness of some players is not updated
but corresponds to their previous environment. For simplicity,
we explain the structure of the transition probability matrix
for Ns = 2 players with one invading players, i.e., Ns + 1 = 3
players per patch, in the Appendix. We note here that a brute
force first step analysis (or diagonalization) of these transition
probability matrices becomes unintuitive already for such a
small number of players. Numerical solution is possible, and
indeed, we discuss and show such a numerical result later for
comparison. For now, we turn to numerical simulations of the
invasion probabilities on a single patch.

We show these numerical simulations for invasion probabil-
ities for Ns = 7 for both with ω = 20 and ω = 5 in Fig. 2(a),
where error bars denote 95% confidence intervals. We note
that these lines are approximately parallel to the first order
expansion for ω → ∞, meaning that finite ω leads to a parallel
shift in invasion probabilities.

Thus, we find that the effect of reducing the frequency of
interactions is that the invasion probabilities for producers and
defectors are shifted upwards or downwards, respectively. This
shift means that for decreasing ω, the invasion probabilities are
equal at a finite cost c∗.

D. Cost c∗ at small mobility

After having understood the single patch invasion probabili-
ties, we turn to the metapopulation of L×L patches. In Fig. 2(c)
we show this c∗, the highest cost up to which producers can
fixate, for a variety of ω and two different N0.

We take c∗ for the metapopulation to be the cost where
exactly half the simulation runs fixate to producers. The tran-
sition from producers fixating in all simulations to defectors
fixating in all simulations is increasingly sharp for larger L

[Fig. 2(d) for ω = 20, μ = 0.05 and 200 simulations]. Thus,
this c∗ is the highest cost up which producers can fixate in large
systems. As its value does not change with L, it is sufficient to
use L = 20 for the values of c∗ presented in this work. Error
bars in Fig. 2(c) mark the costs where 30% or 70% of all runs

fixate to producers. These error bars are essentially negligible
for our system sizes, even for a relatively small number of 30
simulation runs, except for large ω � 500 [see Fig. 2(d)].

Producer fixation for N0 = 6 players per patch on the
metapopulation is intended for comparison with the single
patch invasion of Ns = 7 just discussed (six players of one
type per patch, being invaded by one player of the other type
after a hopping event).

We first concentrate on comparing producer fixation in the
metapopulation with what we would expect from the single
patch invasion probability: The empty symbols in Fig. 2(c)
show the cost at which single patch producer invasion is
as likely as single patch defector invasion (for Ns = 3 and
Ns = 7), while the filled symbols show the highest cost at
which producers fixate in our metapopulation (for N0 = 2 and
N0 = 6). We note that we need to compare metapopulations
with N0 players per patch with single patch invasions of
Ns = N0 + 1 players. For N0 = 2, c∗ from the single patch
invasion probabilities slightly overestimates c∗ obtained from
the metapopulation. The single patch invasion argument over-
estimates in this case because the noise in the number of players
on a patch in the metapopulation, caused by hopping, has a
comparatively large effect for this small N0 = 2. For Ns = 6,
single patch and metapopulation results for c∗ agree very well.

Indeed, the results from the metapopulation also agree with
the numerical value of c∗ obtained from the single patch
transition probability matrix Tω,2 for N0 = 2 (dashed line),
by repeated numerical iteration on the initial state as discussed
in the Appendix. Thus, the fact that single patch dynamics
determine the result for c∗ indicates that the question of which
species fixates in the metapopulation is decided by invasion
of single patches, rather than by spatial effects. Hence spatial
effects and pattern formation—often the cause for stabilizing
producers in spatial systems—play no role in determining the
maximal cost for stabilizing the producers in a system where
interactions take place locally.

Before moving on to higher mobilities, we point out that
the values for c∗ (rescaled by N0) in Fig. 2(c) scale linearly
in 1/ω, independently of the number of player per patch
N0 studied here, up to numerical accuracy. Thus, at small
mobilities c∗ scales inversely in interaction rate and number
of players per patch.

IV. INCREASING AND HIGH MOBILITY

We thus established that for low mobilities, the producers
are stabilized by less frequent interactions up to a finite cost
c∗, which scales as 1/(N0ω). Figure 3(a) shows this c∗ for
a variety of hopping rates μ and interaction rates ω. For all
ω, c∗ saturates for low mobilities: as long as invasion is the
dominating process, the value of the hopping rate is irrelevant.
Paradoxically, c∗ increases, and thus production stabilizes,
upon increasing mobilities, where one would normally expect
producers to die out [27–29]. Stabilizations of producers have
been found in more complex models, for example, with smarter
strategies, or evolving mobility [65–70]. Here our simple
model differs from a normal prisoner’s dilemma only by the
reduced interaction frequency and coupled patch geometry. It
is thus interesting that we find stabilization of producers in the
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FIG. 3. (a) Cost c∗ (rescaled by N0 = 6) for different interaction
rates ω (lines serve as guide to the eye) and L = 20. For large
mobilities, producers are stabilized and c∗ = 1/N0, as the fittest
player in the metapopulation is a producer when production cost does
not outweigh the contribution from a single player. (b) Snapshots
of the number of different fitness values per producers on a patch
(L = 50,ω = 20), for parameters shown by triangles in a): at small
μ, patches are occupied by one type of player only. For higher μ,
producers spread across patches, and the number of different fitness
types per patch increases. (c) c∗ in a) reaches its midpoint at μ ≈ ω

(crosses).

high, as compared to the low, mobility limit. Next, we explain
the stabilization in the high mobility limit.

For high mobilities, rP < ω � μ, players can be consid-
ered as essentially well mixed. This is the case as long as
the number of patches L×L is large enough, so that mixing
eliminates correlations, i.e., the total number of players in
the metapopulation should be N � N0. Indeed, almost all
players on a patch for μ = 300 [last snapshot in Fig. 3(b)]
have different fitness values, and producers and defectors both
occur on each patch.

Since μ � ω in this limit, the precise value of the rate ω is
irrelevant (as long as we maintain ω > rP , so that players have
adjusted their fitness to their environment before reproduction),
and all possible different fitness values of players will occur.
There are as many possible different fitness values as there are
different player configurations on a patch. In the high mobility
limit, the number of players on a patch can be different from
N0 due to hopping, and more than N0 + 1 fitness values per
species are possible in principle. However, since the number of
players in the metapopulation is constant and the mean number
of players per site is N0, we can focus on the dominant N0 + 1
fitness values. Thus, we can consider reproduction as a Moran
process of all N players in the well-mixed metapopulation.
Since N is large, we are in a deterministic limit, where the
fittest species fixates in the entire metapopulation. In order to
determine if producers or defectors survive, we thus need to
compare the fitness of the individual players, and we will start
with the fittest producer and defector.

The fittest producer is surrounded only by producers, and
so its fitness is 1 + N0/N0 − c = 2 − c. The fittest defector
is also surrounded only by producers, but since it is not a
producer itself, its environment contains N0 − 1 producers;
thus, its fitness is 1 + (N0 − 1)/N0 = 2 − 1/N0. Similarly, all
other defector types have fitness values lower by 1/N0 than
the corresponding producer fitness type at zero cost. Thus, if

c � 1/N0, all producer fitness values are equal or higher to
the corresponding defector fitness values. Producers will thus
fixate for c � 1/N0, which corresponds exactly to the high mo-
bility limit in Fig. 3. This value is independent of ω, and thus the
mere existence of the patch structure and separate time scale for
interaction and reproduction stabilizes producers in this limit.

The term 1/N0 measures the impact of one single player
on the fitness of players (self-interaction). The fact that this
stabilization occurs in the high mobility limit is intriguing: it
is reminiscent of Hamilton’s rule of relatedness [29], where
production can be stable for small dispersal speeds in viscous
populations [40–42] or on graphs and social networks [71],
or of group selection that can occur in structured populations.
Here the stabilization arises in the high mobility limit for a
different reason: fit producers exist for all mobilities, as time
scale separation and patch structure mean that players sense the
fitness only withing small subgroups. The high mobility allows
these fit producers to take over the population, similarly to how
fit species dominate adapting populations [72].

In Fig. 3(a), c∗ increases smoothly from the low mobility
limit at c∗ ≈ rP /(N0ω) to the high mobility limit at c∗ = 1/N0

for all interaction rates. We note that for high ω, c∗ increases
more slowly than for low interaction rates (logarithmic x axis).
Indeed, Fig. 3(c) shows that μ at which c∗ reaches its midpoint
is proportional to ω. Thus, the interplay between these two rates
(μ for the spatial separation and ω for the interaction) selects
when stochastic invasion probabilities and when the fitness of
the fittest player determine the survival of producers.

V. SUMMARY AND OUTLOOK

In the framework of a prisoner’s dilemma, the coupling of
spatial length scales and temporal separation of interaction
and reproduction can lead to stabilization of players whose
fitness is associated with a cost. We have shown here that
this stabilization manifests itself differently for low and high
mobilities. For low mobilities, the stabilization is proportional
to increasing separation of interaction and reproduction; for
high mobilities, the stabilization up to c∗ = 1/N0 occurs as
long as these time scales are separate and as long as there is
spatial structure. We also found that the formation of spatial
structure or patterns plays no role in stabilization of producers
in a setup where interactions and reproduction take place in a
well-mixed local environment.

Producers are also stabilized to higher costs for high than
for small mobilities in other public goods games, such as the
snowdrift game, if self-interaction is included. As the interplay
of length and time scales can give rise to such counterintuitive
results in simple models, it deserves further attention in order
to guide what models may be worth exploring with synthetic
biological systems.
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APPENDIX

In this appendix, we show and explain the transition
probability matrix with N0 = 2 players with one invading
players, i.e., N0 + 1 = 3 players per patch. For every state with
NP ∈ {0,N0} producers there are now additional states with
either one, two, or all three players with fitnesses from their
previous patch, corresponding to five additional states. Since
it does not matter whether the absorbing states are updated
or not, we can ignore the additional absorbing states (with all
producers or defectors, but varying number of players with
updated fitness). Thus, we obtain a total of 14 states.

These states are structured as follows: states 1–4 are shown
in Fig. 2(b). States 5–14 are structured such that all states
with odd numbers contain two producers and one defector,
and all states with even numbers contain two defectors and one
producers. In states 5 and 6, a single producer retains fitness f P

from its previous patch, and in states 7 and 8, a single defector
retains its fitness f D = 1 from its previous patch. States 9–12
contain two players that retain their fitness: in states 9 and 10,
only one producer is fully updated, and in states 11–12, only a
single defector is fully updated. In states 13 and 14, all players
retain their fitness from their previous patch: in state 13, the two
producers have fitness f P = 2 − c and the defector has fitness
f D = 1, while in state 14, the producer has fitness f P and the
two defectors have fitness f D . Our reproduction rate r

D/P

i is
proportional to the corresponding fitness. The transition matrix
thus reads

Tω,2 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 rD
1 /F1 0 0 0 rD

1 /F6
(
rD+rD

1

)
/F7 0 0 rD/F10 0

(
rD+rP

1

)
/F12 0 2rD/F14

0 rD
1 /F1 rD

2 /F2 0 rD
2 /F5 2ω/F6

(
rD

1 +2ω
)
/F7 0 0 0 0 0 0 0

0 rP
1 /F1 rP

2 /F2 0
(
rP

2 +2ω
)
/F5 0 rP

1 /F7 2ω/F8 0 0 0 0 0 0

0 0 rP
2 /F2 1

(
rP

2 +rP
)
/F5 0 0 2rP

2 /F8
(
rP +rP

2

)
/F9 0 2rP /F11 0 2rP /F13 0

0 0 0 0 4ω/F5 0 0 0 2ω/F9 0 4ω/F11 0 0 0

0 0 0 0 rD
2 /F5

(
2rD

1 +4ω
)
/F6 0 0 0 0 2rD

2 /F11
(
rD

1 +2ω
)
/F12 0 0

0 0 0 0 0 0 4ω/F7 0 0 (2rD+2ω)/F10 0 2ω/F12 0 0

0 0 0 0 0 0 rP
1 /F7

(
2rP

2 +4ω
)
/F8

(
rP

2 +2ω
)
/F9 2rP

1 /F10 0 0 0 0

0 0 0 0 0 0 0 0 2ω/F9 0 0 0 4ω/F13 0

0 0 0 0 0 0 rD/r7 2rD/F8 rD/F9 (rD+2ω)/F10 0 0 0 2ω/F14

0 0 0 0 rP /F5 2rP /F6 0 0 0 0 (2rC+2ω)/F11 rP /F12 2ω/F13 0

0 0 0 0 0 0 9 0 0 0 0 2ω/F12 0 4ω/F14

0 0 0 0 0 0 9 0 rP /F9 0 0 rP /F12 2rP /F13 2rP /F14

0 0 0 0 0 0 9 0 rD/F9 0 0 rD/F12 2rD/F13 2rD/F14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where F1 = 2rD
1 + rP

1 ,

F2 = rD
2 + 2rP

1 ,

F5 = 6ω + 2
(
rP + rD

2 + rP
2

)
,

F6 = 6ω + 2
(
rP + 2rD

1

)
,

F7 = 6ω + 2
(
rD + rD

1 + rP
1

)
,

F8 = 6ω + 2
(
rD + 2rP

2

)
,

F9 = 6ω + 2
(
rD + rP + rP

2

)
,

F10 = 6ω + 2
(
2rD + rP

1

)
,

F11 = 6ω + 2
(
2rP + rD

2

)
,

F12 = 6ω + 2
(
rD + rP + 2rD

1

)
,

F13 = 6ω + 2(2rP + rD),

and F14 = 6ω + 2(rP + 2rD) [74].

The successful invasion probability can be obtained by
numerical iteration of this matrix on the probability vector
corresponding to our initial state (corresponding to state 13
or 14 for an invading defector or producer, respectively).
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