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The network of interactions in complex systems strongly influences their resilience and the system capability to
resist external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests
itself in different domains, e.g., parasitic species invasion in ecosystems or cascade failures in human-made
networks. Understanding the topological features of the networks that affect the resilience phenomenon remains
a challenging goal for the design of robust complex systems. We hereby introduce the concept of non-normal
networks, namely networks whose adjacency matrices are non-normal, propose a generating model, and show
that such a feature can drastically change the global dynamics through an amplification of the system response to
exogenous disturbances and eventually impact the system resilience. This early stage transient period can induce
the formation of inhomogeneous patterns, even in systems involving a single diffusing agent, providing thus a
new kind of dynamical instability complementary to the Turing one. We provide, first, an illustrative application
of this result to ecology by proposing a mechanism to mute the Allee effect and, second, we propose a model of
virus spreading in a population of commuters moving using a non-normal transport network, the London Tube.
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I. INTRODUCTION

Ecological resilience [1] is the ability of ecosystems to
respond to challenges such as fires, windstorms, deforestation,
flooding, or the presence of invasive species and their aptitude
to return close to the initial state. The way rapid climate
changes are affecting the natural habitats [2] and how increas-
ing human activity has been responsible for environmental
disasters [3] are the focus of recent studies. On the other hand,
resilience is encountered also in human-made systems such
as power grids or communications systems where a failure
of a component of a system of interconnected elements can
trigger a cascade of failures of successive components [4].
In this case, the response of the system is directly correlated
to the structural changes in the networked support where the
dynamics occurs [5]. Efforts have been made to understand
how complex interactions influence the system’s resilience [6]
in order to optimize the design that enhances their robustness
and reduce their vulnerability [7].

Here we show that the resilience of dynamical systems
evolving on a complex network is highly determined by the de-
gree of non-normality characterizing the underlying network.
This technical definition [8], based on the nonexistence of a
suitable orthogonal basis of eigenvectors [9], will be proved in
the following to determine an unexpected system response to
small disturbances. We anticipate that this abnormal behavior
follows a transient amplification process during the initial lin-
ear regime which, if sufficiently large, leads subsequently the
system to another state, the latter being possibly characterized
by spatial inhomogeneities and potentially far from the initial
one, reducing thus the system resilience. The non-normality
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has been previously considered in different domains, e.g., hy-
drodynamic stability [10], non-Hermitian quantum-mechanics
[11], synchronization of networked optoelectronic devices
[12], ecology [13], population dynamics with the emphasis
to the emergence of deterministic spatial patterns [14,15], or
taking into account the stochastic dynamics [16].

To introduce our work, we first illustrate the concept of
non-normality borrowing the idea from the community matrix
presented in Ref. [13] in the framework of ecology and then we
generalize it to dynamical systems defined on complex (non-
normal) networks. Let us stress that the framework we propose
is different from the latter ones mentioned above. Indeed, the
effect of the non-normality, which enters through the network
structure, allows us to potentially consider applications to
complex systems where the geometry of the spatial interactions
play a crucial role. In contrast with the results we mentioned
above, the non-normality condition in networked systems
is easier to be satisfied because it depends solely on their
structure, bypassing any dependence on the dynamical system
defined on it. The goal of this paper is thus to bring to the fore a
general structure to accommodate for a better understanding of
the impact of the non-normality assumption on the resilience of
networked systems. To this aim, we here introduce the concept
of non-normal network, a general paradigm which formal-
izes the non-normal dynamics in the context of networked
complex systems, and, anticipating our following discussion,
we state that a network is non-normal if its adjacency matrix
does.

As previously stated, the transient amplification due to
the network non-normality can push the system into a new
state, possibly far from the initial one, and usually exhibits
spatial inhomogeneities (patterns). For this reason we show
in the second part of the paper that the proposed mechanism
could be an alternative pathway to the emergence of spatially
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self-organized heterogeneous patterns. One of the mostly dif-
fused mechanism responsible for the patterns formation is the
one introduced by Turing, for which a minimal system of two
species, activator and inhibitor, can generate complex patterns
following a diffusion-induced instability, the celebrated Turing
patterns [17,18].

A link between Turing patterns and non-normal operators
has been previously proposed in the literature [14–16], in par-
ticular in the first reference authors proved that non-normality
of the Jacobian matrix is a necessary condition to have Turing
patterns for systems involving at least two diffusing species in a
continuous domain. We differentiate from the latter because the
main “source” of non-normality is in our case the non-normal
network on which the dynamics occur. A relevant consequence
of this hypothesis is that we can assume symmetric reaction
terms, i.e., the Jacobian of the reaction part is a normal
matrix, and still obtain patterns. In particular, we are able to
prove that a single inhibitor species allowed to freely diffuse
on a non-normal network can experience a patchy solution
because of the transient instability induced by the non-normal
topology; observe that such an outcome is impossible in the
framework proposed in Refs. [14–16]: A single species yields,
by definition, a normal matrix and so the only way for the
non-normality to emerge relies on the diffusion matrix, which
instead turns out to be symmetric in the case of continuous
support. In conclusion, the present result is complementary
to the Turing one and further generalizes the paradigm of
patterns formation to broader scenarios that the ones found
in the literature.

For a sake of concreteness, we present two relevant ap-
plications of the above proposed framework. The first major
example here developed that illustrates the importance of this
interesting mechanism is the deviance from the Allee effect
[19], the principle according to which initial low densities of
a given species may critically endanger its survivability as
first observed by W. C. Allee. Indeed, Allee remarked that
goldfishes grow more rapidly when there are more individuals
in a given reservoir [20], an observation that allowed him
to draw the conclusion that segregation and cooperation can
improve the survival rate. We show that the transient growth,
induced by the non-normal network of interactions, may
unexpectedly reverse this property, leading to the survival
of the population. This could thus provide an effective so-
lution to the problem of reinsertion of new animals into an
ecosystem.

There are, however, circumstances where the Allee effect
has a positive impact on the population under scrutiny and
we want to amplify it. This is the case of virus spreading,
where the goal is to reduce the chances for the pathogen to
spread by action of the substrate on which the dynamics evolve.
Based on this idea, we proposed a simplified model of measles
spreading in a population of human beings, commuting using
the London Tube network, that can improve our understanding
of epidemics spreading in an urban environment [21,22].

The paper is organized as follows. We first set the gen-
eral behavior of dynamical systems evolving on non-normal
networks and we present the main outcomes using a sim-
ple model. We then introduce a model to generate net-
works with a controlled degree of non-normality. Hence,
we present three main applications of the proposed frame-

work: a model to mute the Allee effect, a new paradigm for
patterns formation of networked systems, and a model of
epidemic spreading. We finally discuss our results and draw the
conclusions.

II. NON-NORMAL DYNAMICS IN NETWORKED SYSTEMS

Complex interactions in systems, usually constituted by a
large number of components, can often be encapsulated in a
graph representation through the adjacency matrix A whose
entries Aij = 1 if the node j is directly connected to node i

and zero otherwise [23]. If also the node i is directly connected
to node j determines whether the network is directed or not,
a condition that can have a strong impact on the system
dynamics.

Let us consider the following generic dynamical system
made of M nonlinearly coupled components:

dxi

dt
= f (xi) +

M∑
j=1

Aijg(xi,xj ), (1)

where x = (x1,x2, . . . ,xM ) is the vector of the system states
and f (·), respectively, g(·,·), is a nonlinear function defining
the local dynamics occurring on each node i, respectively,
the interaction dynamics triggered by the network topology
encoded into the adjacency matrix A. Obviously, the evolution
of the states of the system will directly depend on the structure
of network. Despite the nonlinear nature of the system, one
can often obtain a good description by linearizing close to
an equilibrium solution of Eq. (1). For the sake of complete-
ness, let us assume a diffusive-like linear coupling, namely
g depends linearly on xi − xj , and consider thus a linear
model of a diffusion process on a network with a damping
factor, represented by sinks located at each node, namely
ẋ = −ax + DLx, where a is the decaying rate (assumed for
simplicity to be the same for all nodes) and L the discrete
Laplacian matrix, L = A − kout, where kout is the diagonal
matrix of the connectivities, namely the number of outgoing
edges from each node. If the matrix A is non-Hermitian, then a
basis formed by linearly independent eigenvectors or a unitary
basis may not exist, and observe that the same holds true for
L by its very first definition. We are hence dealing with a
non-normal matrix [8] and the spectrum of the eigenvalues fails
to capture the linear dynamics behavior occurring on such non-
normal network which deviates from the trivial exponential
decay.

A simple but prototypical example, containing all the
relevant features, for studying the resilience response of the
networked system in non-normality conditions is shown in
Fig. 1, where we represent two networks built on a unidirec-
tional ring. The first network has a full rotational symmetry,
each vertex has one incoming link and an outgoing one. When
the system is perturbed around its unique and stable state
x∗ = (0, . . . ,0), independently of the initial conditions or of
the size of the network, the system converges asymptotically to
zero [see Fig. 1(a)]. However, if a failure in the system occurs,
e.g., a single link is removed (as in the second network), and
if the diffusion is stronger than the decay rate, D/a � 1, then
we observe that the unique node with just a single incoming
link will exhibit a transient growth before it turns again toward
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FIG. 1. Transient growth and non-normality in a linear generic example. We represent the time evolution of the node density xi(t) [colored
curves in panels (a) and (b)] for the linear model, ẋ = −ax + DLx, on top of a unidirectional (a) ring and (b) path, both made of M = 11
nodes. The norm ||x(t)|| (black curves) describes the global behavior of the system. The model in panel (a) corresponds to a normal system
and thus, independently of the system parameters and the initial conditions close to the equilibrium point, the perturbations are doomed to die
out. On the other hand, using a non-normal network (b), and assuming diffusion to be faster than the capture rate into the nodes sinks (D � a),
then the density on the terminal node experiences a strong transient amplification before reaching definitively the equilibrium. This transient
regime will influence also the return time [see panel (c)] where the return time τ2 corresponding to the non-normal network in (b) is larger
than the return time τ1 associated to the network used in (a). Observe that the stronger the system non-normality, the longer the return time and
also the larger gets the transient deviation from the stable equilibrium as measured by max xi(t) [panel (d)]. For both networked systems we
used the same initial conditions and the parameters a = 0.1 and D = 10.

the zero state [see Fig. 1(b)]. We can intuitively explain such
behavior by observing that if the individuals diffuse much
faster than they are removed from the system due to the sinks,
then they will first accumulate in the terminal node from
where they cannot exit anymore and thereafter, on a longer
timescale, they will inexorably decay. This transient regime
will eventually effect the return time, the time the system needs
to return sufficiently close to the initial state. In Fig. 1(c), we
show that the return time is longer for the non-normal system
(dark solid curve in the inset) than for the normal one (dashed
curve in the inset). We define such behavior the topological
resilience of a non-normal network. Observe also that, as one
should expect, the return time and the maximum deviation
from the equilibrium increase as long as the non-normality
gets stronger [see Figs. 1(c) and 1(d)], as measured by the
parameter γ (see Sec. III).

Let us observe that the above-described phenomenon, i.e.,
a link failure and the associated increase of non-normality, can
trigger a series of similar phenomena where the successive
terminal nodes (and links) stop to properly work because of
the large transient induced by the non-normality, creating thus
a cascade of events [4,6]. Such a possibility is not restricted to

ringlike structures but it applies to general non-normal network
that we will present in the following section.

III. NON-NORMAL NETWORKS

The key point is now to translate the information of matrix
non-normality onto the networks. Said differently, which are
the networks that can manifest non-normal dynamics? A
complete and exhaustive answer has not yet been provided,
although particular cases that involve the non-normality of
linear operators have already been identified [11,24–26].
Anticipating our result, we can say that sparse random net-
works whose nodes are accommodated into directed chainlike
structures—in our case responsible for a directional flow
into the network—have a good degree of non-normality.
Such structures translate into triangular adjacency matrices
A or with similar asymmetric properties. Let us observe
that the prototypical network model introduced in Fig. 1 can
be used as backbone for the required non-normal network;
starting from this remark, we thus propose an algorithm to
create a directed and weighted small-world network [27]
based on the Newman-Watts mechanism [28] that will result
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FIG. 2. Numerical abscissa as a function of the directional param-
eter γ in a non-normal network. Each point has been obtained with
100 replicas using the same set of parameters. For γ = 4, γ = 10, and
γ = 16 we show three representative adjacency matrices; the darker
the blue the larger the value of the link weight. One can appreciate the
presence of a ringlike structure: The weights on the upper diagonal
are quite strong as well as the weight connecting the node N to node 1
(bottom left corner in the matrices).

non-normal. More precisely, we initially take a random
weighted directed 1D ring, whose weights are chosen from
the uniform distribution U [0,γ ] with γ > 1; assume to order
nodes in the ring such that the existing links connect node ith
with node (i + 1)th. Observe that the ring is closed; however,
due to the different weights, some weak link could act as an
effective break, enhancing thus the non-normality. This core
directional network mimics the fact that agents are all forced
to move in the same direction; γ represents thus a sort of
directionality parameter in the backbone network. However,
for the sake of generality, one may consider agents to still have
some inertia to move in the opposite direction, even if with a
very low probability. To reproduce this fact, we assume that
weak links, whose weights are of order 1, and thus smaller than
the weights in the initial ring of order γ , may also exist pointing
in the opposite direction. More precisely, for all i = 1, . . . ,N

with probability 0 < p1 < 1 we create a weak link from node
(i + 1)-th pointing to node ith. Finally, in complete analogy
with the small-world model, long-range links do exist with
weights still of order 1: Direct interaction between far away
nodes is allowed but it is less probable and weaker with respect
to closer ones. More precisely for all couples of node (i,j ) such
that |i − j | � 2, we add with probability 0 < p2 < 1 a directed
link whose weight is of order 1.

In Fig. 2 we show three different examples of non-normal
networks made by M = 10 nodes with p1 = 0.5 and p2 = 0.2
for three different values of the parameter γ = 4 (weakly
non-normal), γ = 10 (non-normal), and γ = 16 (strongly non-
normal). As one can appreciate as γ increases, the numerical
abscissa ω[A(γ )] [see Eq. (A1) in Appendix A] also gets, on
average, larger. We decided to let γ vary because its impact
is stronger than the one of p1 and p2; indeed, as p1 increases

the Jordan blocks tend to have smaller size while increasing
p2 makes the matrix denser.

The resulting adjacency matrix, although not being exactly
a Jordan block, will result strongly non-normal, because of the
large values of γ and of the wide distribution of the weights
on the main ring with respect to the remaining ones. The
algorithm can also be easily extended to a structure where
multiple Jordan blocks are present or by defining the weights of
the long-range links to be inversely proportional to the geodesic
distance. Note that the adjacency matrices generated so far by
the algorithm are non-normal but not stable in general. In order
to observe the transient growth in the short-time dynamics, it
is necessary to assume also the matrix to be stable. This latter
fact is surely achieved once one considers the whole dynamical
system, namely taking into account also the reaction part and
the Laplacian matrix.

IV. MUTING OF THE ALLEE EFFECT

The non-normal assumption is thus responsible for unex-
pected outcomes on the dynamics and the transient phase can
negatively impact the system resilience, and as already stated
this feature is related to a structural property of the network.
To illustrate the potentiality of this mechanism we describe
a major application in ecology, the Allee effect [19] used to
explain the community cooperation or facilitation phenomena.
A notable example of the latter is the African wild dog,
Lycaon pictus, endemic and widely spread out over a large
geographical area of Africa [29]. Yet rapid climate changes
leading to the desertification and fragmentation of the habitat
from the agriculture expansion are increasing their risk of
extinction. Cooperation among the hunting strategy, the raising
of cubs, and defense from bigger predators play a crucial role
in the survivability of the species [29]. In the literature, the
Allee effect is often introduced by modifying some generic
model of population growth, for instance, the logistic equation
[18] [see Fig. 3(a)]. It is clear that species will survive only if
the initial density is beyond a certain threshold A; the system
indeed possesses two (stable) states: an undesired one which
corresponds to extinction, x∗

1 = 0, and the desired one, x∗
2 = 1,

where the system maximizes its opportunities to survive taking
into account the available resources [30].

To go one step further in the modeling, let us assume the
population of a single species to live in a patchy environment
where animals can move across the niches; the dynamics
can thus be described by the following diffusively coupled
equations:

dxi

dt
= rxi(1 − xi)

(
xi

A
− 1

)
+ D

M∑
j=1

Lijxj ,∀i , (2)

where xi denotes the species density in the ith patch, r the
reproduction rate, A the Allee coefficient, and D the diffusion
coefficient, all assumed for simplicity to be the same for all
patches.

If species x diffuses using a network that satisfies a nor-
mality condition and the initial conditions do not exceed the
Allee threshold, xi(0) < A∀i, then the species goes extinct
and diffusion cannot prevent it. Conversely, if the underlying
network belongs to the family presented above (see Sec. III
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FIG. 3. Resilience and the Allee effect. (a) The nonspatial Allee model, dx/dt = rx(1 − x)(x/A − 1), in normalized variables, x = n/K ,
where n is the population size and K the carrying capacity, r intrinsic growth rate, and A Allee critical parameter (here A = 0.3). The Allee
effect states that for x(0) < A the species fails to survive. (b) Non-normal versus normal system. For the normal systems, an initial condition
x(0) converges to the stable state x̂ of the attraction basin it belongs to, while if the numerical abscissa is large enough, hence the transient phase
is strong enough, it can reach another stable solution x∗. (c) Bifurcation diagram of the networked Allee model. For a normal system (blue), the
size of the survival zone, ∼1−0.25 = 0.75, is very close to that of the nonspatial model, 1 − A = 0.7, on the other hand for non-normal systems
(red) the survival zone is strongly increased, ∼1−0.05 = 0.95. (d) Turing patterns mechanism versus the non-normal one. In the former two
species are needed, with the inhibitor diffusing faster than the activator (denoted by a thick dashed line); in the non-normal scheme only one
inhibitor species is enough to create patterns once it diffuses on a non-normal network playing the role of the activator.

and Fig. 2), the system fate turns upside down and the pop-
ulation will survive, reducing thus the system resilience. The
explanation for this behavior can be found in the competition
between the diffusion mechanism and the reproduction rate.
It can happen that the transient amplification induced by the
non-normality is strong enough to surpass the Allee threshold,
at least in some of the patches, and, consequently, the system
saturates avoiding the extinction. A schematic illustration of
the resilience response of the Allee model on a non-normal
network is presented in Fig. 3. The non-normal spatial support
makes the stable undesired equilibrium x∗

1 = 0 less robust
against perturbations and thus a larger set of initial conditions
close to the latter can in fact escape and end up in a new
survival state x∗, close to the second stable equilibrium x∗

2 =
1 [see Figs. 3(b) and 3(c)]. Let us observe that the non-
normality assumption shrinks the attraction basin of x∗

1 = 0

and the separatrix among the attraction basins shifts towards
x∗

1 = 0.
In conclusion, the effect of the non-normality is to reduce

the system resilience and it emphasizes the great advantage
that a suitable network topology can represent in the popu-
lation dynamics. The theoretical approach hereby discussed
is generic and can be used to describe different scenarios in
ecology, e.g., the introduction of new individuals in a particular
habitat with the goal of species conservation or biological
control from invasive species [29]. Often, the achievement of
such goals is strongly conditioned by the Allee effect, the new
introduced individuals are not quite numerous and to prevent
their extinction, repeated releases are necessary before the
establishment of the new introduced species. However, if the
dispersion locations in the ecosystem under study are chosen to
induce a non-normal behavior, as previously shown, then this
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FIG. 4. Patterns emergence in non-normal networked systems. We represent the time evolution of the node density xi(t) (colored curves
on the left panel) for the Allee model (2) on top of a non-normal network made of M = 10 nodes(middle panel), together with the norm
||x(t)|| (black curve) to appreciate the global behavior of the system. One can observe the onset of a stable spatial patterns instigated by a
“terminal node” (red node on the middle panel and red curve on the left panel) of a backbone directed weighted path. On the right panel the
patterns amplitude measured by ||x(t)|| for large enough t is reported as a function of γ (black curve), a proxy for the non-normality strength
(see Appendix A). Parameters are r = 0.1, A = 0.3, and D = 10. The core ring has stronger links compared to the long-range ones.

will increase the probability of the newly introduced species
to survive.

V. A NEW MECHANISM FOR PATTERNS FORMATION

The outcome of the above-presented example, i.e., species
survival and nonhomogeneous spatial distribution because of
the non-normality assumption, can thus be considered as a
mechanism for the formation of nonhomogeneous patterns.
One of the mostly diffused mechanisms responsible for the
patterns formation is the one introduced by A. Turing in
his seminal paper on morphogenesis [17]. He stated that a
nonlinear reaction-diffusion system, starting from a homoge-
neous stable state, can experience a diffusion-driven instability,
producing spatially inhomogeneous solutions, the celebrated
Turing patterns [17,18]. The minimal required conditions are
the presence of at least two species, one being the “activa-
tor” (capable to trigger their own growth) and the other the
“inhibitor” (antagonist to the former, impede any fur-
ther growth once diffusing), and, moreover, that the ratio
of their diffusion coefficients (inhibitor vs. activator) should
be larger than some threshold, which in realistic models is of
the order of ∼10 [18] (see Fig. 4).

Even though the advantage of the directed network over
undirected ones has been emphasized in the process of
the formation of Turing patterns [31], the non-normality of
the discrete spatial support has not yet been considered.
In the presented scenario, this topological feature will force
the inhibitors in some of the nodes to initially increase their
concentration until they saturate in the nonlinear phase. What
is remarkable is that the species which apparently tends to
go extinct because of the negative growth rate exploits a faster
diffusion process that makes them spread before the individuals
counteract and eventually lead to self-organization. This is thus
a new mechanism, different from the Turing one, capable of
explaining the patterns formation process.

Let us stress again that the present result is a natural gener-
alization of the non-normal community matrices presented in
Ref. [13] from the field of the ecology to generic dynamical
systems defined on complex networks. Using Weyl’s theorem,
in Ref. [14] authors have been able to prove that non-normality
of the Jacobian matrix of the whole system, evaluated at the

equilibrium, is a necessary condition to have Turing patterns
for systems involving at least two diffusing species in a
continuous domain. Our result differs from the latter because
the non-normality can be introduced into the system through a
non-normal network; this allows us to relax the assumption on
the reaction part that can now be symmetric, i.e., the Jacobian of
the reaction part is a normal matrix, and still the system exhibits
patterns at odds with the results proposed by Refs. [14–16].
Eventually, this allows us to consider a single (self-inhibiting)
species diffusing on a non-normal network—that will act as
an activator—as a minimal model for patterns formation. This
could introduce a possible explanation of the challenging
problem concerning the initial phase of embryogenesis when
all the cells are identical and a networked spatial organization
of the cells occurs [32,33].

VI. ALLEE EFFECT AND THE OUTBREAK OF
EPIDEMICS: A TOY MODEL BASED ON THE

LONDON TUBE

Ecosystems are fragile systems and thus ideal study cases
for the resilience phenomenon. We have previously seen that
there are examples of species dynamics where, in case of
low densities, the growth rate is negatively correlated with
the population density, meaning that there is the need for a
minimum number of individuals to reproduce and survive in
their habitat, e.g., the Allee effect. The reasons for the Allee
effect are found in the loss of genetic diversity of the population
for low densities [29], the demographic stochasticity including
the sex-ratio fluctuations which impede reproduction [34] or
the reduction of the cooperative interactions when there are few
individuals [20]. The latter is of course directly related to the
network of interactions and as we have seen to the non-normal
dynamics.

On the other hand, the Allee effect may yield also a positive
effect when it manifests in the persistence of pathogens as is the
case of the measles [35]. It has been observed that the critical
community size for measles, namely the minimal number of
humans needed for the disease to spread overall in a population
of susceptible individuals, is between 250 000 to 400 000.
This largely explains why vaccination programs in developing
countries, involving only a fraction of the total population, have
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FIG. 5. The London Tube map. Top panel: The whole London Tube map where the yellow Circle Line and the magenta Metropolitan Line
have been emphasized to show their different geographical emplacement and shape. In the bottom panels we separately present the magenta
line (left) and the yellow line (right) and their respective flows of commuters (black lines with arrows).

nevertheless produced an appreciable decrease in the number
of infected individuals.

We hereby thus consider a second relevant application of
non-normality in the framework of epidemics spreading on
metropolitan scales. We analyze an abstract spreading model
based on the London Tube network and we emphasize the
role of commuters during the peak hours coming from the
outskirts of Greater London, in the outbreak of the epidemics
of some pathogens that manifest a strong Allee effect, such as
the measles virus.

We consider two principal lines of the London Tube (Fig. 5)
that share different topologies and transport features. The first
one is the yellow Circle Line (bottom right panel, Fig. 5)
which encircles the city downtown and has intersections with

almost all the other lines. It is geographically dense, namely
the stations are very close each other, and it is one of the lines
of the London underground system with the largest number
of transported passengers [36], making it a perfect example to
test epidemics spreading. The hypothetical pathogen we are
considering, say, the measles, is strongly affected by the Allee
effect, so in order for the epidemics to outbreak, we need a
critical number of vectors, namely infected humans, in the
same place for a given amount of time. In Fig. 6(a), we show
the result of the simulation of the spatial Allee model once
the underlying network is represented by the yellow Circle
Line; because only people traveling in the same train can get
infected (the pathogen is transmitted by air), we consider only
one direction of the line and thus assume the network to be
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FIG. 6. Hypothetical measles outbreak in the London Tube network. Time evolution of the (normalized) number of infected individuals
during the peak hours in the yellow Circle Line taking into account 27 stations (a) and in the magenta Metropolitan Line (b) considering
23 stations with the fluxes illustrated in Fig. 5. In the former case (a) we assumed the average number of passengers to be constant because in
each station, the average number of passengers getting on equals that of those getting off. The circular topology and the Allee effect impede
the outbreak of the epidemic. On the contrary, for the second case (b), we assume that, on average, as long the trains approach downtown, the
number of passengers increases, because most of the individuals have their destination in the city center. In this case, despite the presence of
the Allee effect, the topology contributes to the outbreak of the measles epidemic once the train reaches the center. The parameters of the Allee
model are a = 1, A = 0.3, and D = 10 for both cases.

directed. Moreover, we assume that, on average, the number
of people in the train to remain constant for the time interval
we consider. Namely because of the density of the stations
and of the centrality of the line, roughly the same number of
people gets in and off the train at each station. The random
variations from the average is responsible for the fluctuations
visible in the Fig. 6. The main outcome one can appreciate from
Fig. 6(a) is that the disease does not persist and the epidemics
will not outbreak, at odds with the intuition that the Circle Line
will support many commuters and thus inducing a high chance
for the virus to survive due to the large number of human
encounters.

On the other hand, if we consider the magenta Metropolitan
Line (bottom left panel of Fig. 5), which connects the north-
western outskirts with the downtown of London, and perform
a similar hypothetical experiment of virus spreading, the result
overturns [see Fig. 6(b)]. Here we assume that passengers for
the period of time we considered mostly do not get off the train
until they reach the center of the city. This induces a strong
directionality in the network, which will result non-normal,
thus allowing the virus to overcome the Allee threshold. It
is now clear from the simulation that the epidemic outbreaks;
once the commuters reach their destinations at the center of the
city they are almost all infected and then they will contribute
to spreading the virus in the central part of the city and then,
as a consequence, in the whole city.

This phenomenon can be easily explained in the framework
of non-normal dynamics. The Circle Line can be seen as a
normal network and, moreover, commuters spend, on average,
a short time on these trains, independently from the fact that
they are vectors of the virus or not; in conclusion, the pathogen

does not have sufficient time to develop and reach numbers
that allow it to invade the population where it diffuses. On the
contrary, possible vectors (commuters) living in the suburbs of
the city and spending a longer time in the densely populated
train make possible the spread of the virus, because of the
non-normality structure of the network, as in the case of the
Metropolitan Line.

In conclusion, with this simple model we have been able
to show that independently from the topology of the spatial
domain, if—by their actions—the individuals determine a
strongly directed flux from one region to another, then the
spreading pathogen will avoid the Allee effect and so helping
its survivability. This observation could play a relevant role in
the modeling of diseases spreading in urban scenarios.

VII. DISCUSSION

In this paper we studied the role of non-normal topology
on the resilience phenomenon for dynamical systems defined
on directed networks. In the first part, we showed that,
interestingly enough, the way that parts of interconnected
systems interact could make them vulnerable to weak external
perturbations. Unexpectedly, these perturbations will follow
an initial amplification that can lead the system to a new
state, possibly far from the initial one. Hence to increase the
robustness of the networked system, for instance, in the case
of power grids aimed at reducing cascade failures, one should
tune down the non-normality.

Furthermore, we proved in the second part of the paper
that once the non-normality guides the system toward a
nonhomogeneous equilibrium state, the process at work can be
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cast in the framework of patterns formation driven by dynami-
cal instability. The single species case hereby presented shows
the impact of the network topology on the self-organization
process, allowing the formation of patterns complementary to
the Turing mechanism, thus resulting in the minimal model for
pattern onset on networked systems.

From the applicative point of view, this approach may shed
light onto problems related to multispecies models in ecology;
for instance, if the goal is to promote coexistence or survival
of newly introduced species, then the network of interactions
should be designed to be non-normal as much as possible to
prevent the Allee effect from favoring extinction. On the other
hand, in the case where the invasive species is an infectious
pathogen [37] (noxious Allee effect), then one should avoid or
reduce non-normality.

This last remark can thus have a very relevant impact on
the design of urban agglomerations and their transportation
networks in order to increase their robustness against the
spreading of diseases. As a particular study case we mention
the London Tube transport system, where the daily commuting
fluxes from the outskirts to the city center create a non-normal
system where the possibility for pathogens to survive and the
consequent epidemic outbreaks are highly enhanced compared
to people living and moving in the downtown.

Let us observe that the non-normal mechanism studied is
more general than the few applications we brought here, as one
can infer from Eq. (1). In particular, we decided to focus on the
diffusion process and the role of space; nevertheless, one can
provide interesting applications also to a-spatial systems where
the non-normality shapes the interactions among individuals
of different species, for instance, in the framework of food
webs where the non-normality assumption holds very often
(see Table I in Appendix C). Indeed, food webs are very
often directed acyclic graphs (or very similar to them) that
by definition have strongly non-normal adjacency matrices. In
conclusion, we are confident that the non-normality property
can determine multiple and still unexplored achievements in
the dynamics of networked systems.
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APPENDIX A: NON-NORMALITY MEASURES
AND TRANSIENT GROWTH

Non-normal linear dynamical systems exhibit a peculiar
time evolution, the transient phase being potentially very
different from the case of normal ones. Different measures
exist to quantify the non-normality of a matrix [8,14] and thus
to unravel the accompanying behavior [38]; for instance, in
population dynamics [13] the reactivity is used for evaluating

FIG. 7. Time evolution of the norm of the solution of the linear
ODE ẋ = Ax. The red curve corresponds to a non-normal matrix
ω(A2) = 3.52 while the blue curve to a normal one ω(A1) = −0.79;
one can clearly appreciate the temporal growth arising in the former
case. In the inset we still report the norm of the solution but in
logarithmic scale to emphasize the short-time behavior described by
the numerical abscissa (the straight black line has slope 3.52) and
the long-time one related to the spectral abscissa (the dashed and
dot-dashed straight lines have slope −1).

the ecological resilience. The latter, referred to as the numerical
abscissa [8], also suites our purpose. For a given M × M real
matrix A it is defined by

ω(A) = sup σ [(A + A∗)/2], (A1)

where σ (A) denotes the spectrum of the matrix A and A∗ is
its conjugate transpose. Let us assume A to be a stable matrix
[39]; if the numerical abscissa takes negative values, then the
orbits exponentially approach the fixed point. On the other
hand, if ω(A) > 0, then a transient growth occurs whose size
is proportional to the numerical abscissa, determining thus the
magnitude of the non-normality of A (see Fig. 1 and Fig. 7).

In order to study as a single entity the behavior of the linear
ordinary differential equation (ODE), dx

dt
= Ax, we can look at

the time evolution of the Euclidian norm of the solution ||x|| =√
x2

1 + x2
2 + · · · + x2

M . One can easily realize that the latter ex-
periences a temporary growth whose size is proportional to the
non-normality of the involved matrix; in the case of multiple
eigenvalues (as in the case reported in Fig. 1), we can look
at the explicit solution x(t) = c1v1 + c2t

M−2eλ2tv2 + c3e
λ3tv3,

where cj are constant coefficients set by the initial conditions;
λ2 and λ3 the negative eigenvalues of the non-normal matrix,
the former with multiplicity M − 2; and vj the associated
eigenvectors (λ1 = 0). Let us observe that the transient growth
for ||x|| can be obtained also in the case of nondegenerate
eigenvalues once a orthonormal eigenbasis cannot be found
(see Fig. 7).
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Indeed, the numerical abscissa generically describes the
short-time behavior of the solution (the limit t → 0+), in fact
calculating:

max
||x0||�=0

[(
1

||x||
d||x||
dt

)∣∣∣∣
t=0

]

= max
||x0||�=0

[(
1

||x||
d
√

x∗x
dt

)∣∣∣∣
t=0

]

= max
||x0||�=0

[(
x∗dx/dt + (dx/dt)∗x

2||x||2
)∣∣∣∣

t=0

]

= max
||x0||�=0

[(
x∗(A + A∗)x

2||x||2
)∣∣∣∣

t=0

]

= max
||x0||�=0

[
x∗

0H (A)x0

x∗
0x0

]
, (A2)

where x0 is the initial condition for the solution x. One can
recognize that H (A) = (A + A∗)/2 is the Hermitian part of A;
hence, according to the Rayleigh’s principle [39], the rightmost
term of Eq. (A2) is equal to the largest eigenvalue of H (A),
and thus we can conclude that ω(A) = sup σ [H (A)] provides
the initial behavior of the norm of x. Notice that this measure
does not depend anymore on the initial conditions, meaning
that it characterizes the intrinsic properties of the matrix A and
not of a specific solution.

The second limit we are interested in is the long-time
behavior of the solution, namely t → +∞. This can be studied
using the spectral abscissa of the matrix A, denoted by α(A)
and defined by:

α(A) := max
||x0||�=0

[
lim

t→+∞

(
1

||x||
d||x||
dt

)]
. (A3)

It is well known that the eigenvalue with the largest real part
completely determines the asymptotic behavior of the solution
of the ODE, and thus one can compute the spectral abscissa as
α(A) = sup 
[σ (A)].

We can hence conclude by observing that, although
α(A) < 0, if ω(A) > 0, then the equilibrium will be stable
but a transient growth will emerge in the short-time regime,
producing a deviation from the steady exponential decay of
stable normal systems. The following example well illustrates
this behavior. Let us analyze the time evolution of the norm of
the solution of the linear ODE system involving the following
matrices Ai , i = 1,2,

A1 =
(−1 1

0 −2

)
and A2 =

(−1 10

0 −2

)
.

A straightforward computation allows us to obtain the nu-
merical abscissa, ω(A1) = −0.79 < 0 and ω(A2) = 3.52 > 0,
and the spectral abscissa α(A1) = α(A2) = −1. Although both
matrices possess the same spectral abscissa, the existence of a
positive numerical abscissa for the second matrix determines

a transient growth to occur (see the main panel of Fig. 7).
A schematic illustration of the impact of these two measures
on the transient time evolution of a solution is given in
the inset of Fig. 7. Once again, this prototypical example
demonstrates that the spectrum alone is not able to describe
the linear dynamics in the setting of non-normal dynamical
systems.

APPENDIX B: DETAILS OF THE NUMERICAL
SIMULATIONS

Figure 1. The results reported in Fig. 1 have been obtained
using a deterministic numerical integration scheme based on a
fourth-order Runge-Kutta method. For both Figs. 1(a) and 1(b)
the initial conditions were chosen randomly from a uniform
distribution [0,0.1]. For both networks, the ring and the path,
the links all have weights 1. The return time has been defined as
the time needed by the system to return 0.1 close to the initial
condition.

Figure 3. To obtain the bifurcation diagram shown in
Fig. 3(c) we considered initial conditions close to the ones
used for Fig. 1, that is, drawn from a uniform distribution
U [0,0.1], and then we numerically simulated the spatial Allee
model on top of a non-normal network (red squares) and of
a weakly non-normal one (blue triangles), and eventually we
determined the asymptotic size of the system described by ||x||.
The model parameters have been set to r = 0.1, A = 0.3, and
D = 10. More precisely, for several values of β ∈ [0,0.5] we
draw initial conditions from the uniform distribution U [0,0.1],
and then we add a random number drawn from the distribution
U [β − 0.05,β + 0.05]; to reduce the variability in the results
induced by the randomness of the initial conditions, we repeat
10 times the same experiment with the same β. The non-normal
network has been built using the method presented above with
parameters M = 10 nodes, γ = 10, p1 = 0.5, and p2 = 0.2,
resulting in a numerical abscissa ω(J) = 1.87. The weakly
non-normal network has been obtained similarly but using
p2 = 0.8, giving a numerical abscissa ω(J) = 0.57. Let us
observe that we hereby compute the numerical abscissa using
the Jacobian of the dynamical system and not only of the
network adjacency matrix.

Figure 4. The results reported in this figure have been
obtained using a deterministic numerical integration scheme
based on a fourth-order Runge-Kutta method. The initial
conditions were chosen randomly from a uniform distribution
[0,0.1]. ||xasympt|| is the value of ||x(t)|| for t large enough so
that the system reached the equilibrium patterns. Let us observe
that this is a measure of the pattern’s amplitude because the
reference solution is the null one. The model parameters have
been set to r = 0.1, A = 0.3, and D = 10. The non-normal
network has been built using the method presented above with
parameters M = 10 nodes, γ = 10, p1 = 0.5, and p2 = 0.2.

APPENDIX C: NON-NORMALITY IN FOOD WEBS

In this section we report some figures of food webs [40],
emphasizing in particular their non-normal character (Table I).
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TABLE I. Food webs. We report some figures for a large set of food webs available in the literature, whose number of nodes and links span
two orders of magnitude. They all result to be (weighted) non-normal networks, namely AA∗ �= A∗A, and they posses a positive numerical
abscissa (ω) which is much larger than the corresponding spectral abscissa (α).

Network name Nodes Links ω(A) ω(A) − α(A) Ref.

Charca de Maspalomas, Gran Canaria 21 82 5.40 × 105 2.97 × 104 [41,42]
Crystal River (2) 21 100 1.94 × 103 8.86 × 102 [42,43]
Crystal River (1) 21 125 2.52 × 103 1.31 × 103 [42,43]
Narragansett Bay Model 32 220 8.06 × 105 6.56 × 103 [42,44]
Early Cambrian Chengjiang Shale 33 99 6.33 1.41 [45,46]
Lower Chesapeake (Summer carbon flows) 34 178 1.06 × 105 3.34 × 104 [42,47]
Middle Chesapeake (Summer carbon flows) 34 209 1.65 × 105 3.47 × 104 [42,47]
Upper Chesapeake (Summer carbon flows) 34 215 6.23 × 104 7.76 × 103 [42,47]
Chesapeake (Summer carbon flows) 36 177 4.11 × 105 9.87 × 104 [42,48]
Middle Cambrian Burgess Shale 48 249 7.88 5.88 [45,46]
St Marks River (Florida) Estuary 51 356 139.50 28.45 [42,49]
Everglades Graminoid Marshes 66 916 1.44 × 103 1.04 × 103 [42,50]
Flensburg Fjord (Germany and Denmark) 77 579 10.27 9.27 [46,51,52]
Carpinteria Salt Marsh (USA) 107 970 13.21 7.91 [46,52,53]
Bahia Falsa (Mexico) 119 1077 13.98 9.20 [46,52,53]
Otago Harbor (New Zealand) 123 1206 14.36 8.36 [46,52,54]
Sylt Tidal Basin (Germany and Denmark) 126 1052 13.39 10.78 [46,52,55]
Cypress wetlands South Florida (wet season) 128 2016 296.71 132.11 [56,57]
Cypress wetlands South Florida (dry season) 128 2137 217.60 152.50 [56,57]
Ythan Estuary (Scotland) 134 420 8.13 6.51 [46,52,58]
Estero de Punta Banda (Mexico) 138 1657 18.56 9.56 [46,52,53]
Little Rock Lake (Wisconsin, US) 183 2494 21.69 14.69 [56,59]
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