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Physics of automated driving in framework of three-phase traffic theory
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We have revealed physical features of automated driving in the framework of the three-phase traffic theory for
which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach
to automated driving for which an automated driving vehicle tries to reach a fixed (desired or “optimal”) time
headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the
three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated
driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii)
Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at
the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary,
even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the
bottleneck in mixed traffic flow.
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I. INTRODUCTION

It is generally assumed that future vehicular traffic is a
mixed traffic flow consisting of human driving and auto-
mated driving vehicles [1–16]. There exists a large series of
papers by the well-known and massive “Automated Highway
System” project involving the US government and a large
number of transportation researchers in (especially) California
[17,18], EU projects [19], and projects made in Germany [20].
A consortium of researchers all over the world performed
extensive and pioneering research into connected vehicles
and platooning interactions between such platoons and other
vehicles (see references to this extensive research, for example,
in reviews and books by Ioannou [1], Ioannou and Sun [2],
Ioannou and Kosmatopoulos [3], Shladover [21], Rajamani
[7], Meyer and Beiker [8], and Bengler et al. [9]).

Automated driving vehicles (called also autonomous driv-
ing, automatic driving, or self-driving vehicles) should consid-
erably enhance highway capacity. Highway capacity is limited
by traffic breakdown at road bottlenecks. Traffic breakdown is
a transition from free flow at a bottleneck to congested traffic at
the bottleneck [22–35]. Elefteriadou et al. have found [36] that
empirical traffic breakdown at a highway bottleneck exhibits
a probabilistic nature: At the same flow rate in free flow at
a bottleneck traffic breakdown can occur but it should not
necessarily occur. Empirical probability of traffic breakdown
at highway bottlenecks found first by Persaud et al. [37] is
a growing function of the flow rate in free flow. Because
empirical traffic breakdown in free flow at a bottleneck is a
probabilistic phenomenon, the probability of traffic breakdown
in free flow at the bottleneck is one of the main characteristics
of the traffic stream. Therefore, the main objective of this
paper is to find the effect of different features of the dynamics
of automated driving vehicles in a mixed traffic flow on the
probability of traffic breakdown in free flow at a highway
bottleneck.

As known (see, e.g., reviews and books [22–25,33–35]
and references therein), the most important features of

traffic breakdown in free flow at an on-ramp bottleneck on
a single-lane road are qualitatively the same as those in highly
heterogeneous traffic flow consisting of very different types
of vehicles on a multilane road with different types of road
bottlenecks. In particular, this conclusion is related to the
empirical flow-rate dependence of the breakdown probability
[25,35]. Therefore, to find the effect of different features of the
dynamics of automated driving vehicles in mixed traffic flow
on the probability of traffic breakdown at a road bottleneck,
it is sufficient to study a simple case of mixed vehicular
traffic where traffic consists only of two types of vehicles
(human driving and automated driving vehicles) moving on
a single-lane road with an on-ramp bottleneck.

On the single-lane road, no vehicles can pass. For this
reason, the physics of automated driving can be understood
through an analysis of an adaptive cruise control (ACC) in
a vehicle: An ACC vehicle follows the preceding vehicle
(that can be either a human driving vehicle or an ACC
vehicle) automatically based on some ACC dynamics rules
of motion (see, e.g., [1–7,11–13,15,16]). In a classical ACC
model, acceleration (deceleration) a(ACC) of the ACC vehicle
is determined by the space gap to the preceding vehicle g

and the relative speed �v = v� − v measured by the ACC
vehicle as well as by a desired time headway τ

(ACC)
d of the ACC

vehicle to the preceding vehicle (see, e.g., [4–7,11–13,15,16]
and references therein):

a(ACC) = K1
(
g − vτ

(ACC)
d

) + K2(v� − v), (1)

where v is the speed of the ACC vehicle, v� is the speed of
the preceding vehicle; here and below v, v�, and g are time
functions; K1 and K2 are coefficients of ACC adaptation. It
is well known that there can be string instability of a long
enough platoon of ACC vehicles (1) [4–7,11–13,15,16]. As
found by Liang and Peng [5], the string instability occurs under
condition K2 < [2 − K1(τ (ACC)

d )2]/2τ
(ACC)
d . Coefficients K2

and K1 of classical ACC (1) can be chosen to satisfy conditions
for string stability.
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It should be mentioned that the effect of classical ACC
vehicles (1) on mixed traffic flow consisting of ACC vehicles
and human driving vehicles was intensively considered already
in 1990s and 2000s in the works by Dharba and Rajagopal
[38], Marsden et al. [39], VanderWerf et al. [40,41], Treiber
and Helbing [42], Li et al. [43], Kukuchi et al. [44], Bose and
Ioannou [45], Suzuki [46], Davis [15], Zhou and Peng [47], van
Arem et al. [48], Martinez and Canudas-do-Wit [49], Kesting
et al. [50,51], and Lin et al. [52]; this is a subject of intensive
studies (see, e.g., [16,53–59] and references therein).

From studies of empirical traffic data measured over years
on different highways it has been found that traffic breakdown
at a highway bottleneck is a phase transition from free flow (F)
to synchronized flow (S); this F → S transition exhibits the
nucleation nature [60,61]. This means that traffic breakdown
occurs in a metastable free flow with respect to an F → S
transition at the bottleneck. This metastability of free flow is
as follows [60,61]: There can be many speed (density, flow rate)
disturbances in free flow at the bottleneck. Amplitudes of the
disturbances can be very different. When a disturbance occurs
randomly whose amplitude is larger than a critical one, then
traffic breakdown occurs. Such a disturbance resulting in the
breakdown is called the nucleus for the breakdown. Otherwise,
if the disturbance amplitude is smaller than the critical one, the
disturbance decays; as a result, no traffic breakdown occurs.
As proven in details in Refs. [33–35], classical traffic flow
theories and models of human driving vehicles cannot explain
the empirical nucleation nature of traffic breakdown (F → S
transition) at the bottleneck. This critical conclusion is also
related to models of human driving vehicles used for studies
of mixed traffic flow in [38–59].

To explain the empirical nucleation nature of traffic break-
down (F → S transition) at the bottleneck, the author has intro-
duced the three-phase traffic theory [60,62]. The three-phase
theory is the framework for understanding of states of empirical
traffic flow in three phases: (i) free flow, (ii) synchronized
flow, and (iii) wide-moving jam; the synchronized flow and
wide-moving jam phases belong to congested traffic (see, e.g.,
[33–35,64,65]). One of the first traffic flow models in the
framework of the three-phase theory is the Kerner-Klenov
microscopic stochastic model [66–68]. This traffic flow model
can show the nucleation nature of traffic breakdown (F → S
transition) at the bottleneck as observed in empirical data.

The effect of classical ACC vehicles (1) on traffic flow in
which human driving vehicles have been simulated with the
Kerner-Klenov model in the framework of the three-phase
theory has been studied in [65]. It has been found that even
if any platoon of classical ACC vehicles (1) is stable, it can
occur that already a small share of classical ACC vehicles in
mixed traffic flow can deteriorate traffic while provoking traffic
breakdown at network bottlenecks [65].

In this article, we introduce a model of ACC in the
framework of the three-phase theory (called TPACC; see
explanations below). Based on the model of TPACC, we make a
comparison of the effect of classical ACC vehicles and TPACC
vehicles on the probability of traffic breakdown at a road
bottleneck in mixed traffic flow. Because the Kerner-Klenov
microscopic stochastic model [66–68] can show the nucleation
nature of traffic breakdown (F → S transition) at the bottleneck
as observed in empirical data, for all simulations of human
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FIG. 1. Qualitative explanation of operating points of TPACC.
Qualitative presentation of a part of 2D region for operating points
of TPACC in the space gap–speed plane: At a given speed of TPACC
vehicle there are the infinity of operating points of TPACC [69]. G is
a synchronization space gap, gsafe is a safe space gap.

driving vehicles in mixed traffic flow we use the Kerner-Klenov
traffic flow model.

To understand the idea of ACC in the framework of the
three-phase theory, first it should be noted that in the works
devoted to analysis of the effect of automated driving on
traffic flow [38–59], traffic flow models for human driving
vehicles have been used in which at a given time-independent
vehicle speed there is a single model solution for a space
gap to the preceding vehicle. Therefore, for hypothetical
steady state model solutions, there is a one-dimensional (1D)
relationship between a chosen speed and the related desired (or
optimal) space gap to the preceding vehicle. This well-known
assumption for traffic flow models of human driving vehicles
used in [38–59] is qualitatively the same as the existence of
a desired time headway τ

(ACC)
d of the ACC vehicle to the

preceding vehicle: For the classical ACC rule (1) that satisfies
conditions for string stability, at a given ACC speed v there is a
single operating point for a desired space gapg(ACC) = vτ

(ACC)
d .

However, a study of real field traffic data shows [60] that the
existence of a desired time headway τ

(ACC)
d of the ACC vehicle

to the preceding vehicle is inconsistent with a basic behavior
of real drivers in car following: Empirical data show that real
drivers do not try to reach a fixed time headway to the preceding
vehicle in car following. To explain this empirical fact, in the
three-phase theory it is assumed that when a driver approaches
a slower moving preceding vehicle and the driver cannot pass
it, the driver decelerates within a synchronization space gap
G. This speed adaptation to the speed of the preceding vehicle
occurs without caring what the precise space gap g to the
preceding vehicle is as long as it is not smaller than a safe
space gap gsafe [60]. The speed adaptation occurring within
the synchronization space gap G leads to a 2D region of traffic
flow states (dashed region in Fig. 1 that can also be considered
as the “indifference zone” in car following) determined by
conditions

gsafe � g � G. (2)

In other words, accordingly to (2), drivers do not try to reach a
particular (desired or optimal) time headway to the preceding
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vehicle, but adapt the speed while keeping time headway
τ (net) = g/v in a range τsafe � τ (net) � τG, where τG = G/v,
τG is a synchronization time headway, τsafe = gsafe/v is a safe
time headway, and it is assumed that the speed v > 0.

We define “automated driving in the framework of three-
phase traffic theory” as follows:

Automated driving in the framework of the three-phase
traffic theory is an automated driving for which there is no
fixed time headway to the preceding vehicle.

A relation of this definition to real automated driving
vehicles will be discussed in Sec. VII A.

In inventions [69], we have assumed that to satisfy these
empirical features of real traffic, acceleration (deceleration) of
automated driving in the framework of the three-phase theory
(for short, Three-traffic-Phase ACC: TPACC) [70] should be
given by the formula [69]

a(TPACC) = K�v(v� − v) at gsafe � g � G, (3)

where K�v is a dynamic coefficient (K�v > 0).
The hypothesis about the 2D region of traffic flow (indiffer-

ence zones in car following; dashed region in Fig. 1) introduced
in the three-phase theory [60], car-following models for human
driving vehicles with indifference zones in car followingquery,
[66–68,71] first developed in [66], and the concept of TPACC
strategy (3) [69] are known. However, there is no TPACC
model that is suitable for studies of physical characteristics of
TPACC in mixed traffic flow. Therefore, the physics of TPACC
has not been known up to now. In this paper, we disclose the
physical characteristics of TPACC vehicles and the physics of
the effect of TPACC vehicles on traffic flow.

The main contributions of this paper are as follows:
(i) We introduce a simple TPACC model that allows us to

simulate physical features of mixed traffic flow consisting of
human driving vehicles and TPACC vehicles.

(ii) We will show that the mean amplitude of speed distur-
bances at a road bottleneck occurring through TPACC vehicles
can be considerably smaller than introduced by classical ACC
vehicles at the same model parameters.

(iii) We will show that in mixed traffic flow with TPACC
vehicles the probability of traffic breakdown at a road bottle-
neck can be considerably smaller than in mixed traffic flow
with classical ACC vehicles.

(iv) We disclose the physics of the improving of the traffic
stream through TPACC vehicles mentioned in item (iii).

The article is organized as follows: In Sec. II, we introduce
a simple TPACC model that allows us to study the physics
of automated driving in the framework of the three-phase
theory. Simulations of string stability of ACC vehicles and
TPACC vehicles at an on-ramp bottleneck are made in Sec. III.
Speed disturbances that occur by passing of ACC vehicles
and TPACC vehicles through the on-ramp bottleneck are
the subject of Sec. IV. An analysis of the probability of
traffic breakdown at the bottleneck in mixed traffic flow is
presented in Sec. V. Traffic stream flow characteristics of
mixed traffic flow are discussed in Sec. VI. In Sec. VII, we
consider the applicability of the TPACC model for a reliable
analysis of some features of future automated driving in mixed
traffic flow (Sec. VII A) and formulate the paper’s conclusions
(Sec. VII B). In appendices, we present the Kerner-Klenov
stochastic microscopic three-phase model for human driving

vehicles [66–68] used for simulations of mixed traffic flow
(Appendix A), explain simulations of the classical ACC model
(1) (Appendix B), and consider the model of vehicle merging
at an on-ramp bottleneck (Appendix C).

II. MODEL OF ACC IN FRAMEWORK
OF THREE-PHASE THEORY (TPACC)

A. Main equations

We introduce the following TPACC model:

a(TPACC) =
{
K�v(v� − v) at g � G,

K1(g − vτp) + K2(v� − v) at g > G,
(4)

where τp is a model parameter and it is assumed that g � gsafe.
In comparison with the TPACC strategy (3), the TPACC model
(4) allows us to simulate physical features of TPACC vehicles
in mixed traffic flow.

B. Discrete version of TPACC model

Simulations of human driving vehicles in mixed traffic flow
are made with the car-following model in the framework of the
three-phase theory [66,67] with discrete time t = nτ , where
n = 0,1,2, . . .; τ = 1 s is time step. The models of human
driving vehicles [66,67] are continuous in space. We use a
version of this model [68] that is discrete in space: A very small
value of the discretization space interval δx = 0.01 m is used
in the model. As explained in [68], this allows us to make more
accurate simulations of traffic breakdown at road bottlenecks
[71]. Because the model for human driving vehicles [66–68]
is discrete in time, we simulate the TPACC model (4) with
discrete time t = nτ . Because models of mixed traffic flow
consisting of human driving vehicles and the classical ACC
have been considered in [65], these models have been given in
the appendices.

Respectively, TPACC model (4) should be rewritten as
follows:

a(TPACC)
n =

{
K�v(v�,n − vn) at gn � Gn,

K1(gn − vnτp) + K2(v�,n − vn) at gn > Gn,

(5)

where Gn = vnτG.

1. Safety conditions

When gn < gsafe,n, the TPACC vehicle should move in
accordance with some safety conditions to avoid collisions
between vehicles (Fig. 1). A collision-free TPACC vehicle
motion is described as made in [65] for the classical model
of ACC:

v(TPACC)
c,n = vn + τ max

(−bmax, min
(�a(TPACC)

n �,amax
))

, (6)

vn+1 = max
(
0, min

(
vfree,v

(TPACC)
c,n ,vs,n

))
, (7)

where the TPACC acceleration and deceleration are limited by
amax and bmax, respectively; the speed vn+1 (7) at time step
n + 1 is limited by the maximum speed vfree and by the safe
speed vs,n that have been chosen, respectively, the same as
those in the model of human driving vehicles; �z� denotes the
integer part of z [128] (see Appendix A).
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FIG. 2. Operating points of TPACC model (5)–(7) presented
in the space gap–speed (a), flow-density (b), speed-flow (c), and
speed-density (d) planes. Model parameters τG = 1.4 s, τp = 1.3 s,
τsafe = 1 s, vfree = 30 m/s (108 km/h), vehicle length (including the
mean space gap between vehicles stopped within a wide moving jam)
d = 7.5 m.

2. “Indifference zone” in car following

In accordance with Eq. (7), condition v(TPACC)
c,n � vs,n is

equivalent to condition gn � gsafe,n. Under this condition, from
the TPACC model (5)–(7) it follows that when time headway
τ (net)
n = gn/vn of the TPACC vehicle to the preceding vehicle

is within the range

τsafe,n � τ (net)
n � τG, (8)

the acceleration (deceleration) of the TPACC vehicle does not
depend on time headway. In (8), τsafe,n = gsafe,n/vn is a safe
time headway and it is assumed that vn > 0.

In accordance with (8), for the TPACC model (5)–(7) there
is no fixed desired time headway to the preceding vehicle
(Fig. 1). This means that in the TPACC model (5)–(7) there
is “indifference zone” in the choice of time headway in car
following. This is in contrast with the classical ACC model (1)
for which there is a fixed desired time headway in car following.

3. Operating points

From the formula for the safe speed vs,n in (7) that is given
in Appendix A 7, we find that the safe time headway τsafe,n

in (8) for the operating points of the TPACC model (5)–(7)
is a constant value that is equal to τsafe = 1 s; therefore, the
safe space gap gsafe = vτsafe. In operating points of the TPACC
model (5)–(7), a(TPACC) = 0; respectively, v = v�, gsafe(v) �
g � G(v), and v = vfree at g > G(v), where gsafe(v) = vτsafe,
G(v) = vτG. The operating points of the TPACC model (5)–(7)
cover a 2D region in the space gap–speed plane [dashed 2D
region in Fig. 2(a)]. The inequalities v � vfree, g � G(v), and
g � gsafe(v) define a 2D region in the space gap–speed plane
[Fig. 2(a)] in which the operating points exist for the discrete
version of the TPACC model (5)–(7) [125].

From Fig. 2, we can see that under conditions gsafe(v) �
g � G(v) for each given speed v > 0 of TPACC there is no
fixed time headway to the preceding vehicle in operating points
of the TPACC model (dashed 2D regions in Fig. 2), as explained
in Sec. I (Fig. 1).
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FIG. 3. Simulations of string instability of the classical ACC
model (1) (see Appendix B) (a) and string stability of TPACC model
(5)–(7) (b) in traffic flow consisting of 100% of automated driving
vehicles on a single-lane road with on-ramp bottleneck located at
xon = 10 km (see Appendix C); speed in space and time. Simulation
parameters of ACC (a) and TPACC (b) are identical ones: the on-ramp
inflow rate qon = 320 vehicles/h and the flow rate upstream of the
bottleneck qin = 2002.6 vehicles/h, τ

(ACC)
d = τp = 1.3 s, τG = 1.4

s, K1 = 0.3 s−2, and K2 = K�v = 0.3 s−1; amax = bmax = 3 m/s2,
vfree = 30 m/s (108 km/h), vehicle length d = 7.5 m. In accordance
with the desired time headway τ

(ACC)
d = 1.3 s of the ACC vehicles,

the sum flow rate qsum = qin + qon = 2322.6 vehicles/h is related to
time headway 1.3 s between vehicles in free flow.

III. SIMULATIONS OF STRING STABILITY OF ACC
AND TPACC VEHICLES AT ON-RAMP BOTTLENECK

Simulations of string instability of ACC vehicles are shown
in Fig. 3(a). Speed disturbances in traffic flow consisting of
100% ACC vehicles occur at an on-ramp bottleneck at which
the on-ramp inflow with the rate qon and upstream flow with
the rate qin merge. String instability of ACC vehicles leads
to the emergence of moving jams upstream of the bottleneck
[Fig. 3(a)].

Contrarily, at the same set of the flow rates qon and
qin as well as the same other model parameters no string
instability of any platoon of the TPACC vehicles is realized:
In Fig. 3(b), all speed disturbances occurring at the bottleneck
decay upstream of the bottleneck. It turns out that as long as
time headway between TPACC vehicles is within the range (8),
speed disturbances decay over time. This is because within this
range the acceleration (deceleration) of TPACC vehicles does
not depend on time headway to the preceding vehicle.

IV. SPEED DISTURBANCES OCCURRING BY PASSING
OF ACC AND TPACC VEHICLES THROUGH

ON-RAMP BOTTLENECK

At a larger value of K2 in (1) as well as at the same desired
time headway τ

(ACC)
d = 1.3 s and the same set of the flow rates

qon and qin as those in Fig. 3, platoons of ACC vehicles become
stable [Fig. 4(a)].

However, it turns out that considerable local speed dis-
turbances appear at the bottleneck. This case is shown in
Figs. 4(b), 4(c) in which ACC vehicle 2 merges from the
on-ramp onto the main road following ACC vehicle 1 moving
on the main road. To satisfy the desired time headway τ

(ACC)
d ,

ACC vehicle 2 should decelerate to a lower speed than the
minimum speed of ACC vehicle 1. This deceleration of ACC
vehicle 2 forces the following ACC vehicle 3 to decelerate
while approaching ACC vehicle 2. Simulations show that the
occurrence of large local speed disturbances at the bottleneck
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FIG. 4. Speed disturbances at on-ramp bottleneck in stable free
flow with 100% automated driving vehicles for classical ACC model
(1) (see Appendix B) [(a)–(c)] and for TPACC model (5)–(7) [(d)–
(g)]: (a), (d) Speed in space and time. (b), (e) Fragments of vehicle
trajectories; (b) is related to (a) and (e) is related to (d). (c), (f), (g)
Microscopic speeds along vehicle trajectories shown by, respectively,
the same numbers as in (b), (e); (c) is related to (b); (f), (g) are related
to (e); (f) and (g) show the same speed in different speed scales.
Simulation parameters of ACC [(a)–(c)] and TPACC [(d)–(g)] are
identical ones. K2 = K�v = 0.6 s−1. In (b, e), the on-ramp merging
region that is within road locations xon � x � x(e)

on (see Appendix C)
is labeled by “on-ramp”. Other model parameters are the same as
those in Fig. 3.

is a basic problem of ACC vehicles based on the classical ACC
strategy (1) in which ACC vehicles try to reach a desired time
headway τ

(ACC)
d .

These large local speed disturbances at the bottleneck
caused by ACC vehicles [Figs. 4(b), 4(c)] do not occur in traffic
flow consisting of TPACC vehicles [Figs. 4(d)–4(g)]. This is
because within the range of time headway (8) the acceleration
(deceleration) of a TPACC vehicle does not depend on time
headway. This explains small amplitudes of local speed dis-
turbances caused by TPACC vehicles 2 and 3 at the bottleneck
[Figs. 4(e)–4(g)]. The local speed disturbances caused by
TPACC vehicles are so small [Fig. 4(f)] that on the same speed

scale as that used for the classical ACC [Fig. 4(c)] they almost
cannot be resolved. Only at considerably larger speed scales
do the local speed disturbances become visible [Fig. 4(g)].

V. PROBABILITY OF TRAFFIC BREAKDOWN
AT BOTTLENECK IN MIXED TRAFFIC FLOW

As mentioned in Sec. I, traffic breakdown in traffic flow
of human driving vehicles is an F → S transition. Traffic
breakdown occurs in a metastable free flow with respect to
the F → S transition. Local speed disturbances caused by
vehicle interactions in a neighborhood of the bottleneck can
randomly initiate traffic breakdown in the metastable free flow.
Such traffic breakdown has been called spontaneous traffic
breakdown (spontaneous F → S transition). The larger the
amplitude of local speed disturbances at the bottleneck, the
more probable the nucleus occurrence for the spontaneous
breakdown; i.e., the larger the probability of traffic breakdown
P (B) at the bottleneck [33–35,60,65,126,127].

In the near future, we could expect mixed traffic flow in
which the share of automated driving vehicles is small (Figs. 5
and 6). Single TPACC vehicles moving in such mixed traffic
flow cause very small speed disturbances at the bottleneck
[Figs. 6(a)–6(c)]. Indeed, we have found that the probability of
traffic breakdown remains in this mixed flow the same as that in
traffic flow consisting of human drivers only (curve 1 in Fig. 5).
Contrarily, the probability of traffic breakdown can increase
even when a very small number of classical ACC vehicles are in
mixed traffic flow (curves 2 and 3 in Fig. 5). This deterioration
of traffic through classical automated driving is explained by
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FIG. 5. Effect of small share of automated driving vehicles
in mixed traffic flow on the flow-rate function of the probability
P (B)(qsum) of traffic breakdown at on-ramp bottleneck on single-lane
road, where qsum = qin + qon. P (B)(qsum) is calculated through the
change in the on-ramp inflow rate qon at a given flow rate qin = 2000
vehicles/h. Curve 1 is related to traffic flow without automated driving
vehicles as well as to mixed traffic flow with 2% of TPACC vehicles.
Curves 2 and 3 are related to mixed traffic flow with 2% of ACC
vehicles, respectively, with τ

(ACC)
d = 1.3 s (curve 2) and 1.6 s (curve 3).

Other model parameters for ACC vehicles and TPACC vehicles are,
respectively, the same as those in Fig. 4. For calculation of P (B)(qsum),
at each given value qsum different simulation realizations (runs) Nr =
40 during the same time interval for the observing of traffic flow
Tob = 30 min have been made. The different realizations have been
performed at the same set of model parameters, however, at different
values of the initial values of random function rand( ) in the traffic
flow model (see Appendices A 4 and A 5). Then, P (B)(qsum) = nr/Nr ,
where nr is the number of realizations in which traffic breakdown has
occurred during the time interval Tob (a more detailed explanation of
calculation of the function P (B)(qsum) has been given in Ref. [35]).
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FIG. 6. Explanation of the effect of a single automated driving
vehicle on the probability of traffic breakdown at on-ramp bottleneck
in mixed traffic flow associated with Fig. 5; speed disturbances
occurring at on-ramp bottleneck through a single TPACC vehicle
[(a)–(c)] and a single ACC vehicle [(d)–(f)]: (a), (d) Speed in space and
time. (b), (e) Fragments of vehicle trajectories. (c), (f) Microscopic
speeds along vehicle trajectories shown by the same numbers in (b),
(e), respectively. In (b), (c), (e), (f), vehicles 1 and 2 are human driving
vehicles whereas vehicle 3 is TPACC vehicle in (b), (c) and ACC
vehicle in (e), (f). Mixed traffic flow with 2% of automated driving
vehicles; qin = 2000 vehicles/h, qon = 280 vehicles/h; other model
parameters for ACC vehicles and TPACC vehicles are, respectively,
the same as those in Fig. 4. In (a), (d): F, free flow; S, synchronized
flow.

the occurrence of a large amplitude speed disturbance caused
by a classical ACC vehicle at the bottleneck [Figs. 6(d)–6(f)]:
Already a single ACC vehicle can initiate traffic breakdown at
the bottleneck [Figs. 6(d)–6(f)].

If the share of automated driving vehicles in mixed traffic
flow increases (Fig. 7), the probability of traffic breakdown
caused by ACC vehicles that deteriorate traffic can increase
considerably (curve 3 in Fig. 7). Contrarily, long enough
platoons of TPACC vehicles in mixed traffic flow decrease
the breakdown probability (curve 2 in Fig. 7).

This physical feature of TPACC vehicles is also explained
by the speed adaptation effect of the three-phase theory that
is the basis of TPACC (4): At each vehicle speed, the TPACC
vehicle makes an arbitrary choice in time headway that satisfies
conditions (8). In other words, the TPACC vehicle accepts
different values of time headway at different times and does
not control a fixed time headway to the preceding vehicle. This
dynamic behavior of TPACC vehicles decreases the amplitude
of local speed disturbances at the bottleneck [Figs. 4(d)–4(g)].
This explains why, in contrast to classical ACC vehicles,
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FIG. 7. Probability of traffic breakdown at on-ramp bottleneck as
a function of the flow rate qsum = qin + qon at a given on-ramp inflow
rate qon = 320 vehicles/h in mixed traffic flow with 20% automated
driving vehicles: Curve 1 is related to traffic flow without automated
driving vehicles. Curves 2 and 3 are related to mixed traffic flow with
TPACC vehicles (curve 2) and ACC vehicles (curve 3). Simulation
parameters of ACC and TPACC are, respectively, the same as those
in Fig. 4.

TPACC vehicles decrease the probability of traffic breakdown
in mixed traffic flow.

VI. TRAFFIC STREAM CHARACTERISTICS
OF MIXED TRAFFIC FLOW

We can assume that vehicles implementing TPACC strategy
(4) can reduce the overall flow for the traffic stream due to
their different use of available space on the road. However,
simulations presented in Figs. 3–7 show that no such adverse
effect for the traffic stream occurs. To answer a question of
how exactly flow is affected when the TPACC strategy versus
the ACC strategy is considered, in this section we make a study
of traffic stream flow characteristics related to simulations of
mixed traffic flow presented in Figs. 4–7.

A. Traffic stream flow characteristics of mixed traffic
flow with 2% automated driving vehicles

In Fig. 8(a), we show the fundamental diagram (flow-
density relationship) for free flow without automated driving
vehicles. It turns out that these traffic stream flow characteris-
tics are identical for traffic without automated driving vehicles
and for mixed traffic with 2% of TPACC vehicles: Single
TPACC vehicles do not affect the stream flow characteristics
in free flow [Figs. 8(a), 8(b)]. This result has already been
mentioned in Sec. V, when we have discussed curve 1 shown
in Fig. 5 for the flow-rate dependence of the probability of
traffic breakdown P (B)(qsum).

In the three-phase theory (see Refs. [33–35]), there is a
deep connection between the flow-rate dependence of the
probability of traffic breakdown P (B)(qsum) (Fig. 5) and the
overall flow as well as other traffic stream flow characteristics
[Figs. 8(c), 8(d)]. In particular, on traffic stream flow character-
istics (such as flow-density and speed-flow relationships) one
should distinguish a flow-rate range [Figs. 8(c), 8(d)]:

q
(B)
th � qsum � Cmax. (9)

Within the flow-rate range (9), free flow is in a metastable
state with respect to traffic breakdown (F → S transition) at
the bottleneck. A characteristic flow rate qsum = q

(B)
th in (9)

has been called a threshold flow rate for spontaneous traffic
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FIG. 8. Traffic stream flow characteristics for free flow on single-
lane road with on-ramp bottleneck in traffic without automated
driving vehicles and in mixed traffic with 2% of TPACC vehicles:
(a) Flow-density relationship (fundamental diagram). (b) A part
of speed-flow relationship for larger flow rates. (c), (d) Parts of
speed-flow (c) and flow-density (d) relationships for larger flow rates
versus the breakdown probability P (B)(qsum); function P (B)(qsum) is
curve 1 from Fig. 5. To compare stream flow characteristics with
simulations shown in Figs. 5 and 6, at qsum � 2000 vehicles/h there is
no on-ramp inflow (qon = 0); at qsum = qin + qon > 2000 vehicles/h,
the increase in qsum has been achieved through increase in qon at
constant qin = 2000 vehicles/h. Traffic stream flow characteristics
have been calculated as follows. At each given flow rate qsum (black
points on the characteristics), 5-min averaged data for the speed,
density, and flow rate have been measured with the use of a virtual
road detector installed at the end of the on-ramp merging region
x = 10.3 km. The data have been measured only during time interval
within which free flow has been observed in a simulation realization.
Then, as by the calculation of P (B)(qsum) in Fig. 5, Nr = 40 different
realizations have been simulated for each of the chosen flow rates qsum

(see caption to Fig. 5). This allows us to make a statistical analysis of
the average speed and density in the traffic stream. Black points on the
speed-flow and flow-density relationships are related to the average
values of the speed and density derived from this statistical analysis.
Other model parameters are the same as those in Fig. 4. Cal-
culated values: q

(B)
th, TPACC = q

(B)
th = 2290 and Cmax, TPACC = Cmax =

2360 vehicles/h.
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FIG. 9. Comparison of traffic stream flow characteristics for free
flow on single-lane road with on-ramp bottleneck in mixed traffic
with 2% of automated driving vehicles. Parts of flow-density (a)
and speed-flow (b) relationships for larger flow rates. Solid curves
“TPACC” are related to TPACC vehicles. Dashed curves “ACC”
are related to classical ACC vehicles. Stream flow characteristics
have been calculated as explained in caption to Fig. 8. Other model
parameters are the same as those in Fig. 4. Calculated values:
q

(B)
th, TPACC = 2290 and Cmax, TPACC = 2360 vehicles/h; q

(B)
th, ACC = 2265

and Cmax, ACC = 2330 vehicles/h.

breakdown at the bottleneck: At qsum < q
(B)
th the breakdown

probability P (B) = 0; i.e., no spontaneous traffic breakdown
can occur during a time interval of the observation of traffic
flow Tob (see caption to Fig. 5). A characteristic flow rate
qsum = Cmax in (9) has been called a maximum highway
capacity: At qsum � Cmax the breakdown probability P (B) = 1;
i.e., spontaneous traffic breakdown does occur at the bottleneck
during the time interval Tob.

The larger the values q
(B)
th and Cmax for the traffic stream, the

larger is on average the overall flow. Therefore, the character-
istic flow rates q

(B)
th and Cmax, which determine the boundaries

of the flow-rate range (9), are basic statistical characteristics
of the overall flow in the traffic stream in the framework of the
three-phase theory [129]. For the further analysis, we denote
the flow-rate range (9) on traffic stream characteristics by the
arrow “F → S” [Figs. 8(c), 8(d), 9, and 10].

At 2% of automated driving vehicles, the effect on the
overall flow due to different use of space on the road by TPACC
and ACC vehicles can be considered negligibly small. We
denote the statistical characteristics of the overall flow q

(B)
th ,

Cmax in (9) for mixed traffic flow by q
(B)
th, TPACC, Cmax, TPACC,
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flow on single-lane road with on-ramp bottleneck in mixed traffic
with 20% of automated driving vehicles. Parts of flow-density (a)
and speed-flow (b) relationships for larger flow rates. Solid curve
“TPACC” is related to TPACC vehicles. Dashed curve “ACC” is
related to classical ACC vehicles. Stream flow characteristics have
been calculated as explained in caption to Fig. 8. Other model
parameters are the same as those in Fig. 4. Calculated values:
q

(B)
th, TPACC = 2308 and Cmax, TPACC = 2371 vehicles/h; q

(B)
th, ACC = 2050

and Cmax, ACC = 2147 vehicles/h.

when automated driving vehicles are TPACC vehicles, and by
q

(B)
th, ACC, Cmax, ACC for classical ACC vehicles, respectively. We

have found that the overall flow characteristics do not change
on average in mixed traffic with 2% of TPACC vehicles (Fig. 8):
q

(B)
th, TPACC = q

(B)
th and Cmax, TPACC = Cmax.

In contrast with mixed traffic flow with 2% of TPACC
vehicles, we have found that both values q

(B)
th, ACC and Cmax, ACC

decrease in mixed traffic flow with 2% of classical ACC
vehicles (Fig. 9, curve “ACC”). This means that already 2% of
classical ACC vehicles reduce on average the overall flow in
the traffic stream. As explained in Secs. IV and V, this result
is associated with a large local speed disturbance caused by a
classical ACC vehicle at the bottleneck: Within the flow-rate
range (9), the large local speed disturbance can initiate a
nucleus for spontaneous traffic breakdown at the bottleneck.

B. Traffic stream flow characteristics of mixed traffic flow
with 20% automated driving vehicles

At 20% of automated driving vehicles in mixed traffic flow,
we can expect that there should be the effect of different use
of available space on the road through the different dynamic
behavior of TPACC vehicles and ACC vehicles on the overall
flow in the traffic stream. However, rather than reduction of
the overall flow through the use of TPACC vehicles, we have

found that TPACC vehicles increase on average the overall
flow (compare values q

(B)
th, TPACC, Cmax, TPACC in Fig. 8 with,

respectively, these values given in the caption to Fig. 10).
In contrast with TPACC vehicles, we have found that

classical ACC vehicles reduce on average the overall flow in
mixed traffic flow (Fig. 10). As explained in Secs. IV and V,
this effect of the overall flow reduction caused by classical
ACC vehicles is explained by the occurrence of large local
speed disturbances at the bottleneck in mixed traffic flow. The
local speed disturbances initiate traffic breakdown in the mixed
traffic flow at considerably smaller flow rates in comparison
with traffic flow without classical ACC vehicles. Thus, through
the strong effect of automated driving vehicles on traffic
breakdown at the bottleneck, in simulations we cannot resolve
the effect of the different use of available space on the road by
TPACC vehicles and ACC vehicles on the overall flow [130].

We have found that automated driving based on the TPACC
strategy can increase on average the overall flow for mixed
traffic flow; contrarily, automated driving based on the classical
ACC strategy decreases on average the overall flow (Figs. 9 and
10). We can expect that other objectives of a comparison of the
TPACC strategy versus the ACC strategy can be interesting for
further studies that are out of the scope of this paper. Examples
are a study of (i) congested mixed traffic build at the bottleneck
after traffic breakdown has occurred or (ii) characteristics of
mixed traffic flow consisting of automated driving and human
driving vehicles with different driver and vehicle parameters,
or else (iii) the effect of the TPACC strategy on multilane mixed
traffic with different types of bottlenecks.

VII. DISCUSSION

A. About applicability of model results for future
automated driving in mixed traffic flow

There have been no TPACC models related to the TPACC
strategy [69] that could be used for an analysis of TPACC
vehicles in different driving situations. Therefore, the effect of
TPACC vehicles on traffic flow could not be studied before. We
have shown that a TPACC model (4) introduced in this paper
has allowed us to understand the physics of TPACC vehicles
in mixed traffic flow. In particular, we have found the effect
of TPACC vehicles on the probability of traffic breakdown at
a road bottleneck. However, the following question can arise:
Can the simple TPACC model (4) be applicable for reliable
statements about physical features of real mixed traffic flow
consisting of human driving vehicles and TPACC vehicles? To
answer this question, we consider first some features of the
TPACC model (4) that might appear at first glance nonrealistic
for real traffic flow.

It seems that TPACC model (4) is mathematically of small
incremental value from the pre-existing classical ACC model
(1). However, in the paper we have shown that this “small
incremental mathematical value” exhibits a large physical
effect on traffic flow. This large physical effect on traffic flow
through the TPACC strategy (4) is associated with the TPACC
physical feature mentioned above: Through the indifference
zone of TPACC (4), a TPACC vehicle does not react on the
time headway change within the time headway range (8). This
dynamic behavior of TPACC vehicles decreases local speed
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disturbances in free flow at the bottleneck. The reduction of the
local speed disturbances results in a decrease in the breakdown
probability in the traffic stream.

Another question can arise from the choice of the model
time step τ = 1 s in Eqs. (5)–(7) that have been used for
numerical simulations of TPACC model (4): In TPACC model
(5)–(7), the time step τ = 1 s determines the safe space gap
gsafe = vτ under hypothetical steady state conditions in which
all vehicles move at time-independent speed v. Contrarily to
the TPACC model (5)–(7), typical ACC controllers in vehicles
that on the market have update time intervals τ of 100 ms
or less. Indeed, there may be some very dangerous traffic
situations in real traffic in which the safe time headway for
an ACC vehicle is quickly reached and, therefore, the ACC
vehicle must decelerate strongly already after a time interval
that is a much shorter than 1 s to avoid the collision with the
preceding vehicle. Therefore, to avoid collisions, real ACC
controllers must have update time intervals τ of 100 ms or
less. However, at model time step τ = 1 s through the choice
in the mathematical formulation of the safe speed in TPACC
model (5)–(7) and in the model of human driving vehicles (see
Appendices A 7 and B), collisionless traffic flow is guaranteed
in any dangerous traffic situation that can occur in simulations
of traffic flow.

In other words, to disclose the physics of TPACC the choice
of the update time τ = 1 s is sufficient in simulations of TPACC
behavior. To explain this, we should note that Eqs. (6), (7)
affect TPACC dynamics only under condition gn � gsafe,n, i.e.,
when the space gap becomes smaller than the safe one. This
is because the physics of TPACC disclosed in this paper is
solely determined by Eq. (5): Under condition gn � gsafe,n,
Eqs. (6), (7) do not change TPACC acceleration (deceleration)
calculated through Eq. (5).

This paper deals with a subset of the functionality required
for automated driving, namely longitudinal following a given
leader (TPACC). Other challenges for automated driving such
as lateral dynamics or sensor-related problems, which are
important to satisfy a safety motion of automated driving
vehicles on multilane highways and urban areas (see, e.g.,
[1–3,7–10]), are not tackled in this paper. Therefore, a question
can arise as to what degree results derived for TPACC are
related to future automated driving.

As mentioned in Sec. I, in empirical data the qualitative
flow-rate dependence of the probability of traffic breakdown
at a road bottleneck does not depend on the number of highway
lanes (on features of lateral dynamics of vehicles), on the
bottleneck type, and on real vehicle technology (during the
last 30 years vehicle technology has changed considerably;
however, qualitative empirical features of traffic breakdown
did not change). In accordance with the three-phase theory
that explains all known empirical features of traffic breakdown
[33–35], the simple ACC model and TPACC model used in
the paper reflect dynamic vehicle features that are responsible
for traffic breakdown. For this reason, the result of the paper
that at the same model parameters classic ACC vehicles (1)
increase the breakdown probability whereas TPACC vehicles
(4) decrease the breakdown probability proves that the use of
indifference zones of the three-phase theory can have benefits
for future automated driving. This is because contrarily with
(1), human driving vehicles do not control time headway

within the time headway range (8) [33–35]. Thus, the TPACC
vehicles, which can be considered automated driving “learn-
ing” from empirical human driving behavior, can decrease the
breakdown probability.

Rather than an engineering work devoted to a development
of the technology of self-driving vehicles, this work is a pure
physical paper in which physical effects of the application of
a simple TPACC model (4) have been presented. Results of
this paper allow us to assume that future systems for auto-
mated driving should be developed whose rules are consistent
with those of human driving vehicles. Otherwise, we could
expect that automated driving vehicles can be considered as
“obstacles” for drivers. The physics of automated driving in
the framework of the three-phase theory studied in this paper
emphasizes that future automated driving should be developed
in which both the longitudinal dynamics (TPACC) and lateral
dynamics should learn from driver behavior. In particular,
the longitudinal and lateral dynamics of automated driving
vehicles should be consistent with the existence of indifference
zones of the three-phase theory [33–35,60].

B. Conclusions

In the paper, based on numerical simulations of a simple
model for automated driving in the framework of the three-
phase theory (TPACC) introduced in the paper, we have
found that applications of the TPACC strategy can lead to
the following advantages in comparison with the classical
approach to ACC:

(i) The absence of string instability.
(ii) Considerably smaller speed disturbances at road bot-

tlenecks.
(iii) TPACC vehicles can decrease the probability of traffic

breakdown at the bottleneck in mixed traffic flow; on the
contrary, even a single automated driving vehicle based on
the classical approach can provoke traffic breakdown at the
bottleneck in mixed traffic flow.

These advantages of TPACC are associated with the absence
of a fixed desired time headway to the preceding vehicle
in the TPACC strategy: A TPACC vehicle exhibits a large
indifference zone within the time headway range (8) within
which the TPACC vehicle does not control time headway to
the preceding vehicle. As we have found in this paper, due
to the large indifference zone within the time headway range
(8), the TPACC vehicle should not necessarily decelerate as
strongly as the preceding vehicle when a local short-time speed
disturbance appears at a road bottleneck. This dynamic be-
havior of TPACC vehicles decreases local speed disturbances
in free flow at a road bottleneck. In its turn, the decrease in
the amplitude of local speed disturbances at road bottlenecks
results in a decrease in the probability of traffic breakdown in
the traffic stream.

In this paper, we have made a comparison of the effect of
classical ACC vehicles and TPACC vehicles on the probability
of traffic breakdown at a road bottleneck in mixed traffic
flow. In this scenario of the application of automated driving
vehicles, we have considered only some specific values of
TPACC and ACC parameters (K1, K2, and headway time) to
demonstrate that the TPACC strategy can exhibit advantages
in comparison with the classical ACC.
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However, larger values of K1 and K2 and shorter headway
time might give entirely different results. Moreover, the exam-
ples presented in the paper only involve situations where the
total flow is near capacity. Thus, without exploring a wide range
of scenarios we cannot make a general claim that the TPACC
system is superior to ACC systems. Additionally, incorporating
cooperative merging between ACC vehicles could reduce the
tendency to initiate breakdown at highway bottlenecks. We
believe that related detailed studies of the TPACC model
introduced in the paper, which are out of the scope of this
paper, will be a very interesting task of future investigations of
the physics of automated driving.
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APPENDIX A: KERNER-KLENOV MICROSCOPIC
STOCHASTIC TRAFFIC FLOW MODEL

In this appendix, we give explanations of the Kerner-Klenov
stochastic microscopic three-phase model for human driving
vehicles [66–68] and model parameters used for simulations
of mixed traffic flow presented in the main text.

1. Complexity of real traffic observed in measured traffic data

The complexity of the Kerner-Klenov model [66–68] used
for simulations of human driving vehicles is associated with the
following complex spatiotemporal empirical features of real
traffic flow observed in traffic data measured over many years in
different countries [33]: Empirical spatiotemporal traffic data
show that there are three phases in real traffic: free flow (F),
synchronized flow (S), wide moving jam (J).

Between these traffic phases any combination of phase tran-
sitions is observed in real measured traffic data. In particular,
an F → S transition determines traffic breakdown, whereas an
S → J transition determines moving jam emergence. There
can be spontaneous and induced phase transitions, i.e., the
phase transitions occur in metastable states of associated traffic
phases.

For a qualitative explanation of this empirical complexity
of traffic, the author introduced a three-phase theory that is a
qualitative traffic flow theory consisting of several hypotheses
[33,60,62]. The Kerner-Klenov model [66–68] is a stochastic
microscopic traffic flow model incorporating these hypotheses.
The main objective of the model is to understand the physics
of this empirical complexity of phase transitions and resulting
spatiotemporal features of traffic patterns observed and mea-
sured in real traffic data.

2. Update rules of vehicle motion in road lane in model
of identical drivers and vehicles

In a discrete model version of the Kerner-Klenov stochas-
tic microscopic three-phase model used in all simulations
presented in the main text, rather than the continuum space

coordinate [66], a discretized space coordinate with a small
enough value of the discretization space interval δx is used
[68]. Consequently, the vehicle speed and acceleration (de-
celeration) discretization intervals are δv = δx/τ and δa =
δv/τ , respectively, where τ is the time step. Because in the
discrete model version discrete (and dimensionless) values of
the space coordinate, speed, and acceleration are used, which
are measured respectively in values δx, δv, and δa, and time
is measured in values of τ , value τ in all formulas is assumed
below to be the dimensionless value τ = 1. In the discrete
model version used for all simulations, the discretization cell
δx = 0.01 m is used.

A choice of δx = 0.01 m made in the model determines the
accuracy of vehicle speed calculations in comparison with the
initial continuum in the space stochastic model of [66]. We have
found that the discrete model exhibits similar characteristics of
phase transitions and resulting congested patterns at highway
bottlenecks as those in the continuum model at δx that satisfies
the conditions

δx/τ 2 � b, a, a(a), a(b), a(0), (A1)

where model parameters for driver deceleration and accelera-
tion b, a, a(a), a(b), a(0) will be explained below.

Update rules of vehicle motion in the discrete model for
identical drivers and identical vehicles moving in a road lane
are as follows [68]:

vn+1 = max(0, min(vfree,ṽn+1 + ξn,vn + aτ,vs,n)), (A2)

xn+1 = xn + vn+1τ, (A3)

where the indexn corresponds to the discrete time tn = τn,n =
0,1, . . .; vn is the vehicle speed at time step n, a is the maximum
acceleration, ṽn is the vehicle speed without speed fluctuations
ξn:

ṽn+1 = min(vfree,vs,n,vc,n), (A4)

vc,n =
{
vn + �n at gn � Gn,

vn + anτ at gn > Gn,
(A5)

�n = max(−bnτ, min(anτ, v�,n − vn)), (A6)

gn = x�,n − xn − d, (A7)

the subscript � marks variables related to the preceding vehicle,
vs,n is a safe speed at time step n, vfree is the free flow speed
in free flow, ξn describes speed fluctuations; gn is a space
gap between two vehicles following each other; Gn is the
synchronization space gap; all vehicles have the same length
d. The vehicle length d includes the mean space gap between
vehicles that are in a standstill within a wide moving jam.
Values an � 0 and bn � 0 in (A5), (A6) restrict changes in
speed per time step when the vehicle accelerates or adjusts the
speed to that of the preceding vehicle.

3. Synchronization space gap and hypothetical
steady states of synchronized flow

Equations (A5), (A6) describe the adaptation of the vehicle
speed to the speed of the preceding vehicle, i.e., the speed
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FIG. 11. Steady speed states for the Kerner-Klenov traffic flow
model in the flow-density [(a), (b)] and in the space gap–speed planes
(c). In (a), (b), L and U are, respectively, lower and upper boundaries
of 2D regions of steady states of synchronized flow. In (b), J is the
line J whose slope is equal to the characteristic mean velocity vg of
a wide moving jam; in the flow-density plane, the line J represents
the propagation of the downstream front of the wide moving jam with
time-independent velocity vg. F, free flow; S, synchronized flow.

adaptation effect in synchronized flow. This vehicle speed
adaptation takes place within the synchronization gap Gn: At

gn � Gn (A8)

the vehicle tends to adjust its speed to the speed of the preceding
vehicle. This means that the vehicle decelerates if vn > v�,n,
and accelerates if vn < v�,n.

In (A5), the synchronization gap Gn depends on the vehicle
speed vn and on the speed of the preceding vehicle v�,n:

Gn = G(vn,v�,n), (A9)

G(u,w) = max(0,�kτu + a−1u(u − w)�), (A10)

where k > 1 is constant; �z� denotes the integer part of z.
The speed adaptation effect within the synchronization

distance is related to the hypothesis of the three-phase theory:
Hypothetical steady states of synchronized flow cover a 2D
region in the flow-density plane [Fig. 11(a)]. Boundaries
F , L, and U of this 2D region shown in Fig. 11(a) are,
respectively, associated with the free flow speed in free flow,
a synchronization space gap G, and a safe space gap gsafe. A
speed function of the safe space gap gsafe(v) is found from
the equation

v = vs(gsafe, v). (A11)

Respectively, as for the continuum model (see Sec. 16.3 of
Ref. [33]), for the discrete model hypothetical steady states of
synchronized flow cover a 2D region in the flow-density plane
[Figs. 11(a), 11(b)]. However, because the speed v and space
gap g are integer in the discrete model, the steady states do not
form a continuum in the flow-density plane as they do in the
continuum model. The inequalities

v � vfree, g � G(v, v), g � gsafe(v) (A12)

define a 2D region in the space gap–speed plane [Fig. 11(c)]
in which the hypothetical steady states exist for the discrete
model, when all model fluctuations are neglected.

In (A12), we have taken into account that in the hypothetical
steady states of synchronized flow vehicle speeds and space
gaps are assumed to be time-independent and the speed of each
of the vehicles is equal to the speed of the associated preceding
vehicle: v = v�. However, due to model fluctuations, steady
states of synchronized flow are destroyed; i.e., they do not exist
in simulations. This explains the term “hypothetical” steady
states of synchronized flow. Therefore, rather than steady
states, some nonhomogeneous in space and time traffic states
occur. In other words, steady states are related to a hypothetical
model-fluctuation-less limit of homogeneous in space and
time vehicle motion that is not realized in real simulations.
Driver time delays are described through model fluctuations.
Therefore, any application of the Kerner-Klenov stochastic
microscopic three-phase traffic flow model without model
fluctuations has no sense. In other words, for the description
of real spatiotemporal traffic flow phenomena, model speed
fluctuations incorporated in this model are needed.

4. Model speed fluctuations

In the model, random vehicle deceleration and acceleration
are applied depending on whether the vehicle decelerates or
accelerates, or else maintains its speed:

ξn =

⎧⎪⎨
⎪⎩

ξa, if Sn+1 = 1,

−ξb, if Sn+1 = −1,

ξ (0), if Sn+1 = 0.

(A13)

State of vehicle motion Sn+1 in (A13) is determined by formula

Sn+1 =

⎧⎪⎨
⎪⎩

−1, if ṽn+1 < vn,

1, if ṽn+1 > vn,

0, if ṽn+1 = vn.

(A14)

In (A13), ξb, ξ (0), and ξa are random sources for deceleration
and acceleration that are as follows:

ξb = a(b)τ�(pb − r), (A15)

ξ (0) = a(0)τ

⎧⎪⎨
⎪⎩

−1, if r < p(0),

1, if p(0) � r < 2p(0) and vn > 0,

0, otherwise,

(A16)

ξa = a(a)τ�(pa − r); (A17)

pb is the probability of random vehicle deceleration, pa is the
probability of random vehicle acceleration, p(0) and a(0) � a

are constants, r = rand(0,1), �(z) = 0 at z < 0 and �(z) =
1 at z � 0, a(a) and a(b) are model parameters (see Table I),
which in some applications can be chosen as speed functions
a(a) = a(a)(vn) and a(b) = a(b)(vn).
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TABLE I. Model parameters of vehicle motion in road lane used
in simulations of the main text.

τsafe = τ = 1 s, d = 7.5 m/δx,
δx = 0.01 m, δv = 0.01 m s−1, δa = 0.01 m s−2,
vfree = 30 m s−1/δv, b = 1 m s−2/δa, a = 0.5 m s−2/δa,
k = 3, p1 = 0.3, pb = 0.1, pa = 0.17, p(0) = 0.005,
p0(vn) = 0.575 + 0.125 min (1,vn/v01),
p2(vn) = 0.48 + 0.32�(vn − v21),
v01 = 10 m s−1/δv, v21 = 15 m s−1/δv,
a(0) = 0.2a, a(a) = a(b) = a

5. Stochastic time delays of acceleration and deceleration

To simulate time delays either in vehicle acceleration or
in vehicle deceleration, an and bn in (A6) are taken as the
following stochastic functions:

an = a�(P0 − r1), (A18)

bn = a�(P1 − r1), (A19)

P0 =
{
p0, if Sn �= 1,

1, if Sn = 1,
(A20)

P1 =
{
p1, if Sn �= −1,

p2, if Sn = −1;
(A21)

r1 = rand(0,1), p1 is constant, p0 = p0(vn) and p2 = p2(vn)
are speed functions (see Table I).

6. Simulations of slow-to-start rule

In the model, simulations of the well-known effect of the
driver time delay in acceleration at the downstream front
of synchronized flow or a wide moving jam known as a
slow-to-start rule [131,132] are made as a collective effect
through the use of Eqs. (A5), (A6), and a random value of
vehicle acceleration (A18). Equation (A18) with P0 = p0 < 1
is applied only if the vehicle did not accelerate at the former
time step (Sn �= 1); in the latter case, a vehicle accelerates with
some probability p0 that depends on the speed vn; otherwise
P0 = 1 [see formula (A20)].

The mean time delay in vehicle acceleration is equal to

τ
(acc)
del (vn) = τ

p0(vn)
. (A22)

From formula (A22), it follows that the mean time delay in
vehicle acceleration from a standstill within a wide moving
jam [i.e., when in formula (A22) the speed vn = 0] is equal to

τ
(acc)
del (0) = τ

p0(0)
. (A23)

The mean time delay in vehicle acceleration from a standstill
within a wide moving jam determines the parameters of the
line J in the flow-density plane [Fig. 11(b)].

Probability p0(vn) in (A20) is chosen to be an increasing
speed function (see Table I). Because the speed within synchro-
nized flow is larger than zero, the mean time delay in vehicle
acceleration at the downstream front of synchronized flow that

we denote by

τ
(acc)
del, syn = τ

(acc)
del (vn), vn > 0, (A24)

is shorter than the mean time delay in vehicle acceleration at
the downstream front of the wide moving jam τ

(acc)
del (0):

τ
(acc)
del, syn < τ

(acc)
del (0). (A25)

7. Safe speed

In the model, the safe speed vs,n in (A2) is chosen in the
form

vs,n = min
(
v(safe)

n ,gn

/
τ + v

(a)
�

)
, (A26)

v
(a)
� is an “anticipation” speed of the preceding vehicle that will

be considered below, the function

v(safe)
n = �v(safe)(gn, v�,n)� (A27)

in (A26) is related to the safe speed v(safe)(gn, v�,n) in the
model by Krauß et al. [133], which is a solution of the Gipps’s
equation [134]

v(safe)τ + Xd(v(safe)) = gn + Xd(v�,n), (A28)

where Xd(u) is the braking distance that should be passed by
the vehicle moving first with the speed u before the vehicle
can come to a stop.

The condition (A28) enables us to find the safe speed v(safe)

as a function of the space gap gn and speed v�,n provided Xd(u)
is a known function. In the case when the vehicle brakes with a
constant decelerationb, the change in the vehicle speed for each
time step is −bτ except the last time step before the vehicle
comes to a stop. At the last time step, the vehicle decreases its
speed at the value bτβ, where β is a fractional part of u/bτ .
According to formula (A3) for the displacement of the vehicle
for one time step, the braking distance Xd(u) is [133]

Xd(u) = τ (u − bτ + u − 2bτ + · · · + βbτ ). (A29)

From (A29), it follows [133]

Xd(u) = bτ 2

[
αβ + α(α − 1)

2

]
; (A30)

α = �u/bτ� is an integer part of u/bτ .
The safe speed v(safe) as a solution of Eq. (A28) at the

distance Xd(u) given by (A30) has been found by Krauß et al.
[133]:

v(safe)(gn,v�,n) = bτ (αsafe + βsafe), (A31)

where

αsafe =
⌊√

2
Xd(v�,n) + gn

bτ 2
+ 1

4
− 1

2

⌋
, (A32)

βsafe = Xd(v�,n) + gn

(αsafe + 1)bτ 2
− αsafe

2
. (A33)

The safe speed in the model by Krauß et al. [133] provides
collisionless motion of vehicles if the time gap gn/vn between
two vehicles is greater than or equal to the time step τ , i.e., if
gn � vnτ [135]. In the model, it is assumed that in some cases,
mainly due to lane changing or merging of vehicles onto the
main road within the merging region of bottlenecks, the space

042303-12



PHYSICS OF AUTOMATED DRIVING IN FRAMEWORK OF … PHYSICAL REVIEW E 97, 042303 (2018)

gap gn can become less than vnτ . In these critical situations,
the collisionless motion of vehicles in the model is a result of
the second term in (A26) in which some prediction (v(a)

� ) of
the speed of the preceding vehicle at the next time step is used.
The related “anticipation” speed v

(a)
� at the next time step is

given by formula

v
(a)
� = max

(
0, min

(
v

(safe)
�,n ,v�,n,g�,n/τ

) − aτ
)
, (A34)

where v
(safe)
�,n is the safe speed (A27), (A31)–(A33) for the

preceding vehicle, g�,n is the space gap in front of the pre-
ceding vehicle. Simulations have shown that formulas (A26),
(A27), (A31)–(A34) lead to collisionless vehicle motion over
a wide range of parameters of the merging region of on-ramp
bottlenecks (Appendix C).

In hypothetical steady states of traffic flow [Fig. 11(a)], the
safe space gap gsafe is determined from equation v = vs; in
accordance with Eqs. (A26)–(A28), at a given v in steady traffic
states v = v� the safe speed

vs = gsafe/τsafe, (A35)

and, therefore,

gsafe = vτsafe. (A36)

8. Boundary and initial conditions

Open boundary conditions are applied. At the beginning of
the road new vehicles are generated one after another in each
of the lanes of the road at time moments

t (m) = τ�mτin/τ�, m = 1,2, . . . . (A37)

In (A37), τin = 1/qin, qin is the flow rate in the incoming
boundary flow per lane, �z� denotes the nearest integer greater
than or equal to z. A new vehicle appears on the road only
if the distance from the beginning of the road (x = xb) to the
position x = x�,n of the farthest upstream vehicle on the road
is not smaller than the safe distance v�,nτ + d:

x�,n − xb � v�,nτ + d, (A38)

where n = t (m)/τ . Otherwise, condition (A38) is checked at
time (n + 1)τ that is the next one to time t (m) (A37), and so
on, until the condition (A38) is satisfied. Then the next vehicle
appears on the road. After this occurs, the number m in (A37)
is increased by 1.

The speed vn and coordinate xn of the new vehicle are

vn = v�,n,

xn = max(xb,x�,n − �vnτin�). (A39)

The flow rate qin is chosen to have the value vfreeτin integer.
In the initial state (n = 0), all vehicles have the free flow
speed vn = vfree and they are positioned at space intervals
x�,n − xn = vfreeτin.

After a vehicle has reached the end of the road it is removed.
Before this occurs, the farthest downstream vehicle maintains
its speed and lane. For the vehicle following the farthest
downstream one, the “anticipation” speed v

(a)
� in (A26) is equal

to the speed of the farthest downstream vehicle.
In [35] it has been shown that the Kerner-Klenov model

(A2)–(A7), (A9), (A10), (A13)–(A21), (A26), (A27), (A31)–
(A34) is a Markov chain: At time step n + 1, values of model

variables vn+1, xn+1, and Sn+1 are calculated based only on
their values vn, xn, and Sn at step n.

APPENDIX B: MODEL OF CLASSICAL ACC

In simulations of the classical ACC model (1), as in the
model of human driving vehicles (Appendix A 2) we use the
discrete time t = nτ , where n = 0,1,2, . . .; τ = 1 s is time
step. Therefore, the space gap to the preceding vehicle is equal
to gn = x�,n − xn − d and the relative speed is given by �vn =
v�,n − vn, where xn and vn are coordinate and speed of the
ACC vehicle, x�,n and v�,n are coordinate and speed of the
preceding vehicle, d is the vehicle length that is assumed the
same one for automated driving and human driving vehicles.
Correspondingly, the classical model of the dynamics of ACC
vehicle (1) can be rewritten as follows [35]:

a(ACC)
n = K1

(
gn − vnτ

(ACC)
d

) + K2(v�,n − vn). (B1)

The ACC vehicles move in accordance with Eq. (B1) where,
in addition, the following formulas are used:

v(ACC)
c,n = vn + τ max

(−bmax, min
(�a(ACC)

n �,amax
))

,

(B2)

vn+1 = max
(
0, min

(
vfree,v

(ACC)
c,n ,vs,n

))
; (B3)

�z� denotes the integer part of z [128]. Through the use
of formula (B2), acceleration and deceleration of the ACC
vehicles are limited by some maximum acceleration amax

and maximum deceleration bmax, respectively. Owing to the
formula (B3), the speed of the ACC vehicle vn+1 at time step
n + 1 is limited by the maximum speed in free flow vfree and by
the safe speed vs,n to avoid collisions between vehicles [136].
The maximum speed in free flow vfree and the safe speed vs,n

are chosen, respectively, the same as those in the microscopic
model of human driving vehicles (Appendix A 2). It should
be noted that the model of the ACC vehicle merging from the
on-ramp onto the main road is similar to that for human driving
vehicles (see Appendix C 2).

APPENDIX C: MODEL OF ON-RAMP BOTTLENECK

An on-ramp bottleneck consists of two parts (Fig. 12):
(i) The merging region of length Lm where vehicles can

merge onto the main road from the on-ramp lane.
(ii) A part of the on-ramp lane of length Lr upstream of

the merging region where vehicles move in accordance with
the model of Appendix A 2. The maximal speed of vehicles is
vfree = vfree on.

At the beginning of the on-ramp lane (x = x(b)
on ) the flow

rate to the on-ramp qon is given through boundary conditions

inq

onq

)b(
onx onx )e(

onx

mLrL

x

FIG. 12. Model of on-ramp bottleneck on single-lane road.
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TABLE II. Parameters of model of on-ramp bottleneck used in
simulations of the main text.

λb = 0.75,
vfree on = 22.2 m s−1/δv,
�v(2)

r = 5 m s−1/δv,
Lr = 1 km/δx, �v(1)

r = 10 m s−1/δv,
Lm = 0.3 km/δx

that are the same as those that determine the flow rate qin at the
beginning of the main road (Appendix A 8).

1. Model of vehicle merging at bottleneck

a. Vehicle speed adaptation within merging region of bottleneck

For the on-ramp bottleneck, when a vehicle is within the
merging region of the bottleneck, the vehicle takes into account
the space gaps to the preceding vehicles and their speeds both
in the current and target lanes. Respectively, instead of formula
(A5), in (A4) for the speed vc,n the following formula is used:

vc,n =
{
vn + �+

n at g+
n � G(vn,v̂

+
n ),

vn + anτ at g+
n > G(vn,v̂

+
n ),

(C1)

�+
n = max(−bnτ, min(anτ, v̂+

n − vn)), (C2)

v̂+
n = max

(
0, min

(
vfree, v+

n + �v(2)
r

))
; (C3)

�v(2)
r is constant (see Table II).
Superscripts + and − in variables, parameters, and func-

tions denote the preceding vehicle and the trailing vehicle in
the “target” (neighboring) lane, respectively. The target lane is
the lane into which the vehicle wants to change.

The safe speed vs,n in (A2), (A4) for the vehicle that is the
closest one to the end of the merging region is chosen in the
form

vs,n = ⌊
v(safe)(x(e)

on − xn, 0
)⌋

(C4)

(see Fig. 12 and Table II).

b. Safety conditions for vehicle merging

Vehicle merging at the bottleneck occurs when safety
conditions (∗) or safety conditions (∗∗) are satisfied.

Safety conditions (∗) are as follows:

g+
n > min(v̂nτ, G(v̂n,v

+
n )),

g−
n > min(v−

n τ, G(v−
n ,v̂n)), (C5)

v̂n = min
(
v+

n , vn + �v(1)
r

)
; (C6)

�v(1)
r > 0 is constant (see Table II).
Safety conditions (∗∗) are as follows:

x+
n − x−

n − d > g
(min)
target, (C7)

where

g
(min)
target = �λbv

+
n + d�; (C8)

λb is constant. In addition to conditions (C7), the safety
condition (∗∗) includes the condition that the vehicle should

pass the midpoint

x(m)
n = �(x+

n + x−
n )/2� (C9)

between two neighboring vehicles in the target lane; i.e.,
conditions

xn−1 < x
(m)
n−1 and xn � x(m)

n

or

xn−1 � x
(m)
n−1 and xn < x(m)

n (C10)

should also be satisfied.

c. Speed and coordinate of vehicle after vehicle merging

The vehicle speed after vehicle merging is equal to

vn = v̂n. (C11)

Under conditions (∗), the vehicle coordinate xn remains the
same. Under conditions (∗∗), the vehicle coordinate xn is equal
to

xn = x(m)
n . (C12)

2. Merging of ACC vehicle or TPACC vehicle
at on-ramp bottleneck

Here we consider rules of the merging of an ACC vehicle
at the on-ramp bottleneck presented in [35] and used in
simulations. The same rules have also been used in simulations
of the merging of an TPACC vehicle from the on-ramp lane
onto the main road at the bottleneck.

In the on-ramp lane, an ACC vehicle or a TPACC vehicle
moves in accordance with the ACC model (B1)–(B3) or in
accordance with the TPACC model (5)–(7) of the main text,
respectively. The maximal speed of the ACC vehicle or the
TPACC vehicle in the on-ramp lane is vfree = vfree on. The safe
speed vs,n in (B3) for the ACC vehicle and in (7) for the TPACC
vehicle that is the closest one to the end of the merging region
is the same as that for human driving vehicles that is given by
formula (C4).

An ACC vehicle or a TPACC vehicle merges from the on-
ramp lane onto the main road, when some safety conditions
(∗) or safety conditions (∗∗) are satisfied for the ACC vehicle
or the TPACC vehicle. Safety conditions (∗) for ACC vehicles
and TPACC vehicles are as follows:

g+
n > v̂nτ, g−

n > v−
n τ, (C13)

where v̂n is given by formula (C6). Safety conditions (∗∗) are
given by formulas (C7)–(C10); i.e., they are the same as those
for human driving vehicles. Respectively, as for human driving
vehicles, the ACC vehicle speed and its coordinate or the
TPACC vehicle speed and its coordinate after the ACC vehicle
or the TPACC vehicle has merged from the on-ramp onto the
main road are determined by formulas (C11) and (C12).
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