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Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional
fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving
force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates
that coherence alone cannot be enough to explain all the structural features observed in many real-world networks.
In this work, we propose an adaptive network model where the dynamical evolution of the node states toward
synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which
accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously
develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping
mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely,
brain networks, for which the emergence of explosive synchronization has been observed.
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I. INTRODUCTION

Adaptivity is a key feature in the construction and function
of many real complex systems. In the brain, for instance,
plasticity is at the heart of memory and learning processes, and
governs the huge functional versatility of this system. In many
modeling approaches, synchronization has been studied as the
emerging collective phenomenon of interest in a population
of interacting dynamical units, and the target of adaptation
has been considered to be the improvement of the level of
synchronization in the system [1,2]. Most of the works in
this area have implemented different versions of the Hebbian
adaptation rule as a generative mechanism to enhance the
strengths of the links of a network [3–6]. As a result, the origin
of various emerging features of real-world networks, such as
scale-free topologies [7], modularity [3,4], or assortativity [5],
has been better understood.

However, even if brain synchronization, both at the scale
of neurons and at that of cortical areas, has proved to be
fundamental for the proper functioning of the brain, improving
the coherence cannot be the only mechanism at work in brain
networks. In fact, it is well known that oversynchronization
can destroy the overall complexity of the system, reducing
the amount of information that the system is able to process
and eventually leading to pathological states such as epilepsy
[8]. For this reason, inhibition and anti-Hebbian coupling

have been investigated in neural systems, and they have been
shown to play an important role in the control of excessive
synchronization and redundancy [9–11], and also in the context
of circadian rhythms [12]. Anti-Hebbian rules have also been
considered more in general in adaptive complex networks,
and it has been found that they can be useful to generate
features such as criticality [13], dissasortativity [7], structural
heterogeneity [14], bistability [15], or multistability [16].

In this work, we introduce and study an adaptive complex
network model in which the nodes are coupled oscillators
trying to synchronize their phases, while the link weights
evolve with an anti-Hebbian rule which weakens the con-
nection between pairs of coherent nodes. We will show that
the competition between the attractive coupling and the anti-
Hebbian link dynamics generates networks with interesting
topological and dynamical features. In particular, we find
that the networks produced by our model are able to sustain
explosive synchronization (ES), and this happens for a large
range of the two tuning parameters of the model. Explosive syn-
chronization, i.e., the sudden, discontinuous and irreversible
transition from an incoherent state to a fully synchronized
one, is a phenomenon that has attracted special attention in
the last few years [17–22]. Explosive synchronization has
been also observed experimentally in power grids [23], circuits
[24], and chemical reactions [25]. More recently, the interest
has extended also to neuroscience, and some experimental
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studies have related explosive synchronization to the onset of
seizures [26], and the transition to and from consciousness
in anaesthetized patients [27,28]. Our results indicate that the
frustration induced by an anti-Hebbian adaptation rule that
promotes links between nodes in antiphase is the responsible
of the phenomena observed empirically in neuroscience. Thus,
having a simple model that produces networks able to suddenly
switch to full coherence can become very useful to explore the
role of the different tuning parameters and to understand the
basic mechanisms behind explosive synchronization in neural
systems.

The article is organized in the following way. In Sec. II
we introduce our coevolving network model coupling node
synchronization and anti-Hebbian pairwise interactions. In
Sec. III we show by means of numerical simulations the basic
structural and dynamical features of the emerging networks,
and how they sustain explosive synchronization. In Sec. IV
we consider the simplified version of the model with only two
coupled oscillators, which is amenable to analytical solution
and allows one to grasp the basic mechanisms at work in the
considered coevolving process also for larger coupled systems.
Finally we draw our conclusions in Sec. V.

II. THE MODEL

We consider a system of N = 300 all-to-all coupled Ku-
ramoto oscillators, the simplest and most common way to
describe synchrony in nature [29,30]. Each oscillator is char-
acterized by its phase θl , with l = 1, . . . ,N , whose dynamics
is ruled by the equation

θ̇l = ωl + σc

N

N∑
m=1

αlm sin(θm − θl), (1)

where ωl is the natural frequency associated to the oscillator,
which is assigned randomly from a uniform distribution in the
interval [0.8,1.2], αlm ∈ [0,1] is the weight of the connection
between the units l and m, and σc is the so-called coupling
strength, the control parameter that allows one to tune the
strength of the interactions. Despite that the original model
was not devised to describe neurons or groups of neurons, in its
simplicity, the model is able to capture the gist of a synchronous
behavior, which explains why it is nevertheless useful for
the investigation of brain networks [31,32]. In our work we
consider the case in which the weight of a link can differ
from one pair of nodes to another. Furthermore, we assume
that the weights of the links can change in time according to
the dynamics of the corresponding two end nodes. Namely,
the quantities αlm, with l,m = 1, . . . ,N , are considered to be
time-dependent variables, αlm = αlm(t), obeying a differential
logistic equation, with a growth rate which depends on the
correlations of the two corresponding oscillators l and m. The
equation reads

α̇lm = (pc − plm) αlm(1 − αlm), (2)

where plm = plm(t) is the instantaneous phase correlation
between units l and m at time t , defined as

plm(t) = 1
2 |eiθl (t) + eiθm(t)|, (3)

and pc is a correlation threshold. The threshold is the second
tuning parameter of our model, and has the following meaning.
Whenever plm(t) < pc, the weight of the link (l,m) gets
increased by the dynamical evolution of Eq. (2), while the
weight αlm is decreased when plm(t) > pc. Thus, once the
value of pc is fixed, the links connecting pairs of oscillators
with a higher (lower) level of instantaneous synchronization
will be weakened (reinforced). As we will show, such a
mechanism of frustration of the local synchronization process,
which affects a larger number of pairs the higher is the value
of pc, is an essential ingredient for the emergence of explosive
synchronization. Notice that Eq. (2) implements a sort of bista-
bility, in which most of the weights αlm(t) will tend to converge
in time to either one of the two values, 0 or 1. As a consequence,
for any given choice of the two tuning parameters of our model,
σc and pc, and a random sampling of the initial conditions
θl(t = 0) = θl(0), and αlm(t = 0) = αlm(0), the coevolution of
oscillator states and link weights governed by Eqs. (1) and (2)
will result in a progressive pruning of the links of the initially
complete graph, until the system approaches an asymptotic
state, defined by α̇lm = 0, ∀ l,m, corresponding to a specific
dynamically induced network topology.

The phase correlation introduced in Eq. (3) is an instan-
taneous measure of the correlations between two nodes, and
it does not depend on any long-term synchronization process
[5]. This represents a qualitative difference between the present
study and that conducted in Refs. [3,4], where it was shown
that memory-dependent adaptation mechanisms may induce
the simultaneous appearance of synchronized clusters and
scale-free distributions for the weights of a network. Here,
instead, is the adaptive nature of the interactions that directly
shapes the topology of a network, and all what will be discussed
hereinafter will be about the connectivity properties of the
emergent network structure.

III. RESULTS

For a large range of parameters σc and pc we measure
the final degree of global synchronization by means of the
Kuramoto order parameter

R :=
〈

1

N

∣∣∣∣∣
N∑

l=1

eiθl (t)

∣∣∣∣∣
〉

t

,

with R ≈ 1 indicating a fully synchronized graph, and R ≈ 0
an asynchronous behavior. All the measures are averaged over
ten different instances of the system.

In Fig. 1(a) we characterize the asymptotic dynamics of the
network by reporting the average value of R as a function of
pc for different values of σc. As expected, for small values
of the coupling σc the network is not able to synchronize
for any value of pc. However, above the critical coupling
for the Kuramoto model σ ∗

c = 2
πg(0) = 0.8/π � 0.255 [33],

the global synchronization shows an abrupt transition at pc �
0.625. For slightly smaller values of σc, the global strength,
defined as S = ∑N

l,m>l αml , suffers also a sharp transition,
as shown in Fig. 1(b), pointing out the fact that the net-
works go through a phase of strong local synchronization
before global coherence is achieved. To better characterize
the properties of the emerging networks, in the following we
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FIG. 1. Asymptotic values of (a) global synchronization, R, and (b) total strength, S, in coevolving weighted networks governed by Eqs. (1)
and (2), as a function of the correlation threshold pc, and for different values of the coupling strength σc. When σc > σ ∗

c � 0.255, abrupt
transitions indicating the emergence of explosive synchronization are observed at pc � 0.625.

analyze the adjacency matrices A = {alm} associated to the
original weighted graphs W = {αlm}, where we set alm = 1
if αlm > τ , and alm = 0 otherwise. We choose τ = 0.8 as a
very conservative threshold to ensure that we keep all the
significant links. The system is explored for pc = [0.6,1]
and σc = [0.2,1], the relevant parameter range deduced from
Fig. 1. As the thresholding process can lead to node pruning,
we have performed a component analysis and computed the
size NG of the largest connected component. Results are
again averaged over ten different realizations of the process.
Figure 2(a) shows a heat map of the average size of the
giant connected component NG(σc,pc) for each pair of control
parameters (σc,pc). We notice that in a large area of the phase
diagram, all the N = 300 nodes belong to a single component.
However, when measuring the average degree 〈k〉 in Fig. 2(b),
we observe that the network connectivity decreases from that
of fully connected networks to 〈k〉 = 2 for large values of σc.

More interesting information is retrieved when the cor-
relations between the microscopic features are inspected. In
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FIG. 2. (a) Size of the giant connected component, NG, in the
asymptotic binarized networks and (b) average degree 〈k〉, as a
function of the coupling strength σc and of the correlation threshold
pc.

Fig. 3 we show for three representative values of pc, namely,
0.62 (left), 0.85 (center), and 0.97 (right panels), for a fixed
value σc = 0.6 —high enough to enable synchronization as
shown in Fig. 1(a)—how the emergent network structure and
its dynamics are intertwined. In the first row of Fig. 3 the degree
of each node kl is pictured as a function of the frequency
ωl . Before the transition (pc = 0.62), the two features are
uncorrelated. However, after the transition, a strong correlation
between kl and ωl appears, meaning that the nodes with ωl

at the two edges of the natural frequency distribution are

FIG. 3. Scatter plot of the node degree ki (upper row panels) and
of the node neighborhood detuning ωi − 〈ωim〉 (central row panels)
as a function of the natural frequency ωi of a node for σc = 0.6. The
connectivity of the resulting networks is shown as matrices where
nodes are placed according to their natural frequencies ω (bottom
row panels).

042301-3



VANESA AVALOS-GAYTÁN et al. PHYSICAL REVIEW E 97, 042301 (2018)

much more connected. This is a surprising and noticeable
feature, as V-shape k-ω relationships are well known to be
characteristic of networks capable of sustaining explosive
synchronization [18–21]. The finding is confirmed by the fact
that the dynamics in Eq. (2) forces the network to acquire
frequency dissasortativity, i.e., nodes are much more likely to
link to those with distant frequencies, as can be seen in the
central row of Fig. 3, where we plot the frequency detuning of
each node with its averaged neighbor frequency ωl − 〈ωm〉l ,
where m ∈ Gl are the nodes in the neighborhood of node l.
The phenomenon is especially striking just after the transition
(center panel). In addition, we also see that for intermediate
values of pc, the detuning is bistable inside the same network.

These results show that the link evolution has actually
reinforced links connecting nodes whose frequencies are as far
as possible, progressively pruning the remaining connections.
This process can be followed through the panels in the bottom
row of Fig. 3, where the full connectivity matrix is plotted
as a function of (ωl,ωm). Before the transition to synchrony
(first column, pc = 0.62), the pruning affects only nodes with
frequencies close to the center of the distribution, as can be seen
in the left panel. As pc grows, the link suppression affects a
larger number of links connecting nodes with higher detuning,
and therefore 〈k〉 and eventually Ng(σc,pc) decrease. A further
increase of pc generates larger values of the mean strength in
the network, Fig. 1(b), and a slight increase in the number of
links above the threshold, as shown in Fig. 3 (right bottom
panel).

The structural inspection of the networks obtained through
the adaptive process described by Eqs. (1) and (2) has revealed
that for a wide range of the tuning parameters the emerging
systems present a strong frequency-degree correlation and
frequency dissasortativity. This hints that such networks could
be able to sustain first-order synchronization, here critically
controlled by the correlation threshold pc.

We numerically check this prediction by using the resulting
networks as the fixed connectivity support of a system of
interacting Kuramoto oscillators, described by the following
dynamical equation:

θ̇l = ωl + σ

N (σc,pc)

N(σc,pc)∑
m=1

alm sin(θm − θl), (4)

where l = 1, . . . ,N (σc,pc), being N (σc,pc) � N the size of
the binarized network obtained after the adaptive process for
parameters (σc,pc), and A′ = {alm} the adjacency matrix of
the corresponding largest giant component of size Ng . The
coupling strength σ is now set to be the only control parameter,
regardless of the original value of σc used to create A′. The
original frequency ωl of each node l is maintained to preserve
the structure-dynamics correlations which appeared as a result
of the adaptive process. The coherence R is monitored as
a function of σ by gradually increasing its value along the
simulation without resetting the system. As long as we are
looking for a possible first-order phase transition, and the ex-
pected corresponding synchronization hysteresis, we perform
the simulations also in the reverse way: i.e., we start from a
given value σmax where the system is found to be synchronized,
and gradually decrease the coupling. In the following, the two
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FIG. 4. (a) Global synchronization R for forward and backward
synchronization schemes for the binary networks considered in Fig. 3.
In panels (b) and (c) we investigate the abrupt nature of the synchro-
nization transition by reporting the maximum synchronization jump
J (b) and the width of the hysteresis loop H (c) as a function of the
coupling strength σc and of the correlation threshold pc.

sets of numerical trials are termed as forward and backward
branches, respectively, as used in the literature [17,21].

In Fig. 4(a) we show the synchronization schemes for
the same examples whose structures have been studied in
Fig. 3 (σc = 0.6; pc = 0.62,0.85,0.97). The three types of
structures correspond indeed to different dynamical behaviors.
For networks obtained with pc below the transition, where
structural-dynamics correlations are not observed, the network
synchronizes in a second-order, reversible transition (red cir-
cles). For pc values beyond the critical value, the coherence
is reached through a first-order transition, as suggested by
the strong frequency-degree correlations. For intermediate
values (green squares), this transition to synchrony is very
delayed, and presents an hysteresis loop as a consequence of
the bistability generated in the detuning distribution (already
commented in Fig. 3, central panel). For even larger pc values
(blue diamonds), corresponding to networks with softer k-ω
correlation and without gap bistability, the synchronization
occurs abruptly but reversibly.

A wider overview of how the tuning parameters σc and pc

determine these dynamical behaviors is shown in Figs. 4(b)
and 4(c). As a measure of abruptness of the synchronization
transition, in Fig. 4(b) we compute the average value of the
maximum difference in the value of R for two consecutive
values of the coupling parameter

J := maxσ {R(σ + δσ ) − R(σ )}
for the forward transition. Similar results are found for the
backward transition. In Fig. 4(c), we measure the width of
the hysteresis loop by computing the distance between the
critical synchronization couplings for the backward (σb) and
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the forward (σf ) processes,

H := σb − σf .

As can be seen, the parameter region where the width of the
hysteresis loop presents significant values closely corresponds
to the values where Ng(σc,pc) < N [Fig. 2(a)], when the
frustration for the nodes with frequencies close to the center
of the distribution is so strong that they eventually become
disconnected and are removed from the binary network.

IV. ANALYTICAL ANALYSIS OF A SIMPLE
ADAPTIVE SYSTEM

To better understand the dynamical system considered in
the previous sections, we proceed to analytically study the two
oscillators θ1 and θ2 coupled by a single weighted link, α =
α12 = α21. For this simplified system, Eqs. (1) and (2) reduce
to

θ̇1 = ω1 + σc

2
α sin(θ2 − θ1),

θ̇2 = ω2 + σc

2
α sin(θ1 − θ2),

α̇ = (pc − p) α(1 − α),

where p = p12 = p21 is the instantaneous phase correlation
between oscillators 1 and 2 defined in Eq. (3),

p =
√

1 + cos(θ1 − θ2)

2
.

Without loss of generality, we suppose that 	 := ω1 −
ω2 > 0 in order to transform the former set of equations into
a two-dimensional system with variables α and the phase
difference between oscillators φ := θ1 − θ2, so that we have

φ̇ = 	 − σcα sin φ,

α̇ =
(

pc −
√

1 + cos φ

2

)
α(1 − α). (5)

As it is not possible to integrate Eqs. (5) explicitly, we
analyze the system stability to grasp insights on its qualitative
behavior. The details of this calculation can be found in the
Appendix. We summarize all the results in Fig. 5, which depicts
the dynamical behaviors for a system described by Eqs. (5) as
a function of the usual coupling strength σc and the correlation
threshold pc. The color map of Fig. 5 represents the asymptotic
value of the weighted link, as calculated in the Appendix.

Regions A1,2 correspond to those parameters for which
there is no phase locking: A1 is defined by pc < 1/

√
2, and

A2 by pc > 1/
√

2 and σc < 	. The main difference between
these two regions is that whereas in A1 the weight tends to
zero, so that the oscillators end up being disconnected, in A2

the link weight tends to 1, which is not enough to synchronize
the oscillators since σc < 	.

On the other hand, we have synchronization in regions
B1,2,3. B1 is defined by 	 < σc < �1, with the critical curve �1

defined in Eq. (A3). B2 is enclosed by σc > �1 and σc < �2,
with �2 defined in Eq. (A4). Finally, B3 is characterized by
σc > �2 and pc > 1/

√
2. Whereas in B1 the weight becomes

1, in B2,3 it tends to �1/σc < 1, where �1 is calculated in
Eq. (A3). The difference between B2 and B3 is that we have a

FIG. 5. Stability diagram for the link weight of a system of two
coupled oscillators following Eqs. (5). The link weight tends to 0 in
region A1 and to 1 in region A2, but in both cases synchronization is
impossible. Regions B1,2,3 are characterized by phase locking: in B1

the weight becomes 1, whereas in B2,3 the weight becomes �1/σc < 1
with �1 defined in Eq. (A3). Regions B2 and B3 are different as
the latter has a spiral sink, resulting in a slower convergence to the
asymptotic state.

sink node in the first region and a spiral sink in the second one,
which implies that the convergence in B3 is slower than in B2.

Even for this simple two-node analysis, the scenario dis-
played by Fig. 5 fits closely the results obtained by numerical
analysis for the evolution of large-scale adaptive networks.
This can be seen by comparison with Fig. 2(a), where the
average degree, which directly depends on the stationary
weight values, was shown. In particular, the presence of the
same structure in the parameter space allows us to consider
that the analysis captures the relevant microscopic dynamics at
the heart of the entanglement between structure and dynamics
observed in the network resulting from the coevolution process.

V. CONCLUSIONS

In conclusion, in this work we suggested an adaptive
network model based on the competition between attractive
coupling at the node level and anti-Hebbian repulsive dynamics
at the link level. We showed how an initial set of fully
interacting phase oscillators can naturally evolve toward a
complex networked system, under the action of an adaptation
mechanism which promotes interactions between elements
that are not synchronized. Indeed, in many biological systems
synchronization needs to be both promoted and controlled in
order to avoid excessive redundancy. We characterized how
the dynamical organization of the emerging systems leads
spontaneously to degree-frequency correlation at the node
level, a structure typically associated to networks able to
sustain explosive synchronization. Our results can widen our
understanding of the shaping mechanisms behind the struc-
tural organization of some real-world systems such as brain
networks where the emergence of explosive synchronization
has been observed. The stability analysis of a simplified model
reveals the microscopic mechanisms that are at the heart of the
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observed emerging structural and dynamical features, and their
nontrivial correlations, observed in the networks described by
our adaptive coevolving model.
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APPENDIX: STABILITY ANALYSIS

We compute the fixed points for Eq. (5), for which the
following two cases need to be considered:

φ∗ = arcsin(	/σc), α∗ = 1; (A1)

φ∗ = arccos
(
2p2

c − 1
)
, α∗ = (	/σc)

2pc

√
1 − p2

c

. (A2)

As is well known for the Kuramoto model, for φ to be locked
it is required that σc � 	. Otherwise, neither φ∗ in Eq. (A1)
nor α∗ in Eq. (A2) are well defined. Notice that Eq. (A2)
implies that α∗ � 	/σc, since 0 � pc � 1, and the weight α

is constrained to be in the unit interval. This is a consequence
of Eq. (2) that keeps all weights in the interval unit once the
set of initial weights is chosen in that range.

The eigenvalues of the Jacobian matrix for Eq. (A1) are

λ1 = −σc cos φ∗, λ2 =
√

1 + cos φ∗

2
− pc.

Therefore, if pc < 1/
√

2, we have a saddle point since λ1 < 0
and λ2 > 0. If pc > 1/

√
2, there are two options depending on

the critical coupling strength

�1 := 	

2pc

√
1 − p2

c

. (A3)

If σc > �1, we again find a saddle point with λ1 < 0 and λ2 >

0, but if 	 < σc < �1, the fixed point is stable.
The corresponding Jacobian matrix for the second fixed

point, Eq. (A2), yields two more complex eigenvalues:

λ± =
A ±

√
A2 + B

(
1
σc

− 1
�1

)
C

,

where A := 2(1 − 2p2
c )	, B := 16pc(1 − p2

c )	2, and C :=
8pc

√
1 − p2

c . Since B and C are always positive, we deduce
that if σc < �1, the fixed point is a saddle point with λ− < 0
and λ+ > 0. If σc > �1, the stability depends on a second
critical value �2 that determines when the radicand becomes
zero. This value can be defined as

1

�2
:= 1

�1
−

(
1 − 2p2

c

)2

4pc

(
1 − p2

c

) . (A4)

It can be verified easily that �2 > �1 for any value of 	 and
pc.

When �1 < σc < �2, we have either two positive eigenval-
ues, if A > 0 (i.e., if pc < 1/

√
2), or two negative eigenvalues,

if A < 0 (i.e., if pc > 1/
√

2). On the other hand, if σc > �2,
the radicand is negative and, consequently, both eigenvalues
are complex and the sign of the real part is given by the sign
of A, positive for pc < 1/

√
2 and negative for pc > 1/

√
2.
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